New gain variation diagnostics.
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
CommitLineData
c1076715 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 $Log$
a5886574 18 Revision 1.9 2001/01/22 21:39:11 jbarbosa
19 Several tune-ups
20
eb1ee126 21 Revision 1.8 2000/11/15 15:52:53 jbarbosa
22 Turned on spot algorithm.
23
ceccff49 24 Revision 1.7 2000/11/01 15:37:05 jbarbosa
25 Updated to use its own rec. point object.
26
4a5c8776 27 Revision 1.6 2000/10/02 21:28:12 fca
28 Removal of useless dependecies via forward declarations
29
94de3818 30 Revision 1.5 2000/06/30 16:30:28 dibari
31 Disabled writing to rechits.
32
a366fdbe 33 Revision 1.4 2000/06/15 15:46:59 jbarbosa
34 Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
35
00df6e79 36 Revision 1.3 2000/06/13 13:15:41 jbarbosa
37 Still some code cleanup done (variable names)
38
3a3df9e3 39 Revision 1.2 2000/06/12 15:19:30 jbarbosa
40 Cleaned up version.
41
237c933d 42 Revision 1.1 2000/04/19 13:05:14 morsch
43 J. Barbosa's spot reconstruction algorithm.
44
c1076715 45*/
46
47
48#include "AliRICH.h"
49#include "AliRICHPoints.h"
50#include "AliRICHDetect.h"
237c933d 51#include "AliRICHHit.h"
52#include "AliRICHDigit.h"
c1076715 53#include "AliRun.h"
54#include "TParticle.h"
94de3818 55#include "TTree.h"
c1076715 56#include "TMath.h"
57#include "TRandom.h"
58
59
60
61ClassImp(AliRICHDetect)
62//___________________________________________
63AliRICHDetect::AliRICHDetect() : TObject()
64{
237c933d 65
66// Default constructor
67
c1076715 68 //fChambers = 0;
69}
70
71//___________________________________________
72AliRICHDetect::AliRICHDetect(const char *name, const char *title)
73 : TObject()
74{
75
237c933d 76// Constructor
77
c1076715 78 /*fChambers = new TObjArray(7);
79 for (Int_t i=0; i<7; i++) {
80
81 (*fChambers)[i] = new AliRICHchamber();
82
83 } */
84}
85
86
87void AliRICHDetect::Detect()
88{
89
237c933d 90//
91// Detection algorithm
92
93
c1076715 94 //printf("Detection started!\n");
3a3df9e3 95 Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
c1076715 96 //Float_t theta,phi,realomega,realtheta;
97 Int_t i,j,k;
ceccff49 98
c1076715 99
eb1ee126 100 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
c1076715 101 //const Float_t t=0.6; //Softening of Noise Correction (factor)
102
3a3df9e3 103 const Float_t kPi=3.1415927;
c1076715 104
eb1ee126 105 const Float_t kHeight=10; //Distance from Radiator to Pads in pads
ceccff49 106
eb1ee126 107 const Int_t kSpot=0; //number of passes with spot algorithm
c1076715 108
ceccff49 109 const Int_t kDimensionTheta=50; //Matrix dimension for angle Detection
110 const Int_t kDimensionPhi=50;
111 const Int_t kDimensionOmega=50;
c1076715 112
eb1ee126 113 const Float_t SPOTp=.2; //Percentage of spot action
114 //const Int_t np=500; //Number of points to reconstruct elipse
115 const Float_t kMinOmega=30*kPi/180;
3a3df9e3 116 const Float_t kMaxOmega=65*kPi/180; //Maximum Cherenkov angle to identify
eb1ee126 117
118 const Float_t kCorr=.5; //Correction factor, accounting for aberration, refractive index, etc.
