]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RALICE/icepack/iceconvert/IceF2k.cxx
24-jun-2005 NvE Selection/overruling of specific job folder creation introduced in...
[u/mrichter/AliRoot.git] / RALICE / icepack / iceconvert / IceF2k.cxx
CommitLineData
f67e2651 1/*******************************************************************************
2 * Copyright(c) 2003, IceCube Experiment at the South Pole. All rights reserved.
3 *
4 * Author: The IceCube RALICE-based Offline Project.
5 * Contributors are mentioned in the code where appropriate.
6 *
7 * Permission to use, copy, modify and distribute this software and its
8 * documentation strictly for non-commercial purposes is hereby granted
9 * without fee, provided that the above copyright notice appears in all
10 * copies and that both the copyright notice and this permission notice
11 * appear in the supporting documentation.
12 * The authors make no claims about the suitability of this software for
13 * any purpose. It is provided "as is" without express or implied warranty.
14 *******************************************************************************/
15
16// $Id$
17
18///////////////////////////////////////////////////////////////////////////
19// Class IceF2k
20// Conversion of Amanda F2K data into IceEvent physics event structures.
5481c137 21// This class is derived from AliJob providing a task-based processing
22// structure on an event-by-event basis.
23// The main object in the job environment is an IceEvent* pointer.
24// In case the user has provided sub-tasks, these will be executed
25// on an event-by-event basis after the IceEvent structure has been filled
26// with the F2K data and before the final structures are written out.
1c9018c6 27// Note that the data structures are only written out if an outputfile has
28// been specified via the SetOutputFile memberfunction.
29// In case no outputfile has been specified, this class provides a facility
30// to investigate/analyse F2K data using the Ralice/IcePack analysis tools.
f67e2651 31//
32// Usage example :
33// ---------------
34//
35// gSystem->Load("ralice");
36// gSystem->Load("icepack");
37// gSystem->Load("iceconvert");
38//
5481c137 39// IceF2k q("IceF2k","F2K to IcePack data structure conversion");
f67e2651 40//
41// // Limit the number of entries for testing
5481c137 42// q.SetMaxEvents(10);
f67e2651 43//
44// // Print frequency to produce a short summary print every printfreq events
5481c137 45// q.SetPrintFreq(1);
f67e2651 46//
47// // Split level for the output structures
5481c137 48// q.SetSplitLevel(2);
f67e2651 49//
50// // Buffer size for the output structures
5481c137 51// q.SetBufferSize(32000);
52//
53// // The F2K input filename
54// q.SetInputFile("run7825.f2k");
f67e2651 55//
5481c137 56// // Output file for the event structures
57// TFile* ofile=new TFile("events.root","RECREATE","F2K data in IceEvent structure");
58// q.SetOutputFile(ofile);
59//
60// ///////////////////////////////////////////////////////////////////
61// // Here the user can specify his/her sub-tasks to be executed
62// // on an event-by-event basis after the IceEvent structure
63// // has been filled and before the data is written out.
64// // Sub-tasks (i.e. a user classes derived from TTask) are entered
65// // as follows :
66// //
67// // MyXtalk task1("task1","Cross talk correction");
68// // MyClean task2("task2","Hit cleaning");
69// // q.Add(&task1);
70// // q.Add(&task2);
71// //
72// // The sub-tasks will be executed in the order as they are entered.
73// ///////////////////////////////////////////////////////////////////
74//
75// // Perform the conversion and execute subtasks (if any)
76// // on an event-by-event basis
77// q.ExecuteJob();
f67e2651 78//
79// // Select various objects to be added to the output file
80//
1c9018c6 81// ofile->cd(); // Switch to the output file directory
82//
f67e2651 83// AliObjMatrix* omdb=q.GetOMdbase();
84// if (omdb) omdb->Write();
85//
86// AliDevice* fitdefs=q.GetFitdefs();
87// if (fitdefs) fitdefs->Write();
88//
89// TDatabasePDG* pdg=q.GetPDG();
90// if (pdg) pdg->Write();
91//
9f575717 92// // Flush the output file.
