]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHDetect.cxx
unused vars removed
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
CommitLineData
c1076715 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
c1076715 17
29803c51 18#include <stdlib.h>
19
c1076715 20
21#include "AliRICH.h"
22#include "AliRICHPoints.h"
23#include "AliRICHDetect.h"
237c933d 24#include "AliRICHDigit.h"
9c77ea58 25#include "AliRICHRawCluster.h"
ac6e04fc 26#include "AliRICHSegmentationV0.h"
c1076715 27#include "AliRun.h"
28#include "TParticle.h"
94de3818 29#include "TTree.h"
c1076715 30#include "TMath.h"
31#include "TRandom.h"
ac6e04fc 32#include "TH3.h"
33#include "TH2.h"
34#include "TCanvas.h"
9c77ea58 35#include <TStyle.h>
36
c1076715 37
c1076715 38
39ClassImp(AliRICHDetect)
40//___________________________________________
cc23c5c6 41AliRICHDetect::AliRICHDetect()
42 :TNamed()
c1076715 43{
237c933d 44
45// Default constructor
46
2685bf00 47 fc1 = 0;
48 fc2 = 0;
49 fc3 = 0;
50
c1076715 51}
52
53//___________________________________________
54AliRICHDetect::AliRICHDetect(const char *name, const char *title)
cc23c5c6 55 :TNamed(name,title)
c1076715 56{
237c933d 57
9c77ea58 58 TStyle *mystyle=new TStyle("Plain","mystyle");
59 mystyle->SetPalette(1,0);
60 mystyle->cd();
61
ac6e04fc 62
63 fc1= new TCanvas("c1","Reconstructed points",50,50,300,350);
64 fc1->Divide(2,2);
9c77ea58 65 fc2= new TCanvas("c2","Reconstructed points after SPOT",370,50,300,350);
ac6e04fc 66 fc2->Divide(2,2);
9c77ea58 67 fc3= new TCanvas("c3","Used Digits",690,50,300,350);
68 fc4= new TCanvas("c4","Mesh activation data",50,430,600,350);
69 fc4->Divide(2,1);
70
ac6e04fc 71
72}
73
74//___________________________________________
75AliRICHDetect::~AliRICHDetect()
76{
c1076715 77
ac6e04fc 78// Destructor
79
c1076715 80}
81
82
9c77ea58 83void AliRICHDetect::Detect(Int_t nev, Int_t type)
c1076715 84{
85
237c933d 86//
87// Detection algorithm
88
89
c1076715 90 //printf("Detection started!\n");
9c77ea58 91 Float_t omega,omega1,theta1,phi_relative,steptheta,stepphi,x,y,q=0,z,cx,cy,l,aux1,aux2,aux3,max,radius=0,meanradius=0;
ac6e04fc 92 Int_t maxi,maxj,maxk;
9c77ea58 93 Float_t originalOmega, originalPhi, originalTheta;
ac6e04fc 94 Float_t binomega, bintheta, binphi;
95 Int_t intomega, inttheta, intphi;
c1076715 96 Int_t i,j,k;
ac6e04fc 97
98 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
99 AliRICHSegmentationV0* segmentation;
100 AliRICHChamber* iChamber;
101 AliRICHGeometry* geometry;
102
103 iChamber = &(pRICH->Chamber(0));
cc23c5c6 104 segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel();
ac6e04fc 105 geometry=iChamber->GetGeometryModel();
ceccff49 106
c1076715 107
ac6e04fc 108 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
109 //const Float_t t=0.6; //Softening of Noise Correction (factor)
c1076715 110
ac6e04fc 111 const Float_t kPi=TMath::Pi();
c1076715 112
ac6e04fc 113 const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters
114 //printf("Distance to Pads:%f\n",kHeight);
ceccff49 115
ac6e04fc 116 const Int_t kSpot=0; //number of passes with spot algorithm
c1076715 117
9c77ea58 118 const Int_t kDimensionTheta=100; //Matrix dimension for angle Detection
119 const Int_t kDimensionPhi=100;
ac6e04fc 120 const Int_t kDimensionOmega=100;
c1076715 121
9c77ea58 122 const Float_t SPOTp=.25; //Percentage of spot action
123 const Float_t kMinOmega=.4;
124 const Float_t kMaxOmega=.7; //Maximum Cherenkov angle to identify
ac6e04fc 125 const Float_t kMinTheta=0;
