]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHDetect.cxx
Default arguments declared once
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
CommitLineData
c1076715 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 $Log$
ac6e04fc 18 Revision 1.12 2001/02/27 22:15:03 jbarbosa
19 Removed compiler warning.
20
2966f600 21 Revision 1.11 2001/02/27 15:21:46 jbarbosa
22 Transition to SDigits.
23
b251a2b5 24 Revision 1.10 2001/02/13 20:39:06 jbarbosa
25 Changes to make it work with new IO.
26
a5886574 27 Revision 1.9 2001/01/22 21:39:11 jbarbosa
28 Several tune-ups
29
eb1ee126 30 Revision 1.8 2000/11/15 15:52:53 jbarbosa
31 Turned on spot algorithm.
32
ceccff49 33 Revision 1.7 2000/11/01 15:37:05 jbarbosa
34 Updated to use its own rec. point object.
35
4a5c8776 36 Revision 1.6 2000/10/02 21:28:12 fca
37 Removal of useless dependecies via forward declarations
38
94de3818 39 Revision 1.5 2000/06/30 16:30:28 dibari
40 Disabled writing to rechits.
41
a366fdbe 42 Revision 1.4 2000/06/15 15:46:59 jbarbosa
43 Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
44
00df6e79 45 Revision 1.3 2000/06/13 13:15:41 jbarbosa
46 Still some code cleanup done (variable names)
47
3a3df9e3 48 Revision 1.2 2000/06/12 15:19:30 jbarbosa
49 Cleaned up version.
50
237c933d 51 Revision 1.1 2000/04/19 13:05:14 morsch
52 J. Barbosa's spot reconstruction algorithm.
53
c1076715 54*/
55
56
57#include "AliRICH.h"
58#include "AliRICHPoints.h"
59#include "AliRICHDetect.h"
237c933d 60#include "AliRICHHit.h"
61#include "AliRICHDigit.h"
ac6e04fc 62#include "AliRICHSegmentationV0.h"
c1076715 63#include "AliRun.h"
64#include "TParticle.h"
94de3818 65#include "TTree.h"
c1076715 66#include "TMath.h"
67#include "TRandom.h"
ac6e04fc 68#include "TH3.h"
69#include "TH2.h"
70#include "TCanvas.h"
c1076715 71
ac6e04fc 72#include "malloc.h"
c1076715 73
74
75ClassImp(AliRICHDetect)
76//___________________________________________
77AliRICHDetect::AliRICHDetect() : TObject()
78{
237c933d 79
80// Default constructor
81
c1076715 82}
83
84//___________________________________________
85AliRICHDetect::AliRICHDetect(const char *name, const char *title)
86 : TObject()
87{
237c933d 88
ac6e04fc 89
90 fc1= new TCanvas("c1","Reconstructed points",50,50,300,350);
91 fc1->Divide(2,2);
92 fc2= new TCanvas("c2","Reconstructed points after SPOT",50,50,300,350);
93 fc2->Divide(2,2);
94 fc3= new TCanvas("c3","Used Digits",50,50,300,350);
95 //fc3->Divide(2,1);
96
97}
98
99//___________________________________________
100AliRICHDetect::~AliRICHDetect()
101{
c1076715 102
ac6e04fc 103// Destructor
104
c1076715 105}
106
107
ac6e04fc 108void AliRICHDetect::Detect(Int_t nev)
c1076715 109{
110
237c933d 111//
112// Detection algorithm
113
114
c1076715 115 //printf("Detection started!\n");
ac6e04fc 116 Float_t omega,omega1,theta1,steptheta,stepphi,x,y,z,cx,cy,l,aux1,aux2,aux3,max,radius=0,meanradius=0;
117 Int_t maxi,maxj,maxk;
c1076715 118 //Float_t theta,phi,realomega,realtheta;
ac6e04fc 119 Float_t binomega, bintheta, binphi;
120 Int_t intomega, inttheta, intphi;
c1076715 121 Int_t i,j,k;
ac6e04fc 122
123 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
124 AliRICHSegmentationV0* segmentation;
125 AliRICHChamber* iChamber;
126 AliRICHGeometry* geometry;
127
128 iChamber = &(pRICH->Chamber(0));
129 segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(0);
130 geometry=iChamber->GetGeometryModel();
ceccff49 131
c1076715 132
ac6e04fc 133 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