93// // The output file is not explicitly closed here
94// // to allow ineractive investigation of the data tree
95// // when this macro is run in an interactive ROOT/CINT session.
f67e2651 96// ofile->Write();
f67e2651 97//
98//--- Author: Nick van Eijndhoven 11-mar-2005 Utrecht University
99//- Modified: NvE $Date$ Utrecht University
100///////////////////////////////////////////////////////////////////////////
101
102#include "IceF2k.h"
103#include "Riostream.h"
104
105ClassImp(IceF2k) // Class implementation to enable ROOT I/O
106
5481c137 107IceF2k::IceF2k(const char* name,const char* title) : AliJob(name,title)
f67e2651 108{
109// Default constructor.
5481c137 110// By default maxevent=-1, split=99, bsize=32000, printfreq=1.
f67e2651 111
5481c137 112 fSplit=99;
113 fBsize=32000;
114 fMaxevt=-1;
115 fPrintfreq=1;
116 fInfile="";
117 fOutfile=0;
f67e2651 118
119 fPdg=0;
120 fOmdb=0;
121 fFitdefs=0;
f67e2651 122}
123///////////////////////////////////////////////////////////////////////////
124IceF2k::~IceF2k()
125{
126// Default destructor.
5481c137 127
f67e2651 128 if (fPdg)
129 {
130 delete fPdg;
131 fPdg=0;
132 }
133
134 if (fOmdb)
135 {
136 delete fOmdb;
137 fOmdb=0;
138 }
139
140 if (fFitdefs)
141 {
142 delete fFitdefs;
143 fFitdefs=0;
144 }
145}
146///////////////////////////////////////////////////////////////////////////
5481c137 147void IceF2k::SetMaxEvents(Int_t n)
148{
149// Set the maximum number of events to be processed.
150// n=-1 implies processing of the complete input file, which is the default
151// initialisation in the constructor.
152 fMaxevt=n;
153}
154///////////////////////////////////////////////////////////////////////////
155void IceF2k::SetPrintFreq(Int_t f)
156{
157// Set the printfrequency to produce info every f events.
158// f=1 is the default initialisation in the constructor.
159 if (f>0) fPrintfreq=f;
160}
161///////////////////////////////////////////////////////////////////////////
162void IceF2k::SetSplitLevel(Int_t split)
163{
164// Set the split level for the ROOT data file.
165// split=99 is the default initialisation in the constructor.
166 if (split>=0) fSplit=split;
167}
168///////////////////////////////////////////////////////////////////////////
169void IceF2k::SetBufferSize(Int_t bsize)
170{
171// Set the buffer size for the ROOT data file.
172// bsize=32000 is the default initialisation in the constructor.
173 if (bsize>=0) fBsize=bsize;
174}
175///////////////////////////////////////////////////////////////////////////
176void IceF2k::SetInputFile(TString name)
177{
178// Set the name of the F2K input file.
179 fInfile=name;
180}
181///////////////////////////////////////////////////////////////////////////
182void IceF2k::SetOutputFile(TFile* ofile)
183{
184// Set the output file for the ROOT data.
185 fOutfile=ofile;
186}
187///////////////////////////////////////////////////////////////////////////
f67e2651 188TDatabasePDG* IceF2k::GetPDG()
189{
190// Provide pointer to the PDG database
191 return fPdg;
192}
193///////////////////////////////////////////////////////////////////////////
194AliObjMatrix* IceF2k::GetOMdbase()
195{
196// Provide pointer to the OM geometry, calib. etc... database
197 return fOmdb;
198}
199///////////////////////////////////////////////////////////////////////////
200AliDevice* IceF2k::GetFitdefs()
201{
202// Provide pointer to the fit definitions
203 return fFitdefs;
204}
205///////////////////////////////////////////////////////////////////////////
5481c137 206void IceF2k::Exec(Option_t* opt)
f67e2651 207{
5481c137 208// Job to loop over the specified number of events and convert the
f67e2651 209// F2K data into the IceEvent structure.
5481c137 210// If maxevents<0 (default) all the entries of the input file
f67e2651 211// will be processed.