9c77ea58 126 const Float_t kMaxTheta=10*kPi/180;
ac6e04fc 127 const Float_t kMinPhi=0;
128 const Float_t kMaxPhi=360*kPi/180;
129
ac6e04fc 130 Float_t rechit[6]; //Reconstructed point data
131
ac6e04fc 132 Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
133 Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
c1076715 134
ac6e04fc 135 steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta;
136 stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi;
137
138 static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
139 static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
140 static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
141 static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
142 static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
143 static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
144 static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
145 static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
146 static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25);
9c77ea58 147 static TH1F *AngleAct = new TH1F("AngleAct","Activation per angle",100,.45,1);
148 static TH1F *Activation = new TH1F("Activation","Activation per ring",100,0,25);
ac6e04fc 149 Points->SetXTitle("theta");
150 Points->SetYTitle("phi");
151 Points->SetZTitle("omega");
152 ThetaPhi->SetXTitle("theta");
153 ThetaPhi->SetYTitle("phi");
154 OmegaTheta->SetXTitle("theta");
155 OmegaTheta->SetYTitle("omega");
156 OmegaPhi->SetXTitle("phi");
157 OmegaPhi->SetYTitle("omega");
158 SpotPoints->SetXTitle("theta");
159 SpotPoints->SetYTitle("phi");
160 SpotPoints->SetZTitle("omega");
161 SpotThetaPhi->SetXTitle("theta");
162 SpotThetaPhi->SetYTitle("phi");
163 SpotOmegaTheta->SetXTitle("theta");
164 SpotOmegaTheta->SetYTitle("omega");
165 SpotOmegaPhi->SetXTitle("phi");
166 SpotOmegaPhi->SetYTitle("omega");
9c77ea58 167 AngleAct->SetFillColor(5);
168 AngleAct->SetXTitle("rad");
169 AngleAct->SetYTitle("activation");
170 Activation->SetFillColor(5);
171 Activation->SetXTitle("activation");
ac6e04fc 172
88cb7938 173 Int_t ntracks = (Int_t)pRICH->TreeH()->GetEntries();
174
c1076715 175 Float_t trackglob[3];
176 Float_t trackloc[3];
177
c1076715 178 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
9c77ea58 179
4a5c8776 180 Int_t track;
c1076715 181
4a5c8776 182 for (track=0; track<ntracks;track++) {
c1076715 183 gAlice->ResetHits();
88cb7938 184 pRICH->TreeH()->GetEvent(track);
3a3df9e3 185 TClonesArray *pHits = pRICH->Hits();
186 if (pHits == 0) return;
187 Int_t nhits = pHits->GetEntriesFast();
c1076715 188 if (nhits == 0) continue;
2966f600 189 //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
853634d3 190 AliRICHhit *mHit = 0;
c1076715 191 //Int_t npoints=0;
192
ac6e04fc 193 Int_t counter=0, counter1=0;
c1076715 194 //Initialization
3a3df9e3 195 for(i=0;i<kDimensionTheta;i++)
c1076715 196 {
3a3df9e3 197 for(j=0;j<kDimensionPhi;j++)
c1076715 198 {
3a3df9e3 199 for(k=0;k<kDimensionOmega;k++)
c1076715 200 {
201 counter++;
3a3df9e3 202 point[i][j][k]=0;
203 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
c1076715 204 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
3a3df9e3 205 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
206 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
c1076715 207 }
208 }
209 }
c1076715 210
9c77ea58 211 Int_t ncerenkovs = pRICH->Cerenkovs()->GetEntriesFast();
212
213
214 originalOmega = 0;
215 counter = 0;