134 //const Float_t t=0.6; //Softening of Noise Correction (factor)
c1076715 135
ac6e04fc 136 const Float_t kPi=TMath::Pi();
c1076715 137
ac6e04fc 138 const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters
139 //printf("Distance to Pads:%f\n",kHeight);
ceccff49 140
ac6e04fc 141 const Int_t kSpot=0; //number of passes with spot algorithm
c1076715 142
ac6e04fc 143 const Int_t kDimensionTheta=30; //Matrix dimension for angle Detection
144 const Int_t kDimensionPhi=45;
145 const Int_t kDimensionOmega=100;
c1076715 146
ac6e04fc 147 const Float_t SPOTp=1; //Percentage of spot action
148 const Float_t kMinOmega=20*kPi/180;
149 const Float_t kMaxOmega=70*kPi/180; //Maximum Cherenkov angle to identify
150 const Float_t kMinTheta=0;
151 const Float_t kMaxTheta=15*kPi/180;
152 //const Float_t kMaxTheta=0.1;
153 const Float_t kMinPhi=0;
154 const Float_t kMaxPhi=360*kPi/180;
155
eb1ee126 156
ac6e04fc 157 Float_t kCorr=0.61; //Correction factor, accounting for aberration, refractive index, etc.
158 //const Float_t kCorr=.9369; //from 0 incidence
159 //const Float_t kCorr=1;
160
161 //TRandom* random=0;
162
163 Float_t rechit[6]; //Reconstructed point data
164
c1076715 165
c1076715 166
ac6e04fc 167 //printf("Creating matrices\n");
168 //Float_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
169 //Float_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
170 //printf("Created matrices\n");
171
172 Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
173 Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
c1076715 174
ac6e04fc 175 //Int_t **point = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega];
176 //Int_t **point1 = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega];
177
178 steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta;
179 stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi;
180
181 static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
182 static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
183 static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
184 static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
185 static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
186 static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
187 static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
188 static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
189 static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25);
190 Points->SetXTitle("theta");
191 Points->SetYTitle("phi");
192 Points->SetZTitle("omega");
193 ThetaPhi->SetXTitle("theta");
194 ThetaPhi->SetYTitle("phi");
195 OmegaTheta->SetXTitle("theta");
196 OmegaTheta->SetYTitle("omega");
197 OmegaPhi->SetXTitle("phi");
198 OmegaPhi->SetYTitle("omega");
199 SpotPoints->SetXTitle("theta");
200 SpotPoints->SetYTitle("phi");
201 SpotPoints->SetZTitle("omega");
202 SpotThetaPhi->SetXTitle("theta");
203 SpotThetaPhi->SetYTitle("phi");
204 SpotOmegaTheta->SetXTitle("theta");
205 SpotOmegaTheta->SetYTitle("omega");
206 SpotOmegaPhi->SetXTitle("phi");
207 SpotOmegaPhi->SetYTitle("omega");
208
c1076715 209 Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
210 //Int_t ntrks = gAlice->GetNtrack();
211
212 Float_t trackglob[3];
213 Float_t trackloc[3];
214
c1076715 215 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
216
4a5c8776 217 Int_t track;
c1076715 218
4a5c8776 219 for (track=0; track<ntracks;track++) {
c1076715 220 gAlice->ResetHits();
221 gAlice->TreeH()->GetEvent(track);
3a3df9e3 222 TClonesArray *pHits = pRICH->Hits();