212// Every "printfreq" events a short event summary will be printed.
213// The default value is printfreq=1.
5481c137 214// The output will be written on a standard output tree named "T".
215//
216// Notes :
217// -------
218// 1) This class is derived from AliJob, allowing a task based processing.
219// After the conversion of an F2K event into an IceEvent structure,
220// the processing of all available sub-tasks (if any) is invoked.
221// This provides an event-by-event (sub)task processing before the
222// final data structures are written out.
223// 2) The main object in this job environment is an IceEvent* pointer.
224
225 if (fInfile=="")
226 {
227 cout << " *IceF2k Exec* No data input file specified." << endl;
228 return;
229 }
f67e2651 230
5481c137 231 // Open the input file in the default ascii format (autodetection) for reading
232 fInput=rdmc_mcopen(fInfile.Data(),"r",RDMC_DEFAULT_ASCII_F);
f67e2651 233
5481c137 234 if (!fInput)
235 {
236 cout << " *IceF2k Exec* No input file found with name : " << fInfile.Data() << endl;
237 return;
238 }
f67e2651 239
5481c137 240 // Initialise the event structure
241 rdmc_init_mevt(&fEvent);
242
243 // Read the file header information
244 rdmc_rarr(fInput,&fHeader);
245
1c9018c6 246 TTree* otree=0;
247 if (fOutfile)
5481c137 248 {
1c9018c6 249 otree=new TTree("T","F2K Data converted to IceEvent structures");
250 otree->SetDirectory(fOutfile);
5481c137 251 }
f67e2651 252
5481c137 253 IceEvent* evt=new IceEvent();
f67e2651 254 evt->SetTrackCopy(1);
255 evt->SetDevCopy(1);
256
257 // Branch in the tree for the event structure
1c9018c6 258 if (otree) otree->Branch("IceEvent","IceEvent",&evt,fBsize,fSplit);
f67e2651 259
260 // Create the particle database and extend it with some F2000 specific definitions
261 if (!fPdg) fPdg=new TDatabasePDG();
262 Double_t me=fPdg->GetParticle(11)->Mass();
263 fPdg->AddParticle("brems" ,"brems" ,0,1,0,0,"none",10001001,0,0);
264 fPdg->AddParticle("deltae" ,"deltae" ,me,1,0,-3,"Lepton",10001002,0,0);
265 fPdg->AddParticle("pairprod","pairprod",0,1,0,0,"none",10001003,0,0);
266 fPdg->AddParticle("nucl_int","nucl_Int",0,1,0,0,"none",10001004,0,0);
267 fPdg->AddParticle("mu_pair" ,"mu_pair" ,0,1,0,0,"none",10001005,0,0);
268 fPdg->AddParticle("hadrons" ,"hadrons" ,0,1,0,0,"none",10001006,0,0);
269 fPdg->AddParticle("fiberlaser","fiberlaser",0,1,0,0,"none",10002100,0,0);
270 fPdg->AddParticle("n2laser" ,"n2laser" ,0,1,0,0,"none",10002101,0,0);
271 fPdg->AddParticle("yaglaser" ,"yaglaser" ,0,1,0,0,"none",10002201,0,0);
272 fPdg->AddParticle("z_primary","z_primary",0,1,0,0,"none",10003000,0,0);
273 fPdg->AddParticle("a_primary","a_primary",0,1,0,0,"none",10003500,0,0);
274
275 // Fill the database with geometry, calib. etc... parameters
276 // for all the devices
277 FillOMdbase();
278
279 // Set the fit definitions according to the F2000 header info
280 SetFitdefs();
281
5481c137 282 // Initialise the job working environment
283 SetMainObject(evt);
1c9018c6 284 if (fOutfile)
285 {
286 AddObject(fOutfile);
287 AddObject(otree);
288 }
5481c137 289
290 cout << " ***" << endl;
291 cout << " *** Start processing of job " << GetName() << " ***" << endl;
292 cout << " ***" << endl;