216
217 for (Int_t hit=0;hit<ncerenkovs;hit++) {
218 AliRICHCerenkov* cHit = (AliRICHCerenkov*) pRICH->Cerenkovs()->UncheckedAt(hit);
219 Float_t loss = cHit->fLoss; //did it hit the CsI?
220 Float_t production = cHit->fProduction; //was it produced in freon?
221 Float_t cherenkov = cHit->fCerenkovAngle; //production cerenkov angle
222 if (loss == 4 && production == 1)
223 {
224 counter +=1;
225 originalOmega += cherenkov;
226 //printf("%f\n",cherenkov);
227 }
228 }
229
230 printf("Cerenkovs : %d\n",counter);
231
232 if(counter != 0) //if there are cerenkovs
233 {
234 originalOmega = originalOmega/counter;
235 printf("Original omega: %f\n",originalOmega);
236
ceccff49 237
c1076715 238
853634d3 239 mHit = (AliRICHhit*) pHits->UncheckedAt(0);
9c77ea58 240 Int_t nch = mHit->Chamber();
241 originalTheta = mHit->Theta();
242 originalPhi = mHit->Phi();
243 trackglob[0] = mHit->X();
244 trackglob[1] = mHit->Y();
245 trackglob[2] = mHit->Z();
246
247 printf("\n--------------------------------------\n");
248 printf("Chamber %d, track %d\n", nch, track);
c1076715 249
9c77ea58 250
251 iChamber = &(pRICH->Chamber(nch-1));
c1076715 252
9c77ea58 253 //printf("Nch:%d\n",nch);
c1076715 254
9c77ea58 255 iChamber->GlobaltoLocal(trackglob,trackloc);
c1076715 256
9c77ea58 257 iChamber->LocaltoGlobal(trackloc,trackglob);
258
259
260 cx=trackloc[0];
261 cy=trackloc[2];
c1076715 262
9c77ea58 263 AliRICHDigit *points = 0;
264 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
265
266 AliRICHRawCluster *cluster =0;
267 TClonesArray *pClusters = pRICH->RawClustAddress(nch-1);
c1076715 268
9c77ea58 269 Int_t maxcycle=0;
270
271 //digitize from digits
272
273 if(type==0)
274 {
275 gAlice->TreeD()->GetEvent(0);
276 Int_t ndigits = pDigits->GetEntriesFast();
277 maxcycle=ndigits;
278 printf("Got %d digits\n",ndigits);
279 }
280
281 //digitize from clusters
282
283 if(type==1)
284 {
285 Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
286 gAlice->TreeR()->GetEvent(nent-1);
287 Int_t nclusters = pClusters->GetEntriesFast();
288 maxcycle=nclusters;
289 printf("Got %d clusters\n",nclusters);
290 }
291
292
293
294
295 counter=0;
296 printf("Starting calculations\n");
297 printf(" Start Finish\n");
298 printf("Progress: ");
299 for(Float_t theta=0;theta<kMaxTheta;theta+=steptheta)
ac6e04fc 300 {
9c77ea58 301 printf(".");
302 for(Float_t phi=0;phi<=kMaxPhi;phi+=stepphi)
303 {
304 //printf("Phi:%3.1f\n", phi*180/kPi);
305 counter1=0;
306 for (Int_t cycle=0;cycle<maxcycle;cycle++)
307 {
c1076715 308
9c77ea58 309 if(type==0)
310 {
311 points=(AliRICHDigit*) pDigits->UncheckedAt(cycle);
312 segmentation->GetPadC(points->PadX(), points->PadY(),x, y, z);
313 }
314
315 if(type==1)
316 {
317 cluster=(AliRICHRawCluster*) pClusters->UncheckedAt(cycle);
318 x=cluster->fX;
319 y=cluster->fY;
320 q=cluster->fQ;
321 }
322
323 if(type ==0 || q > 100)
324
eb1ee126 325 {
ac6e04fc 326
9c77ea58 327 x=x-cx;
328 y=y-cy;
329 radius=TMath::Sqrt(TMath::Power(x,2)+TMath::Power(y,2));
ac6e04fc 330
9c77ea58 331 //calculation of relative phi angle of digit
ac6e04fc 332
9c77ea58 333 phi_relative = acos(y/radius);
334 phi_relative = TMath::Abs(phi_relative - phi);
ac6e04fc 335
ac6e04fc 336
9c77ea58 337 if(radius>4)
ac6e04fc 338 {
9c77ea58 339 meanradius+=radius;
340 counter++;
ac6e04fc 341