223 if (pHits == 0) return;
224 Int_t nhits = pHits->GetEntriesFast();
c1076715 225 if (nhits == 0) continue;
2966f600 226 //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
ac6e04fc 227 gAlice->TreeD()->GetEvent(0);
c1076715 228 AliRICHHit *mHit = 0;
229 AliRICHDigit *points = 0;
230 //Int_t npoints=0;
231
ac6e04fc 232 Int_t counter=0, counter1=0;
c1076715 233 //Initialization
3a3df9e3 234 for(i=0;i<kDimensionTheta;i++)
c1076715 235 {
3a3df9e3 236 for(j=0;j<kDimensionPhi;j++)
c1076715 237 {
3a3df9e3 238 for(k=0;k<kDimensionOmega;k++)
c1076715 239 {
240 counter++;
3a3df9e3 241 point[i][j][k]=0;
242 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
c1076715 243 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
3a3df9e3 244 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
245 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
c1076715 246 }
247 }
248 }
3a3df9e3 249 mHit = (AliRICHHit*) pHits->UncheckedAt(0);
c1076715 250 //printf("Aqui vou eu\n");
251 Int_t nch = mHit->fChamber;
252 //printf("Aqui fui eu\n");
94de3818 253 trackglob[0] = mHit->X();
254 trackglob[1] = mHit->Y();
255 trackglob[2] = mHit->Z();
c1076715 256
ac6e04fc 257 printf("Chamber processed:%d\n",nch);
ceccff49 258
ac6e04fc 259 printf("Reconstructing particle at (global coordinates): %3.1f %3.1f %3.1f,\n",trackglob[0],trackglob[1],trackglob[2]);
c1076715 260
3a3df9e3 261 iChamber = &(pRICH->Chamber(nch-1));
c1076715 262
263 //printf("Nch:%d\n",nch);
264
265 iChamber->GlobaltoLocal(trackglob,trackloc);
266
ac6e04fc 267 printf("Reconstructing particle at (local coordinates) : %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
c1076715 268
269
270 iChamber->LocaltoGlobal(trackloc,trackglob);
271
3a3df9e3 272 //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
c1076715 273
ac6e04fc 274 cx=trackloc[0];
275 cy=trackloc[2];
c1076715 276
277
3a3df9e3 278 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
279 Int_t ndigits = pDigits->GetEntriesFast();
c1076715 280
281 //printf("Got %d digits\n",ndigits);
282
ac6e04fc 283 counter=0;
284 printf("Starting calculations\n");
285 for(Float_t theta=0;theta<kMaxTheta;theta+=steptheta)
286 {
287 //printf(".");
288 for(Float_t phi=0;phi<=kMaxPhi;phi+=stepphi)
289 {
290 //printf("Phi:%3.1f\n", phi*180/kPi);
291 counter1=0;
c1076715 292 for (Int_t dig=0;dig<ndigits;dig++)
293 {
3a3df9e3 294 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
ac6e04fc 295 segmentation->GetPadC(points->fPadX, points->fPadY,x, y, z);
296 x=x-cx;
297 y=y-cy;
298 radius=TMath::Sqrt(TMath::Power(x,2)+TMath::Power(y,2));
299
300 if(radius>4)
c1076715 301 {
ac6e04fc 302 //if(theta==0 && phi==0)
303 //{
304 //printf("Radius: %f, Max Radius: %f\n",radius,kCorr*kHeight*tan(theta+kMaxOmega)*3/4);
305 meanradius+=radius;
306 counter++;
307 //}
c1076715 308
ac6e04fc 309 if (radius<2*kHeight*tan(theta+kMaxOmega)*3/4)
eb1ee126 310 {
ac6e04fc 311
312 if(phi==0)
313 {
314 //printf("Radius: %f, Max Radius: %f\n",radius,2*kHeight*tan(theta+kMaxOmega)*3/4);
315 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
316 //printf("Using digit %d, for theta %f\n",dig,theta);
317 }
318
319 counter1++;
320
321 l=kHeight/cos(theta);
322
323 //x=x*kCorr;
324 //y=y*kCorr;
325 /*if(SnellAngle(theta+omega)<999)
326 {
327 //printf("(Angle)/(Snell angle):%f\n",(theta+omega)/SnellAngle(theta+omega));
328 x=x*(theta+omega)/SnellAngle(theta+omega);
329 y=y*(theta+omega)/SnellAngle(theta+omega);
330 }
331 else
332 {
333 x=0;
334 y=0;
335 }*/
336