293 cout << " F2K input file : " << fInfile.Data() << endl;
294 cout << " Maximum number of events to be processed : " << fMaxevt << endl;
295 cout << " Print frequency : " << fPrintfreq << endl;
1c9018c6 296 if (fOutfile)
297 {
298 cout << " ROOT output file : " << fOutfile->GetName() << endl;
299 cout << " Output characteristics : splitlevel = " << fSplit << " buffersize = " << fBsize << endl;
300 }
5481c137 301
302 ListEnvironment();
303
304 Int_t nevt=0;
305 while (!rdmc_revt(fInput,&fHeader,&fEvent))
f67e2651 306 {
5481c137 307 if (fMaxevt>-1 && nevt>=fMaxevt) break;
f67e2651 308
309 // Reset the complete Event structure
310 evt->Reset();
311
312 evt->SetRunNumber(fEvent.nrun);
313 evt->SetEventNumber(fEvent.enr);
314 evt->SetMJD(fEvent.mjd,fEvent.secs,fEvent.nsecs);
315
5481c137 316 PutMcTracks();
f67e2651 317
5481c137 318 PutRecoTracks();
f67e2651 319
5481c137 320 PutHits();
f67e2651 321
5481c137 322 // Invoke all available sub-tasks (if any)
323 ExecuteTasks(opt);
324
325 if (!(nevt%fPrintfreq)) evt->HeaderData();
f67e2651 326
327 // Write the complete structure to the output Tree
1c9018c6 328 if (otree) otree->Fill();
f67e2651 329
5481c137 330 // Update event counter
331 nevt++;
332 }
1c9018c6 333
334 // Remove the IceEvent object from the environment
335 // and delete it as well
336 if (evt)
337 {
338 RemoveObject(evt);
339 delete evt;
340 }
f67e2651 341}
342///////////////////////////////////////////////////////////////////////////
343void IceF2k::FillOMdbase()
344{
345// Fill the database with geometry, calib. etc... parameters
346// for all the devices.
347
348 if (fHeader.nch<=0) return;
349
350 if (fOmdb)
351 {
352 fOmdb->Reset();
353 }
354 else
355 {
356 fOmdb=new AliObjMatrix();
357 fOmdb->SetNameTitle("OMDBASE","The OM geometry, calib. etc... database");
358 fOmdb->SetOwner();
359 }
360
361 IceAOM* dev=0;
362 Double_t pos[3]={0,0,0};
363 for (Int_t i=0; i<fHeader.nch; i++)
364 {
365 dev=new IceAOM();
366 dev->SetUniqueID(i+1);
367 dev->SetSlotName("TYPE",1);
368 dev->SetSlotName("ORIENT",2);
369 dev->SetSlotName("T0",3);
370 dev->SetSlotName("ALPHA",4);
371 dev->SetSlotName("KADC",5);
372 dev->SetSlotName("KTOT",6);
373 dev->SetSlotName("KTDC",7);
374
375 pos[0]=fHeader.x[i];
376 pos[1]=fHeader.y[i];
377 pos[2]=fHeader.z[i];
378 dev->SetPosition(pos,"car");
379 dev->SetSignal(fHeader.type[i],1);
380 dev->SetSignal((Float_t)fHeader.costh[i],2);
381 dev->SetSignal(fHeader.cal[i].t_0,3);
382 dev->SetSignal(fHeader.cal[i].alpha_t,4);
383 dev->SetSignal(fHeader.cal[i].beta_a,5);
384 dev->SetSignal(fHeader.cal[i].beta_tot,6);
385 dev->SetSignal(fHeader.cal[i].beta_t,7);
386 fOmdb->EnterObject(i+1,1,dev);
387 }
388}
389///////////////////////////////////////////////////////////////////////////
390void IceF2k::SetFitdefs()
391{
392// Obtain the names of the variables for each fit procedure from the
393// f2000 header. Each different fit procedure is then stored as a separate
394// hit of an AliDevice object and the various fit variables are stored
395// as separate signal slots of the corresponding hit.
396// Via the GetFitdefs() memberfunction this AliDevice object can be
397// retrieved and stored in the ROOT output file if wanted.