ac6e04fc 342
9c77ea58 343 //if (radius < (2*kHeight*tan(theta+kMaxOmega)))
344 if (radius < (2*kHeight*tan(kMaxOmega)))
345 //if(Fiducial(x,y,theta,phi,kHeight,kMaxOmega,kMinOmega))
346 {
347
348 if(phi==0)
349 {
350 //printf("Radius: %f, Max Radius: %f\n",radius,2*kHeight*tan(theta+kMaxOmega)*3/4);
351 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
352 //printf("Using digit %d, for theta %f\n",dig,theta);
353 }
354
355 counter1++;
356
357 l=kHeight/cos(theta);
358
359 //main calculation
360
361 DigitsXY->Fill(x,y,(float) 1);
362
363 theta1=SnellAngle(theta);
364
365 aux1=-y*sin(phi)+x*cos(phi);
366 aux2=y*cos(phi)+x*sin(phi);
367 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta1)*aux2 ,2))/TMath::Power(sin(theta1)*aux2+l,2);
368 omega=atan(sqrt(aux3));
369
370 //omega is distorted, theta1 is distorted
371
372 if(InvSnellAngle(omega+TMath::Abs(cos(phi_relative))*theta1)<999)
373 {
374 omega1=InvSnellAngle(omega+TMath::Abs(cos(phi_relative))*theta);
375 theta1=InvSnellAngle(theta1);
376
377 }
378 else
379 {
380 omega1=0;
381 theta1=0;
382 }
383
384 if(omega1<kMaxOmega && omega1>kMinOmega)
385 {
386 //printf("Omega found:%f\n",omega);
387 omega1=omega1-kMinOmega;
388
389 //printf("Omega: %f Theta: %3.1f Phi:%3.1f\n",omega, theta*180/kPi, phi*180/kPi);
390
391 bintheta=theta1*kDimensionTheta/kMaxTheta;
392 binphi=phi*kDimensionPhi/kMaxPhi;
393 binomega=omega1*kDimensionOmega/(kMaxOmega-kMinOmega);
394
395 if(Int_t(bintheta+0.5)==Int_t(bintheta))
396 inttheta=Int_t(bintheta);
397 else
398 inttheta=Int_t(bintheta+0.5);
399
400 if(Int_t(binomega+0.5)==Int_t(binomega))
401 intomega=Int_t(binomega);
402 else
403 intomega=Int_t(binomega+0.5);
404
405 if(Int_t(binphi+0.5)==Int_t(binphi))
406 intphi=Int_t(binphi);
407 else
408 intphi=Int_t(binphi+0.5);
409
410 //printf("Point added at %d %d %d\n",inttheta,intphi,intomega);
411
412 if(type==0)
413 point[inttheta][intphi][intomega]+=1;
414 if(type==1)
415 point[inttheta][intphi][intomega]+=(Int_t)(q);
416
417 //printf("Omega stored:%d\n",intomega);
418 Points->Fill(inttheta,intphi,intomega,(float) 1);
419 ThetaPhi->Fill(inttheta,intphi,(float) 1);
420 OmegaTheta->Fill(inttheta,intomega,(float) 1);
421 OmegaPhi->Fill(intphi,intomega,(float) 1);
422 //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega));
423 }
424 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
425 }
ac6e04fc 426 }
eb1ee126 427 }
9c77ea58 428
c1076715 429 }
9c77ea58 430 //printf("Used %d digits for theta %3.1f\n",counter1, theta*180/kPi);
ac6e04fc 431 }
9c77ea58 432
c1076715 433 }
ac6e04fc 434
9c77ea58 435 printf("\n");
ac6e04fc 436
9c77ea58 437 meanradius=meanradius/counter;
438 //printf("Mean radius:%f, counter:%d\n",meanradius,counter);
439 rechit[5]=meanradius;
440 //printf("Used %d digits\n",counter1);
441 //printf("\n");
442
443 if(nev<2)
ac6e04fc 444 {
9c77ea58 445 if(nev==0)
446 {
447 fc1->cd(1);
448 Points->Draw("colz");
449 fc1->cd(2);
450 ThetaPhi->Draw("colz");
451 fc1->cd(3);
452 OmegaTheta->Draw("colz");
453 fc1->cd(4);
454 OmegaPhi->Draw("colz");
455 fc3->cd();
456 DigitsXY->Draw("colz");
457 }
458 else
459 {
460 //fc1->cd(1);
461 //Points->Draw("same");
462 //fc1->cd(2);
463 //ThetaPhi->Draw("same");
464 //fc1->cd(3);
465 //OmegaTheta->Draw("same");
466 //fc1->cd(4);
467 //OmegaPhi->Draw("same");