337 //main calculation
338
339 DigitsXY->Fill(x,y,(float) 1);
340
341 theta1=SnellAngle(theta)*1.5;
342
343 aux1=-y*sin(phi)+x*cos(phi);
344 aux2=y*cos(phi)+x*sin(phi);
345 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta1)*aux2 ,2))/TMath::Power(sin(theta1)*aux2+l,2);
346 omega=atan(sqrt(aux3));
347
348 //omega is distorted, theta1 is distorted
349
350 if(InvSnellAngle(theta+omega)<999)
351 {
352 omega1=InvSnellAngle(omega+theta1) - theta;
353 //theta1=InvSnellAngle(omega+theta) - omega1;
354 //omega1=kCorr*omega;
355
356 kCorr=InvSnellAngle(omega+theta)/(omega+theta);
357 theta1=kCorr*theta/1.4;
358 //if(phi==0)
359 //printf("Omega:%f Theta:%f Omega1:%f Theta1:%f ISA(o+t):%f ISA(t):%f\n",omega*180/kPi,theta*180/kPi,omega1*180/kPi,theta1*180/kPi,InvSnellAngle(omega+theta)*180/kPi,InvSnellAngle(theta)*180/kPi);
360 }
361 else
362 {
363 omega1=0;
364 theta1=0;
365 }
366
367 //printf("Omega:%f\n",omega);
368
369
370 //if(SnellAngle(theta+omega)<999)
371 //printf("(Angle)/(Snell angle):%f\n",(theta+omega)/SnellAngle(theta+omega));
372 if(theta==0 && phi==0)
373 {
374 //printf("Omega: %f Corrected Omega: %f\n",omega, omega/kCorr);
375 //omega=omega/kCorr;
376 }
377
378 //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
379 //{Int_t lixo;cin>>lixo;}
380 if(omega1<kMaxOmega && omega1>kMinOmega)
381 {
382 //printf("Omega found:%f\n",omega);
383 omega1=omega1-kMinOmega;
384
385 //printf("Omega: %f Theta: %3.1f Phi:%3.1f\n",omega, theta*180/kPi, phi*180/kPi);
386
387 bintheta=theta1*kDimensionTheta/kMaxTheta;
388 binphi=phi*kDimensionPhi/kMaxPhi;
389 binomega=omega1*kDimensionOmega/(kMaxOmega-kMinOmega);
390
391 if(Int_t(bintheta+0.5)==Int_t(bintheta))
392 inttheta=Int_t(bintheta);
393 else
394 inttheta=Int_t(bintheta+0.5);
395
396 if(Int_t(binomega+0.5)==Int_t(binomega))
397 intomega=Int_t(binomega);
398 else
399 intomega=Int_t(binomega+0.5);
400
401 if(Int_t(binphi+0.5)==Int_t(binphi))
402 intphi=Int_t(binphi);
403 else
404 intphi=Int_t(binphi+0.5);
405
406 //printf("Point added at %d %d %d\n",inttheta,intphi,intomega);
407 point[inttheta][intphi][intomega]+=1;
408 //printf("Omega stored:%d\n",intomega);
409 Points->Fill(inttheta,intphi,intomega,(float) 1);
410 ThetaPhi->Fill(inttheta,intphi,(float) 1);
411 OmegaTheta->Fill(inttheta,intomega,(float) 1);
412 OmegaPhi->Fill(intphi,intomega,(float) 1);
413 //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega));
414 }
415 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
eb1ee126 416 }
c1076715 417 }
ac6e04fc 418 }
c1076715 419 }
ac6e04fc 420 //printf("Used %d digits for theta %3.1f\n",counter1, theta*180/kPi);
421 }
422
423 meanradius=meanradius/counter;
424 printf("Mean radius:%f, counter:%d\n",meanradius,counter);
425 rechit[5]=meanradius;
426 printf("Used %d digits\n",counter1);
427 //printf("\n");
428
429 if(nev<20)
430 {
431 if(nev==0)
432 {
433 fc1->cd(1);
434 Points->Draw();
435 fc1->cd(2);
436 ThetaPhi->Draw();
437 fc1->cd(3);
438 OmegaTheta->Draw();
439 fc1->cd(4);
440 OmegaPhi->Draw();
441 fc3->cd();
442 DigitsXY->Draw();
443 }
444 else
445 {
446 //fc1->cd(1);
447 //Points->Draw("same");
448 //fc1->cd(2);
449 //ThetaPhi->Draw("same");
450 //fc1->cd(3);
451 //OmegaTheta->Draw("same");
452 //fc1->cd(4);
453 //OmegaPhi->Draw("same");
454 }
455 }
456
c1076715 457
c1076715 458 //SPOT execute twice
ceccff49 459 for(Int_t s=0;s<kSpot;s++)
c1076715 460 {
ceccff49 461 printf(" Applying Spot algorithm, pass %d\n", s);
462
c1076715 463 //buffer copy
3a3df9e3 464 for(i=0;i<=kDimensionTheta;i++)