398// The name of the object is FitDefinitions and the stored data can be
399// inspected via the AliDevice::Data() memberfunction and looks as follows :
400//
401// *AliDevice::Data* Id :0 Name : FitDefinitions
402// Position Vector in car coordinates : 0 0 0
403// Err. in car coordinates : 0 0 0
404// The following 8 hits are registered :
405// *AliSignal::Data* Id :0
406// Position Vector in car coordinates : 0 0 0
407// Err. in car coordinates : 0 0 0
408// Owned by device : AliDevice Name : FitDefinitions
409// Slot : 1 Signal value : 1 name : id
410// Slot : 2 Signal value : 2 name : rchi2
411// Slot : 3 Signal value : 3 name : prob
412// Slot : 4 Signal value : 4 name : sigth
413// Slot : 5 Signal value : 5 name : covmin
414// Slot : 6 Signal value : 6 name : covmax
415// Slot : 7 Signal value : 7 name : cutflag
416// Slot : 8 Signal value : 8 name : chi2
417// *AliSignal::Data* Id :1
418// Position Vector in car coordinates : 0 0 0
419// Err. in car coordinates : 0 0 0
420// Owned by device : AliDevice Name : FitDefinitions
421// Slot : 1 Signal value : 1 name : id
422// Slot : 2 Signal value : 2 name : rchi2
423// Slot : 3 Signal value : 3 name : prob
424// etc....
425//
426// This memberfunction is based on the original idea/code by Adam Bouchta.
427
428 if (fHeader.n_fit<=0) return;
429
430 if (fFitdefs)
431 {
432 fFitdefs->Reset(1);
433 }
434 else
435 {
436 fFitdefs=new AliDevice();
437 }
438
439 fFitdefs->SetName("FitDefinitions");
440 fFitdefs->SetHitCopy (1);
441
442 AliSignal s;
443 s.Reset();
444
445 for (Int_t i=0; i<fHeader.n_fit; i++)
446 {
447 s.SetUniqueID(fHeader.def_fit[i].id);
448
449 for (Int_t j=0; j<fHeader.def_fit[i].nwords; j++)
450 {
451 s.SetSlotName(TString(fHeader.def_fit[i].words[j]),j+1);
452 s.SetSignal(j+1,j+1);
453 }
454
455 fFitdefs->AddHit(s);
456 s.Reset(1);
457 }
458}
459///////////////////////////////////////////////////////////////////////////
5481c137 460void IceF2k::PutMcTracks()
f67e2651 461{
462// Get the MC tracks from the F2000 file into the IcePack structure.
463// Note : MC tracks are given negative track id's in the event structure.
464// This memberfunction is based on the original code by Adam Bouchta.
465
5481c137 466 IceEvent* evt=(IceEvent*)GetMainObject();
f67e2651 467 if (!evt || fEvent.ntrack<=0) return;
468
469 // Loop over all the tracks and add them to the current event
470 AliTrack t;
471 Double_t vec[3];
472 AliPosition r;
473 Ali3Vector p;
474 Int_t tid=0;
475 Int_t idpdg=0;
476 Int_t idf2k=0;
477 for (Int_t i=0; i<fEvent.ntrack; i++)
478 {
479 t.Reset ();
480
481 // Beginpoint of the track
482 vec[0]=fEvent.gen[i].x;
483 vec[1]=fEvent.gen[i].y;
484 vec[2]=fEvent.gen[i].z;
485 r.SetPosition(vec,"car");
486 t.SetBeginPoint(r);
487
488 // Endpoint of the track
489 vec[0]+=fEvent.gen[i].length*fEvent.gen[i].px;
490 vec[1]+=fEvent.gen[i].length*fEvent.gen[i].py;
491 vec[2]+=fEvent.gen[i].length*fEvent.gen[i].pz;
492 r.SetPosition(vec,"car");
493 t.SetEndPoint(r);
494
495 // Momentum in GeV/c
496 vec[0]=fEvent.gen[i].e*fEvent.gen[i].px*1e-3;