468 }
ac6e04fc 469 }
ac6e04fc 470
c1076715 471
9c77ea58 472 //SPOT execute twice
473 for(Int_t s=0;s<kSpot;s++)
474 {
475 printf(" Applying Spot algorithm, pass %d\n", s);
ceccff49 476
c1076715 477 //buffer copy
3a3df9e3 478 for(i=0;i<=kDimensionTheta;i++)
ceccff49 479 {
480 for(j=0;j<=kDimensionPhi;j++)
481 {
482 for(k=0;k<=kDimensionOmega;k++)
483 {
484 point1[i][j][k]=point[i][j][k];
485 }
486 }
487 }
488
c1076715 489 //SPOT algorithm
ac6e04fc 490 for(i=1;i<kDimensionTheta-1;i++)
ceccff49 491 {
ac6e04fc 492 for(j=1;j<kDimensionPhi-1;j++)
c1076715 493 {
ac6e04fc 494 for(k=1;k<kDimensionOmega-1;k++)
c1076715 495 {
ceccff49 496 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
497 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
498 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
499 {
500 //cout<<"SPOT"<<endl;
501 //Execute SPOT on point
502 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
503 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
504 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
505 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
506 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
507 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
508 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
509 }
c1076715 510 }
511 }
ceccff49 512 }
513
c1076715 514 //copy from buffer copy
ac6e04fc 515 counter1=0;
3a3df9e3 516 for(i=1;i<kDimensionTheta;i++)
ceccff49 517 {
518 for(j=1;j<kDimensionPhi;j++)
519 {
520 for(k=1;k<kDimensionOmega;k++)
521 {
522 point[i][j][k]=point1[i][j][k];
ac6e04fc 523 if(nev<20)
524 {
525 if(s==kSpot-1)
526 {
527 if(point1[i][j][k] != 0)
528 {
529 SpotPoints->Fill(i,j,k,(float) point1[i][j][k]);
530 //printf("Random number %f\n",random->Rndm(2));
531 //if(random->Rndm() < .2)
532 //{
533 SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]);
534 SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]);
535 SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]);
536 counter1++;
537 //}
538 //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]);
539 }
540 }
541 }
ceccff49 542 //if(point1[i][j][k] != 0)
543 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
544 }
545 }
546 }
547 }
c1076715 548
ac6e04fc 549 //printf("Filled %d cells\n",counter1);
550
9c77ea58 551 if(nev<2)
ac6e04fc 552 {
9c77ea58 553 if(nev==0)
554 {
555 fc2->cd(1);
556 SpotPoints->Draw("colz");
557 fc2->cd(2);
558 SpotThetaPhi->Draw("colz");
559 fc2->cd(3);
560 SpotOmegaTheta->Draw("colz");
561 fc2->cd(4);
562 SpotOmegaPhi->Draw("colz");
563 }
564 else
565 {
566 //fc2->cd(1);
567 //SpotPoints->Draw("same");
568 //fc2->cd(2);
569 //SpotThetaPhi->Draw("same");
570 //fc2->cd(3);
571 //SpotOmegaTheta->Draw("same");
572 //fc2->cd(4);
573 //SpotOmegaPhi->Draw("same");
574 }
ac6e04fc 575 }
c1076715 576
c1076715 577
9c77ea58 578 //Identification is equivalent to maximum determination
579 max=0;maxi=0;maxj=0;maxk=0;
580
581 printf(" Proceeding to identification");
582
583 for(i=0;i<kDimensionTheta;i++)
584 for(j=0;j<kDimensionPhi;j++)
585 for(k=0;k<kDimensionOmega;k++)
586 if(point[i][j][k]>max)
587 {
588 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
ceccff49 589 maxi=i;maxj=j;maxk=k;
590 max=point[i][j][k];
591 printf(".");
ac6e04fc 592 //printf("Max Omega %d, Max Theta %d, Max Phi %d (%d counts)\n",maxk,maxi,maxj,max);