ceccff49 465 {
466 for(j=0;j<=kDimensionPhi;j++)
467 {
468 for(k=0;k<=kDimensionOmega;k++)
469 {
470 point1[i][j][k]=point[i][j][k];
471 }
472 }
473 }
474
c1076715 475 //SPOT algorithm
ac6e04fc 476 for(i=1;i<kDimensionTheta-1;i++)
ceccff49 477 {
ac6e04fc 478 for(j=1;j<kDimensionPhi-1;j++)
c1076715 479 {
ac6e04fc 480 for(k=1;k<kDimensionOmega-1;k++)
c1076715 481 {
ceccff49 482 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
483 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
484 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
485 {
486 //cout<<"SPOT"<<endl;
487 //Execute SPOT on point
488 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
489 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
490 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
491 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
492 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
493 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
494 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
495 }
c1076715 496 }
497 }
ceccff49 498 }
499
c1076715 500 //copy from buffer copy
ac6e04fc 501 counter1=0;
3a3df9e3 502 for(i=1;i<kDimensionTheta;i++)
ceccff49 503 {
504 for(j=1;j<kDimensionPhi;j++)
505 {
506 for(k=1;k<kDimensionOmega;k++)
507 {
508 point[i][j][k]=point1[i][j][k];
ac6e04fc 509 if(nev<20)
510 {
511 if(s==kSpot-1)
512 {
513 if(point1[i][j][k] != 0)
514 {
515 SpotPoints->Fill(i,j,k,(float) point1[i][j][k]);
516 //printf("Random number %f\n",random->Rndm(2));
517 //if(random->Rndm() < .2)
518 //{
519 SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]);
520 SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]);
521 SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]);
522 counter1++;
523 //}
524 //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]);
525 }
526 }
527 }
ceccff49 528 //if(point1[i][j][k] != 0)
529 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
530 }
531 }
532 }
533 }
c1076715 534
ac6e04fc 535 //printf("Filled %d cells\n",counter1);
536
537 if(nev<20)
538 {
539 if(nev==0)
540 {
541 fc2->cd(1);
542 SpotPoints->Draw();
543 fc2->cd(2);
544 SpotThetaPhi->Draw();
545 fc2->cd(3);
546 SpotOmegaTheta->Draw();
547 fc2->cd(4);
548 SpotOmegaPhi->Draw();
549 }
550 else
551 {
552 //fc2->cd(1);
553 //SpotPoints->Draw("same");
554 //fc2->cd(2);
555 //SpotThetaPhi->Draw("same");
556 //fc2->cd(3);
557 //SpotOmegaTheta->Draw("same");
558 //fc2->cd(4);
559 //SpotOmegaPhi->Draw("same");
560 }
561 }
562
c1076715 563
564 //Identification is equivalent to maximum determination
565 max=0;maxi=0;maxj=0;maxk=0;
566
ceccff49 567 printf(" Proceeding to identification");
c1076715 568
ac6e04fc 569 for(i=0;i<kDimensionTheta;i++)
570 for(j=0;j<kDimensionPhi;j++)
571 for(k=0;k<kDimensionOmega;k++)
ceccff49 572 if(point[i][j][k]>max)
573 {
574 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
575 maxi=i;maxj=j;maxk=k;
576 max=point[i][j][k];
577 printf(".");
ac6e04fc 578 //printf("Max Omega %d, Max Theta %d, Max Phi %d (%d counts)\n",maxk,maxi,maxj,max);
ceccff49 579 }
580 printf("\n");
c1076715 581
ac6e04fc 582 Float_t FinalOmega = maxk*(kMaxOmega-kMinOmega)/kDimensionOmega;
583 Float_t FinalTheta = maxi*kMaxTheta/kDimensionTheta;
584 Float_t FinalPhi = maxj*kMaxPhi/kDimensionPhi;
eb1ee126 585
ac6e04fc 586 FinalOmega += kMinOmega;
eb1ee126 587
3a3df9e3 588 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
ac6e04fc 589 printf(" Indentified angles: cerenkov - %f, theta - %3.1f, phi - %3.1f (%f activation)\n", FinalOmega, FinalTheta*180/kPi, FinalPhi*180/kPi, max);