119
3a3df9e3 120 Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
ceccff49 121 Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
c1076715 122
3a3df9e3 123 steptheta=kPi/kDimensionTheta;
124 stepphi=kPi/kDimensionPhi;
c1076715 125
126 AliRICHChamber* iChamber;
127
3a3df9e3 128 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
c1076715 129 Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
130 //Int_t ntrks = gAlice->GetNtrack();
131
132 Float_t trackglob[3];
133 Float_t trackloc[3];
134
135 //printf("Got ntracks:%d\n",ntracks);
136 /*TVector *xp = new TVector(1000);
137 TVector *yp = new TVector(1000);
138 TVector *zp = new TVector(1000);
139 TVector *ptrk = new TVector(1000);
140 TVector *phit = new TVector(1000);*/
141
142 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
143
4a5c8776 144 Int_t track;
c1076715 145
4a5c8776 146 for (track=0; track<ntracks;track++) {
c1076715 147 gAlice->ResetHits();
148 gAlice->TreeH()->GetEvent(track);
3a3df9e3 149 TClonesArray *pHits = pRICH->Hits();
150 if (pHits == 0) return;
151 Int_t nhits = pHits->GetEntriesFast();
c1076715 152 if (nhits == 0) continue;
153 Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
a5886574 154 gAlice->TreeD()->GetEvent(0);
c1076715 155 AliRICHHit *mHit = 0;
156 AliRICHDigit *points = 0;
157 //Int_t npoints=0;
158
159 Int_t counter=0;
160 //Initialization
3a3df9e3 161 for(i=0;i<kDimensionTheta;i++)
c1076715 162 {
3a3df9e3 163 for(j=0;j<kDimensionPhi;j++)
c1076715 164 {
3a3df9e3 165 for(k=0;k<kDimensionOmega;k++)
c1076715 166 {
167 counter++;
3a3df9e3 168 point[i][j][k]=0;
169 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
c1076715 170 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
3a3df9e3 171 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
172 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
c1076715 173 }
174 }
175 }
3a3df9e3 176 mHit = (AliRICHHit*) pHits->UncheckedAt(0);
c1076715 177 //printf("Aqui vou eu\n");
178 Int_t nch = mHit->fChamber;
179 //printf("Aqui fui eu\n");
94de3818 180 trackglob[0] = mHit->X();
181 trackglob[1] = mHit->Y();
182 trackglob[2] = mHit->Z();
c1076715 183
184 cx=trackglob[0];
185 cy=trackglob[2];
186
187
188 //printf("Chamber processed:%d\n",nch);
ceccff49 189
190 printf("\nChamber %d, particle at: %3.1f %3.1f,\n",nch,trackglob[0],trackglob[2]);
c1076715 191
3a3df9e3 192 iChamber = &(pRICH->Chamber(nch-1));
c1076715 193
194 //printf("Nch:%d\n",nch);
195
196 iChamber->GlobaltoLocal(trackglob,trackloc);
197
3a3df9e3 198 //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
c1076715 199
200
201 iChamber->LocaltoGlobal(trackloc,trackglob);
202
3a3df9e3 203 //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
c1076715 204
205
206
207
3a3df9e3 208 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
209 Int_t ndigits = pDigits->GetEntriesFast();
c1076715 210
211 //printf("Got %d digits\n",ndigits);
212
213 //printf("Starting calculations\n");
214
3a3df9e3 215 for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
c1076715 216 {
3a3df9e3 217 for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
c1076715 218 {
219 for (Int_t dig=0;dig<ndigits;dig++)
220 {
3a3df9e3 221 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
c1076715 222
223 x=points->fPadX-cx;
224 y=points->fPadY-cy;
225 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
226 //cout<<"x="<<x<<" y="<<y<<endl;
eb1ee126 227
00df6e79 228 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
c1076715 229 {
230
eb1ee126 231
3a3df9e3 232 l=kHeight/cos(theta);
c1076715 233
234 aux1=-y*sin(phi)+x*cos(phi);
235 aux2=y*cos(phi)+x*sin(phi);
00df6e79 236 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
eb1ee126 237 //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
238
3a3df9e3 239 omega=atan(sqrt(aux3));
240 //printf("Omega: %f\n",omega);
c1076715 241
3a3df9e3 242 //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
c1076715 243 //{Int_t lixo;cin>>lixo;}
eb1ee126 244 if(omega<kMaxOmega && omega>kMinOmega)
245 {
246 omega=omega-kMinOmega;
247 //point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*2*omega*kDimensionOmega/kMaxOmega)]+=1;
248 point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*(omega/(kMaxOmega-kMinOmega)*kDimensionOmega))]+=1;
249 }
3a3df9e3 250 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
c1076715 251 }
252 }
253 }
254 }
255
256
c1076715 257 //SPOT execute twice
ceccff49 258 for(Int_t s=0;s<kSpot;s++)
c1076715 259 {
ceccff49 260 printf(" Applying Spot algorithm, pass %d\n", s);
261
c1076715 262 //buffer copy
3a3df9e3 263 for(i=0;i<=kDimensionTheta;i++)
ceccff49 264 {
265 for(j=0;j<=kDimensionPhi;j++)
266 {
267 for(k=0;k<=kDimensionOmega;k++)
268 {
269 point1[i][j][k]=point[i][j][k];
270 }
271 }
272 }
273
c1076715 274 //SPOT algorithm
3a3df9e3 275 for(i=1;i<kDimensionTheta;i++)
ceccff49 276 {
277 for(j=1;j<kDimensionPhi;j++)
c1076715 278 {
ceccff49 279 for(k=1;k<kDimensionOmega;k++)
c1076715 280 {
ceccff49 281 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
282 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
283 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
284 {
285 //cout<<"SPOT"<<endl;
286 //Execute SPOT on point
287 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
288 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
289 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
290 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
291 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