9c77ea58 593 }
594 printf("\n");
c1076715 595
9c77ea58 596 Float_t FinalOmega = maxk*(kMaxOmega-kMinOmega)/kDimensionOmega;
597 Float_t FinalTheta = maxi*kMaxTheta/kDimensionTheta;
598 Float_t FinalPhi = maxj*kMaxPhi/kDimensionPhi;
eb1ee126 599
9c77ea58 600 FinalOmega += kMinOmega;
eb1ee126 601
9c77ea58 602 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
603 printf(" Indentified angles: cerenkov - %f, theta - %3.1f, phi - %3.1f (%f activation)\n", FinalOmega, FinalTheta*180/kPi, FinalPhi*180/kPi, max);
604 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
605
606 AngleAct->Fill(FinalOmega, (float) max);
607 Activation->Fill(max, (float) 1);
608
609 if(nev==0)
610 {
611 fc4->cd(1);
612 AngleAct->Draw();
613 fc4->cd(2);
614 Activation->Draw();
615 }
616 else
617 {
618 fc4->cd(1);
619 AngleAct->Draw("same");
620 fc4->cd(2);
621 Activation->Draw("same");
622 }
623
624
625 //fscanf(omegas,"%f",&realomega);
626 //fscanf(thetas,"%f",&realtheta);
627 //printf("Real Omega: %f",realomega);
628 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
c1076715 629
9c77ea58 630 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
c1076715 631
632 /*for(j=0;j<np;j++)
3a3df9e3 633 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
c1076715 634
635
636 //Start filling rec. hits
637
ac6e04fc 638 rechit[0] = FinalTheta;
9c77ea58 639 rechit[1] = FinalPhi - 90*kPi/180;
ac6e04fc 640 rechit[2] = FinalOmega;
c1076715 641 rechit[3] = cx;
642 rechit[4] = cy;
ac6e04fc 643
644 //CreatePoints(FinalTheta, 270*kPi/180 + FinalPhi, FinalOmega, kHeight);
645
9c77ea58 646 printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1]*180/kPi,rechit[2]);
c1076715 647
648 // fill rechits
9c77ea58 649 pRICH->AddRecHit3D(nch-1,rechit,originalOmega, originalTheta, originalPhi);
ac6e04fc 650 //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]);
ceccff49 651 //printf("Chamber:%d",nch);
9c77ea58 652 }
653
654 else //if no cerenkovs
655
656 {
657
658 rechit[0] = 0;
659 rechit[1] = 0;
660 rechit[2] = 0;
661 rechit[3] = 0;
662 rechit[4] = 0;
663
664 }
665
666 }
667
668 if(type==1) //reco from clusters
669 {
670 pRICH->ResetRawClusters();
671 //Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
672 //gAlice->TreeR()->GetEvent(track);
673 //printf("Going to branch %d\n",track);
674 //gAlice->GetEvent(nev);
675 }
676
677
678 //printf("\n\n\n\n");
679 gAlice->TreeR()->Fill();
c1076715 680 TClonesArray *fRec;
237c933d 681 for (i=0;i<kNCH;i++) {
4a5c8776 682 fRec=pRICH->RecHitsAddress3D(i);
c1076715 683 int ndig=fRec->GetEntriesFast();
ac6e04fc 684 printf ("Chamber %d, rings %d\n",i+1,ndig);
c1076715 685 }
4a5c8776 686 pRICH->ResetRecHits3D();
ac6e04fc 687
688 free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
689 free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
c1076715 690}
691
ac6e04fc 692
693
3a3df9e3 694Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
c1076715 695{
237c933d 696
697//
698// Calculates area of an ellipse for given incidence angles
699
700
c1076715 701 Float_t area;
3a3df9e3 702 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
c1076715 703
00df6e79 704 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
c1076715 705
706 return (area);
707}
708
c1076715 709
ac6e04fc 710Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
711// allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
712{
713 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
714 Int_t ***t;
715
716 int NR_END=1;
c1076715 717
ac6e04fc 718 // allocate pointers to pointers to rows
719 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
720 if (!t) printf("allocation failure 1 in f3tensor()");
721 t += NR_END;
722 t -= nrl;
723
724 // allocate pointers to rows and set pointers to them
725 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
726 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
727 t[nrl] += NR_END;
728 t[nrl] -= ncl;
c1076715 729
ac6e04fc 730 // allocate rows and set pointers to them
731 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
732 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
733 t[nrl][ncl] += NR_END;
734 t[nrl][ncl] -= ndl;
c1076715 735
ac6e04fc 736 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
737 for(i=nrl+1;i<=nrh;i++) {
738 t[i]=t[i-1]+ncol;
739 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
740 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
c1076715 741 }
ac6e04fc 742
743 // return pointer to array of pointers to rows
744 return t;
745}
746
747void AliRICHDetect::free_i3tensor(int ***t, long nrl, long nrh, long ncl, long nch,long ndl, long ndh)
cc23c5c6 748{// free a Int_t f3tensor allocated by i3tensor()
749 nrh++;ndh++;nch++;
ac6e04fc 750 int NR_END=1;
751
752 free((char*) (t[nrl][ncl]+ndl-NR_END));
753 free((char*) (t[nrl]+ncl-NR_END));
754 free((char*) (t+nrl-NR_END));
755}
756
757
758Float_t AliRICHDetect:: SnellAngle(Float_t iangle)
759{
760
761// Compute the Snell angle
762
763 Float_t nfreon = 1.295;
764 Float_t nquartz = 1.585;
765 Float_t ngas = 1;
766
767 Float_t sinrangle;
768 Float_t rangle;
769 Float_t a1, a2;
770
771 a1=nfreon/nquartz;
772 a2=nquartz/ngas;
773
774 sinrangle = a1*a2*sin(iangle);
775
776 if(sinrangle>1.) {
777 rangle = 999.;
778 return rangle;
779 }
780
781 rangle = asin(sinrangle);
782 return rangle;
783}
784
785Float_t AliRICHDetect:: InvSnellAngle(Float_t rangle)
786{
787
788// Compute the inverse Snell angle
c1076715 789
ac6e04fc 790 Float_t nfreon = 1.295;
791 Float_t nquartz = 1.585;
792 Float_t ngas = 1;
c1076715 793
ac6e04fc 794 Float_t siniangle;
795 Float_t iangle;
796 Float_t a1,a2;
c1076715 797
ac6e04fc 798 a1=nfreon/nquartz;
799 a2=nquartz/ngas;
c1076715 800
ac6e04fc 801 siniangle = sin(rangle)/(a1*a2);
802 iangle = asin(siniangle);
803
804 if(siniangle>1.) {
805 iangle = 999.;
806 return iangle;
807 }
808
809 iangle = asin(siniangle);
810 return iangle;
811}
c1076715 812
813
ac6e04fc 814
815//________________________________________________________________________________
816void AliRICHDetect::CreatePoints(Float_t theta, Float_t phi, Float_t omega, Float_t h)
817{
818
819 // Create points along the ellipse equation
820
821 Int_t s1,s2;
822 Float_t fiducial=h*TMath::Tan(omega+theta), l=h/TMath::Cos(theta), xtrial, y=0, c0, c1, c2;
823 //TRandom *random=new TRandom();
824
825 static TH2F *REllipse = new TH2F("REllipse","Reconstructed ellipses",150,-25,25,150,-25,25);
826
827 for(Float_t i=0;i<1000;i++)
828 {
829
830 Float_t counter=0;
831
832 c0=0;c1=0;c2=0;
833 while((c1*c1-4*c2*c0)<=0 && counter<1000)
834 {
835 //Choose which side to go...