497 vec[1]=fEvent.gen[i].e*fEvent.gen[i].py*1e-3;
498 vec[2]=fEvent.gen[i].e*fEvent.gen[i].pz*1e-3;
499 p.SetVector (vec,"car");
500 t.Set3Momentum(p);
501
502 // MC tracks are indicated by negative track id's
503 tid=fEvent.gen[i].tag;
504 t.SetId(-abs(tid));
505
506 idf2k=fEvent.gen[i].id;
507 idpdg=0;
508 if (idf2k>1000)
509 {
510 idpdg=idf2k+10000000;
511 }
512 else if (idf2k <= 48)
513 {
514 idpdg=fPdg->ConvertGeant3ToPdg(idf2k);
515 }
516 else
517 {
518 if (idf2k==201) idpdg=12;
519 if (idf2k==202) idpdg=14;
520 if (idf2k==203) idpdg=16;
521 if (idf2k==204) idpdg=-12;
522 if (idf2k==205) idpdg=-14;
523 if (idf2k==206) idpdg=-16;
524 }
525
526 t.SetParticleCode(idpdg);
527 t.SetName(fPdg->GetParticle(idpdg)->GetName());
528 t.SetTitle("MC track");
529 t.SetMass(fPdg->GetParticle(idpdg)->Mass());
530 t.SetCharge(fPdg->GetParticle(idpdg)->Charge()/3.);
531
532 evt->AddTrack(t);
533 }
534
535 // Create the pointers to each particle's parent particle.
536 Int_t txid=0;
537 Int_t parid=0;
538 for (Int_t itk=1; itk<=evt->GetNtracks (); itk++)
539 {
540 AliTrack* tx=evt->GetTrack(itk);
541
542 if (!tx) continue;
543
544 txid=tx->GetId();
545
546 parid=-1;
547 for (Int_t j=0; j<fEvent.ntrack; j++)
548 {
549 tid=fEvent.gen[j].tag;
550 if (-abs(tid) == txid) parid=fEvent.gen[j].parent;
551 }
552
553 if (parid<0) continue;
554
555 AliTrack* tpar=evt->GetIdTrack(-abs(parid));
556
557 if (!tpar) continue;
558
559 tx->SetParentTrack(tpar);
560 }
561}
562///////////////////////////////////////////////////////////////////////////
5481c137 563void IceF2k::PutRecoTracks()
f67e2651 564{
565// Get the reconstructed tracks from the F2000 file into the IcePack structure.
566// Note : Reco tracks are given positive track id's in the event structure.
567// This memberfunction is based on the original code by Adam Bouchta.
568
5481c137 569 IceEvent* evt=(IceEvent*)GetMainObject();
f67e2651 570 if (!evt || fEvent.nfit<=0) return;
571
572 // Loop over all the tracks and add them to the current event
573 AliTrack t;
574 Double_t vec[3];
575 AliPosition r;
576 Ali3Vector p;
577 Int_t tid=0;
578 Int_t idpdg=0;
579 Int_t idf2k=0;
580 for (Int_t i=0; i<fEvent.nfit; i++)
581 {
582 t.Reset ();
583
584 // Beginpoint of the track
585 vec[0]=fEvent.rec[i].x;
586 vec[1]=fEvent.rec[i].y;
587 vec[2]=fEvent.rec[i].z;
588 r.SetPosition(vec,"car");
589 t.SetBeginPoint(r);
590
591 // Endpoint of the track
592 vec[0]+=fEvent.rec[i].length*fEvent.rec[i].px;
593 vec[1]+=fEvent.rec[i].length*fEvent.rec[i].py;
594 vec[2]+=fEvent.rec[i].length*fEvent.rec[i].pz;
595 r.SetPosition(vec,"car");
596 t.SetEndPoint(r);
597
598 // Momentum in GeV/c
599 if (fEvent.rec[i].e > 0)
600 {
601 vec[0]=fEvent.rec[i].e*fEvent.rec[i].px*1e-3;
602 vec[1]=fEvent.rec[i].e*fEvent.rec[i].py*1e-3;
603 vec[2]=fEvent.rec[i].e*fEvent.rec[i].pz*1e-3;
604 }
605 else // Give the track a nominal momentum of 1 GeV/c
606 {
607 vec[0]=fEvent.rec[i].px;
608 vec[1]=fEvent.rec[i].py;
609 vec[2]=fEvent.rec[i].pz;
610 }
611 p.SetVector (vec,"car");
612 t.Set3Momentum(p);
613
614 // Use the fit number as track id
615 tid=fEvent.rec[i].tag;