292 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
293 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
294 }
c1076715 295 }
296 }
ceccff49 297 }
298
c1076715 299 //copy from buffer copy
3a3df9e3 300 for(i=1;i<kDimensionTheta;i++)
ceccff49 301 {
302 for(j=1;j<kDimensionPhi;j++)
303 {
304 for(k=1;k<kDimensionOmega;k++)
305 {
306 point[i][j][k]=point1[i][j][k];
307 //if(point1[i][j][k] != 0)
308 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
309 }
310 }
311 }
312 }
c1076715 313
314
315 //Identification is equivalent to maximum determination
316 max=0;maxi=0;maxj=0;maxk=0;
317
ceccff49 318 printf(" Proceeding to identification");
c1076715 319
3a3df9e3 320 for(i=1;i<kDimensionTheta-3;i++)
321 for(j=1;j<=kDimensionPhi-3;j++)
322 for(k=0;k<=kDimensionOmega;k++)
ceccff49 323 if(point[i][j][k]>max)
324 {
325 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
326 maxi=i;maxj=j;maxk=k;
327 max=point[i][j][k];
328 printf(".");
329 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
330 }
331 printf("\n");
c1076715 332
eb1ee126 333 maxk=maxk*(kMaxOmega-kMinOmega)/kDimensionOmega + kMinOmega;
334
335
3a3df9e3 336 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
eb1ee126 337 printf(" Indentified cerenkov angle: %f\n", maxk);
3a3df9e3 338 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
c1076715 339
340
341 //fscanf(omegas,"%f",&realomega);
342 //fscanf(thetas,"%f",&realtheta);
343 //printf("Real Omega: %f",realomega);
3a3df9e3 344 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
c1076715 345
3a3df9e3 346 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
c1076715 347
348 /*for(j=0;j<np;j++)
3a3df9e3 349 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
c1076715 350
351
352 //Start filling rec. hits
353
a366fdbe 354 Float_t rechit[6];
c1076715 355
3a3df9e3 356 rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
357 rechit[1] = (Float_t)( maxj*kPi/(kDimensionPhi*4));
eb1ee126 358 rechit[2] = (Float_t)( maxk);
c1076715 359 //rechit[0] = (Float_t)( maxi);
360 //rechit[1] = (Float_t)( maxj);
361 //rechit[2] = (Float_t)( maxk);
362 rechit[3] = cx;
363 rechit[4] = cy;
a366fdbe 364 rechit[5] = 0.5;
c1076715 365
366 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
367
368 // fill rechits
4a5c8776 369 pRICH->AddRecHit3D(nch-1,rechit);
ceccff49 370 //printf("Chamber:%d",nch);
c1076715 371 }
372 //printf("\n\n\n\n");
373 gAlice->TreeR()->Fill();
374 //TTree *TR=gAlice->TreeR();
375 //Stat_t ndig=TR->GetEntries();
376 TClonesArray *fRec;
237c933d 377 for (i=0;i<kNCH;i++) {
4a5c8776 378 fRec=pRICH->RecHitsAddress3D(i);
c1076715 379 int ndig=fRec->GetEntriesFast();
380 printf ("Chamber %d, rings %d\n",i,ndig);
381 }
382 //printf("Number of rec. hits: %d",ndig);
4a5c8776 383 pRICH->ResetRecHits3D();
c1076715 384 //char hname[30];
385 //sprintf(hname,"TreeR%d",track);
386 //gAlice->TreeR()->Write(hname);
387
388}
389
3a3df9e3 390Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
c1076715 391{
237c933d 392
393//
394// Calculates area of an ellipse for given incidence angles
395
396
c1076715 397 Float_t area;
3a3df9e3 398 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
c1076715 399
00df6e79 400 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
c1076715 401
402 return (area);
403}
404
405/*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
406// allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
407{
408long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
409Int_t ***t;
410
411// allocate pointers to pointers to rows
412t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
413if (!t) printf("allocation failure 1 in f3tensor()");
414t += NR_END;
415t -= nrl;
416
417// allocate pointers to rows and set pointers to them
418t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
419if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
420t[nrl] += NR_END;
421t[nrl] -= ncl;
422
423// allocate rows and set pointers to them
424t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
425if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
426t[nrl][ncl] += NR_END;
427t[nrl][ncl] -= ndl;
428
429for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
430for(i=nrl+1;i<=nrh;i++) {
431t[i]=t[i-1]+ncol;
432t[i][ncl]=t[i-1][ncl]+ncol*ndep;
433for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
434}
435
436// return pointer to array of pointers to rows
437return t;
438}*/
439
3a3df9e3 440/*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
c1076715 441 {
442 Int_t s;
3a3df9e3 443 Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
c1076715 444
445 //cout<<"fiducial="<<fiducial<<endl;
446
447 c0=0;c1=0;c2=0;
448 while((c1*c1-4*c2*c0)<=0)
449 {
450 //Choose which side to go...
451 if(aleat(1)>.5) s=1; else s=-1;
452 //Trial a y
453 y=s*aleat(fiducial);
3a3df9e3 454 Float_t alfa1=alfa*kPi/180;
455 Float_t theta1=theta*kPi/180;
456 Float_t omega1=omega*kPi/180;
c1076715 457 //Solve the eq for a trial x
00df6e79 458 c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
459 c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
460 c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
c1076715 461 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
462 }
463 //Choose which side to go...
464 if(aleat(1)>.5) s=1; else s=-1;
465 xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
466 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
467 fprintf(final,"%f %f\n",xtrial,cy+y);
468 }*/
469
470
471
472
473
474