836 if(i>250 && i<750) s1=1;
837 //if (gRandom->Rndm(1)>.5) s1=1;
838 else s1=-1;
839 //printf("s1:%d\n",s1);
840 //Trial a y
841 y=s1*i*gRandom->Rndm(Int_t(fiducial/50));
842 //printf("Fiducial %f for omega:%f theta:%f phi:%f\n",fiducial,omega,theta,fphi);
843 Float_t alfa1=theta;
844 Float_t theta1=phi;
845 Float_t omega1=omega;
846
847 //Solve the eq for a trial x
848 c0=-TMath::Power(y*TMath::Cos(alfa1)*TMath::Cos(theta1),2)-TMath::Power(y*TMath::Sin(alfa1),2)+TMath::Power(l*TMath::Tan(omega1),2)+2*l*y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+TMath::Power(y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
849 c1=2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)-2*y*TMath::Cos(alfa1)*TMath::Power(TMath::Cos(theta1),2)*TMath::Sin(alfa1)+2*l*TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)*TMath::Power(TMath::Sin(theta1),2)*TMath::Power(TMath::Tan(omega1),2);
850 c2=-TMath::Power(TMath::Cos(alfa1),2)-TMath::Power(TMath::Cos(theta1)*TMath::Sin(alfa1),2)+TMath::Power(TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
851 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
852 //printf("Result:%f\n\n",c1*c1-4*c2*c0);
853 //i+=.01;
854 counter +=1;
855 }
856
857 if (counter>=1000)
858 y=0;
859
860 //Choose which side to go...
861 //if(gRandom->Rndm(1)>.5) s=1;
862 //else s=-1;
863 if(i>500) s2=1;
864 //if (gRandom->Rndm(1)>.5) s2=1;
865 else s2=-1;
866 xtrial=(-c1+s2*TMath::Sqrt(c1*c1-4*c2*c0))/(2*c2);
867 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
868 //printf("Coordinates: %f %f\n",xtrial,fCy+y);
869
870 REllipse->Fill(xtrial,y);
871
872 //printf("Coordinates: %f %f %f\n",vectorGlob[0],vectorGlob[1],vectorGlob[2]);
873 }
874
875 fc3->cd(2);
876 REllipse->Draw();
877}
9c77ea58 878
879Int_t AliRICHDetect::Fiducial(Float_t rotx, Float_t roty, Float_t theta, Float_t phi, Float_t height, Float_t maxOmega, Float_t minOmega)
880{
881
882 Float_t x,y,y1,h,omega1,omega2;
883
884 Float_t a,b, offset;
885 Float_t a1,b1, offset1;
886
887 h = height;
888
889 //refraction calculation
890
891 theta = SnellAngle(theta);
892 phi = phi - TMath::Pi();
893 omega1 = SnellAngle(maxOmega);
894 omega2 = SnellAngle(minOmega);
895
896 //maximum zone
897 a = h*(tan(omega1+theta)+tan(omega1-theta))/2;
898 b = h*tan(omega1);
899
900 offset = h*(tan(omega1+theta)-tan(omega1-theta))/2;
901
902
903 //minimum zone
904 a1 = h*(tan(omega2+theta)+tan(omega2-theta))/2;
905 b1 = h*tan(omega2);
906
907 offset1 = h*(tan(omega2+theta)-tan(omega2-theta))/2;
908
909
910 //rotation to phi=0
911 x = rotx*cos(phi)+roty*sin(phi);
912 y = -rotx*sin(phi)+roty*cos(phi) - offset;
913 y1 = -rotx*sin(phi)+roty*cos(phi) - offset1;
914
915
916 if(x*x/a+y*y/b<1 && x*x/a1+y1*y1/b1>1)
917 return 1;
918 else
919 return 0;
920
921}