616 t.SetId(abs(tid));
617
618 idf2k=fEvent.rec[i].id;
619 idpdg=0;
620 if (idf2k>1000)
621 {
622 idpdg=idf2k+10000000;
623 }
624 else if (idf2k <= 48)
625 {
626 idpdg=fPdg->ConvertGeant3ToPdg(idf2k);
627 }
628 else
629 {
630 if (idf2k==201) idpdg=12;
631 if (idf2k==202) idpdg=14;
632 if (idf2k==203) idpdg=16;
633 if (idf2k==204) idpdg=-12;
634 if (idf2k==205) idpdg=-14;
635 if (idf2k==206) idpdg=-16;
636 }
637
638 t.SetParticleCode(idpdg);
639 t.SetName(fPdg->GetParticle(idpdg)->GetName());
640 t.SetTitle("RECO track");
641 t.SetMass(fPdg->GetParticle(idpdg)->Mass());
642 t.SetCharge(fPdg->GetParticle(idpdg)->Charge()/3.);
643
644 // Retrieve the various fit parameters for this track
645 AliSignal* fitdata=fFitdefs->GetIdHit(i);
646 for (Int_t jval=0; jval<fEvent.fresult[i].nval; jval++)
647 {
648 fitdata->SetSignal(fEvent.fresult[i].val[jval],jval+1);
649 }
650
651 // Store the various fit parameters for this track
652 t.SetFitDetails(fitdata);
653
654 // Store the various reco tracks as track hypotheses.
655 // A copy of the first reco track is entered as a new track instance
656 // into the event and all reco tracks (incl. the first one) are
657 // stored as hypotheses linked to this new reco track.
658 if (i==0)
659 {
660 evt->AddTrack(t);
661 AliTrack* tx=evt->GetTrack(evt->GetNtracks());
662 Int_t nrec=evt->GetNtracks(1);
663 tx->SetId(nrec+1);
664 }
665 AliTrack* tx=evt->GetTrack(evt->GetNtracks());
666 if (tx) tx->AddTrackHypothesis(t);
667 }
668}
669///////////////////////////////////////////////////////////////////////////
5481c137 670void IceF2k::PutHits()
f67e2651 671{
672// Get the hit and waveform info from the F2000 file into the IcePack structure.
673// This memberfunction is based on the original code by Adam Bouchta.
674
5481c137 675 IceEvent* evt=(IceEvent*)GetMainObject();
f67e2651 676 if (!evt) return;
677
678 // Loop over all the hits and add them to the current event
679 IceAOM om;
680 AliSignal s;
681 s.SetSlotName("ADC",1);
682 s.SetSlotName("LE",2);
683 s.SetSlotName("TOT",3);
684 Int_t chan=0;
685 Int_t maxchan=800;
686 if (fOmdb) maxchan=fHeader.nch;
687 IceAOM* omx=0;
688 AliSignal* sx=0;
689 Int_t tid=0;
690 AliTrack* tx=0;
691 for (Int_t i=0; i<fEvent.nhits; i++)
692 {
693 chan=fEvent.h[i].ch+1;
694 if (chan>maxchan) continue; // Channels 9001, 9002 etc are trigger channels
695
696 // Get corresponding device from the current event structure
697 omx=(IceAOM*)evt->GetIdDevice(chan);
698 if (!omx)
699 {
700 if (fOmdb)
701 {
702 omx=(IceAOM*)fOmdb->GetObject(chan,1);
703 evt->AddDevice(omx);
704 }
705 else
706 {
707 om.Reset(1);
708 om.SetUniqueID(chan);
709 evt->AddDevice(om);
710 }
711 omx=(IceAOM*)evt->GetIdDevice(chan);
712 }
713
714 if (!omx) continue;
715
716 s.Reset();
717 s.SetUniqueID(fEvent.h[i].id);
718 s.SetSignal(fEvent.h[i].amp,1);
719 s.SetSignal(fEvent.h[i].t,2);
720 s.SetSignal(fEvent.h[i].tot,3);
721
722 omx->AddHit(s);
723
724 sx=omx->GetHit(omx->GetNhits());
725 if (!sx) continue;
726
727 // Bi-directional link between this hit and the track that caused the ADC value.