3a3df9e3 590 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
c1076715 591
c1076715 592 //fscanf(omegas,"%f",&realomega);
593 //fscanf(thetas,"%f",&realtheta);
594 //printf("Real Omega: %f",realomega);
3a3df9e3 595 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
c1076715 596
3a3df9e3 597 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
c1076715 598
599 /*for(j=0;j<np;j++)
3a3df9e3 600 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
c1076715 601
602
603 //Start filling rec. hits
604
ac6e04fc 605 rechit[0] = FinalTheta;
606 rechit[1] = 90*kPi/180 + FinalPhi;
607 rechit[2] = FinalOmega;
c1076715 608 rechit[3] = cx;
609 rechit[4] = cy;
ac6e04fc 610
611 //CreatePoints(FinalTheta, 270*kPi/180 + FinalPhi, FinalOmega, kHeight);
612
c1076715 613 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
614
615 // fill rechits
4a5c8776 616 pRICH->AddRecHit3D(nch-1,rechit);
ac6e04fc 617 //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]);
ceccff49 618 //printf("Chamber:%d",nch);
c1076715 619 }
620 //printf("\n\n\n\n");
621 gAlice->TreeR()->Fill();
c1076715 622 TClonesArray *fRec;
237c933d 623 for (i=0;i<kNCH;i++) {
4a5c8776 624 fRec=pRICH->RecHitsAddress3D(i);
c1076715 625 int ndig=fRec->GetEntriesFast();
ac6e04fc 626 printf ("Chamber %d, rings %d\n",i+1,ndig);
c1076715 627 }
4a5c8776 628 pRICH->ResetRecHits3D();
ac6e04fc 629
630 free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
631 free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
c1076715 632}
633
ac6e04fc 634
635
3a3df9e3 636Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
c1076715 637{
237c933d 638
639//
640// Calculates area of an ellipse for given incidence angles
641
642
c1076715 643 Float_t area;
3a3df9e3 644 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
c1076715 645
00df6e79 646 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
c1076715 647
648 return (area);
649}
650
c1076715 651
ac6e04fc 652Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
653// allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
654{
655 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
656 Int_t ***t;
657
658 int NR_END=1;
c1076715 659
ac6e04fc 660 // allocate pointers to pointers to rows
661 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
662 if (!t) printf("allocation failure 1 in f3tensor()");
663 t += NR_END;
664 t -= nrl;
665
666 // allocate pointers to rows and set pointers to them
667 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
668 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
669 t[nrl] += NR_END;
670 t[nrl] -= ncl;
c1076715 671
ac6e04fc 672 // allocate rows and set pointers to them
673 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
674 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
675 t[nrl][ncl] += NR_END;
676 t[nrl][ncl] -= ndl;
c1076715 677
ac6e04fc 678 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
679 for(i=nrl+1;i<=nrh;i++) {
680 t[i]=t[i-1]+ncol;
681 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
682 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
c1076715 683 }
ac6e04fc 684
685 // return pointer to array of pointers to rows
686 return t;
687}
688
689void AliRICHDetect::free_i3tensor(int ***t, long nrl, long nrh, long ncl, long nch,long ndl, long ndh)
690// free a Int_t f3tensor allocated by i3tensor()
691{
692 int NR_END=1;
693
694 free((char*) (t[nrl][ncl]+ndl-NR_END));
695 free((char*) (t[nrl]+ncl-NR_END));
696 free((char*) (t+nrl-NR_END));
697}
698
699
700Float_t AliRICHDetect:: SnellAngle(Float_t iangle)
701{
702
703// Compute the Snell angle
704
705 Float_t nfreon = 1.295;
706 Float_t nquartz = 1.585;
707 Float_t ngas = 1;
708
709 Float_t sinrangle;
710 Float_t rangle;
711 Float_t a1, a2;
712
713 a1=nfreon/nquartz;
714 a2=nquartz/ngas;
715
716 sinrangle = a1*a2*sin(iangle);
717
718 if(sinrangle>1.) {
719 rangle = 999.;
720 return rangle;
721 }
722
723 rangle = asin(sinrangle);
724 return rangle;
725}
726
727Float_t AliRICHDetect:: InvSnellAngle(Float_t rangle)
728{
729
730// Compute the inverse Snell angle
c1076715 731
ac6e04fc 732 Float_t nfreon = 1.295;
733 Float_t nquartz = 1.585;
734 Float_t ngas = 1;
c1076715 735
ac6e04fc 736 Float_t siniangle;
737 Float_t iangle;
738 Float_t a1,a2;
c1076715 739
ac6e04fc 740 a1=nfreon/nquartz;
741 a2=nquartz/ngas;
c1076715 742
ac6e04fc 743 siniangle = sin(rangle)/(a1*a2);
744 iangle = asin(siniangle);
745
746 if(siniangle>1.) {
747 iangle = 999.;
748 return iangle;
749 }
750
751 iangle = asin(siniangle);
752 return iangle;
753}
c1076715 754
755
ac6e04fc 756
757//________________________________________________________________________________
758void AliRICHDetect::CreatePoints(Float_t theta, Float_t phi, Float_t omega, Float_t h)
759{
760
761 // Create points along the ellipse equation
762
763 Int_t s1,s2;
764 Float_t fiducial=h*TMath::Tan(omega+theta), l=h/TMath::Cos(theta), xtrial, y=0, c0, c1, c2;
765 //TRandom *random=new TRandom();
766
767 static TH2F *REllipse = new TH2F("REllipse","Reconstructed ellipses",150,-25,25,150,-25,25);
768
769 for(Float_t i=0;i<1000;i++)
770 {
771
772 Float_t counter=0;
773
774 c0=0;c1=0;c2=0;
775 while((c1*c1-4*c2*c0)<=0 && counter<1000)
776 {
777 //Choose which side to go...
778 if(i>250 && i<750) s1=1;
779 //if (gRandom->Rndm(1)>.5) s1=1;
780 else s1=-1;
781 //printf("s1:%d\n",s1);
782 //Trial a y
783 y=s1*i*gRandom->Rndm(Int_t(fiducial/50));
784 //printf("Fiducial %f for omega:%f theta:%f phi:%f\n",fiducial,omega,theta,fphi);
785 Float_t alfa1=theta;
786 Float_t theta1=phi;
787 Float_t omega1=omega;
788
789 //Solve the eq for a trial x
790 c0=-TMath::Power(y*TMath::Cos(alfa1)*TMath::Cos(theta1),2)-TMath::Power(y*TMath::Sin(alfa1),2)+TMath::Power(l*TMath::Tan(omega1),2)+2*l*y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+TMath::Power(y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
791 c1=2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)-2*y*TMath::Cos(alfa1)*TMath::Power(TMath::Cos(theta1),2)*TMath::Sin(alfa1)+2*l*TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)*TMath::Power(TMath::Sin(theta1),2)*TMath::Power(TMath::Tan(omega1),2);
792 c2=-TMath::Power(TMath::Cos(alfa1),2)-TMath::Power(TMath::Cos(theta1)*TMath::Sin(alfa1),2)+TMath::Power(TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
793 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
794 //printf("Result:%f\n\n",c1*c1-4*c2*c0);
795 //i+=.01;
796 counter +=1;
797 }
798
799 if (counter>=1000)
800 y=0;
801
802 //Choose which side to go...
803 //if(gRandom->Rndm(1)>.5) s=1;
804 //else s=-1;
805 if(i>500) s2=1;
806 //if (gRandom->Rndm(1)>.5) s2=1;
807 else s2=-1;
808 xtrial=(-c1+s2*TMath::Sqrt(c1*c1-4*c2*c0))/(2*c2);
809 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
810 //printf("Coordinates: %f %f\n",xtrial,fCy+y);
811
812 REllipse->Fill(xtrial,y);
813
814 //printf("Coordinates: %f %f %f\n",vectorGlob[0],vectorGlob[1],vectorGlob[2]);
815 }
816
817 fc3->cd(2);
818 REllipse->Draw();
819}