728 // This F2K info is probably only present for MC tracks.
729 tid=fEvent.h[i].ma;
730 if (tid > 0)
731 {
732 tx=evt->GetIdTrack(tid); // Reco tracks
733 if (!tx) tx=evt->GetIdTrack(-tid); // MC tracks
734 if (tx) sx->AddLink(tx);
735 }
736 else
737 {
738 if (tid == -2) s.SetNameTitle("N","Noise");
739 if (tid == -3) s.SetNameTitle("A","Afterpulse");
740 }
741 }
742
743 // Loop over all the waveforms and add the histo(s) to the corresponding OM's
744 TH1F histo;
745 Int_t nbins=0;
746 Float_t xlow=0;
747 Float_t xup=0;
748 TString hname;
749 for (Int_t iwf=0; iwf<fEvent.nwf; iwf++)
750 {
751 chan=fEvent.wf[iwf].om;
752 if (chan<=0 || chan>maxchan) continue; // Skip trigger channels
753
754 // Get corresponding device from the current event structure
755 omx=(IceAOM*)evt->GetIdDevice(chan);
756 if (!omx)
757 {
758 if (fOmdb)
759 {
760 omx=(IceAOM*)fOmdb->GetObject(chan,1);
761 evt->AddDevice(omx);
762 }
763 else
764 {
765 om.Reset(1);
766 om.SetUniqueID(chan);
767 evt->AddDevice(om);
768 }
769 omx=(IceAOM*)evt->GetIdDevice(chan);
770 }
771
772 if (!omx) continue;
773
774 omx->SetSlotName("BASELINE",omx->GetNnames()+1);
775 omx->SetSignal(fEvent.wf[iwf].baseline,"BASELINE");
776
777 // Fill the waveform histogram
778 hname="OM";
779 hname+=chan;
780 hname+="-WF";
781 hname+=omx->GetNwaveforms()+1;
782
783 histo.Reset();
784 histo.SetName(hname.Data());
785 nbins=fEvent.wf[iwf].ndigi;
786 xlow=fEvent.wf[iwf].t_start;
787 xup=xlow+float(nbins)*fEvent.wf[iwf].t_bin;
788 histo.SetBins(nbins,xlow,xup);
789
790 for (Int_t jbin=1; jbin<=fEvent.wf[iwf].ndigi; jbin++)
791 {
792 histo.SetBinContent(jbin,fEvent.wf[iwf].digi[jbin]);
793 }
794
795 omx->SetWaveform(&histo,omx->GetNwaveforms()+1);
796 }
797
798 // Set bi-directional links between hits and reco track hypotheses.
799 // Note : Reco tracks are recognised by their positive id.
800 Int_t hid=0;
801 TObjArray* rectracks=evt->GetTracks(1);
802 for (Int_t jtk=0; jtk<rectracks->GetEntries(); jtk++)
803 {
804 tx=(AliTrack*)rectracks->At(jtk);
805 if (!tx) continue;
806
807 for (Int_t jhyp=1; jhyp<=tx->GetNhypotheses(); jhyp++)
808 {
809 AliTrack* hypx=tx->GetTrackHypothesis(jhyp);
810 if (!hypx) continue;
811
812 // Loop over all combinations of F2K fits and used OM hits
813 for (Int_t k=0; k<fEvent.nfit_uses; k++)
814 {
815 if (fEvent.fit_uses[k].useid != hypx->GetId()) continue;
816 hid=fEvent.fit_uses[k].hitid;
817 sx=evt->GetIdHit(hid,"IceAOM");
818 if (sx) sx->AddLink(hypx);
819 }
820 }
821 }
822}
823///////////////////////////////////////////////////////////////////////////