Removed compiler warning.
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
CommitLineData
c1076715 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 $Log$
2966f600 18 Revision 1.11 2001/02/27 15:21:46 jbarbosa
19 Transition to SDigits.
20
b251a2b5 21 Revision 1.10 2001/02/13 20:39:06 jbarbosa
22 Changes to make it work with new IO.
23
a5886574 24 Revision 1.9 2001/01/22 21:39:11 jbarbosa
25 Several tune-ups
26
eb1ee126 27 Revision 1.8 2000/11/15 15:52:53 jbarbosa
28 Turned on spot algorithm.
29
ceccff49 30 Revision 1.7 2000/11/01 15:37:05 jbarbosa
31 Updated to use its own rec. point object.
32
4a5c8776 33 Revision 1.6 2000/10/02 21:28:12 fca
34 Removal of useless dependecies via forward declarations
35
94de3818 36 Revision 1.5 2000/06/30 16:30:28 dibari
37 Disabled writing to rechits.
38
a366fdbe 39 Revision 1.4 2000/06/15 15:46:59 jbarbosa
40 Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
41
00df6e79 42 Revision 1.3 2000/06/13 13:15:41 jbarbosa
43 Still some code cleanup done (variable names)
44
3a3df9e3 45 Revision 1.2 2000/06/12 15:19:30 jbarbosa
46 Cleaned up version.
47
237c933d 48 Revision 1.1 2000/04/19 13:05:14 morsch
49 J. Barbosa's spot reconstruction algorithm.
50
c1076715 51*/
52
53
54#include "AliRICH.h"
55#include "AliRICHPoints.h"
56#include "AliRICHDetect.h"
237c933d 57#include "AliRICHHit.h"
58#include "AliRICHDigit.h"
c1076715 59#include "AliRun.h"
60#include "TParticle.h"
94de3818 61#include "TTree.h"
c1076715 62#include "TMath.h"
63#include "TRandom.h"
64
65
66
67ClassImp(AliRICHDetect)
68//___________________________________________
69AliRICHDetect::AliRICHDetect() : TObject()
70{
237c933d 71
72// Default constructor
73
c1076715 74 //fChambers = 0;
75}
76
77//___________________________________________
78AliRICHDetect::AliRICHDetect(const char *name, const char *title)
79 : TObject()
80{
81
237c933d 82// Constructor
83
c1076715 84 /*fChambers = new TObjArray(7);
85 for (Int_t i=0; i<7; i++) {
86
87 (*fChambers)[i] = new AliRICHchamber();
88
89 } */
90}
91
92
93void AliRICHDetect::Detect()
94{
95
237c933d 96//
97// Detection algorithm
98
99
c1076715 100 //printf("Detection started!\n");
3a3df9e3 101 Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
c1076715 102 //Float_t theta,phi,realomega,realtheta;
103 Int_t i,j,k;
ceccff49 104
c1076715 105
eb1ee126 106 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
c1076715 107 //const Float_t t=0.6; //Softening of Noise Correction (factor)
108
3a3df9e3 109 const Float_t kPi=3.1415927;
c1076715 110
eb1ee126 111 const Float_t kHeight=10; //Distance from Radiator to Pads in pads
ceccff49 112
eb1ee126 113 const Int_t kSpot=0; //number of passes with spot algorithm
c1076715 114
ceccff49 115 const Int_t kDimensionTheta=50; //Matrix dimension for angle Detection
116 const Int_t kDimensionPhi=50;
117 const Int_t kDimensionOmega=50;
c1076715 118
eb1ee126 119 const Float_t SPOTp=.2; //Percentage of spot action
120 //const Int_t np=500; //Number of points to reconstruct elipse
121 const Float_t kMinOmega=30*kPi/180;
3a3df9e3 122 const Float_t kMaxOmega=65*kPi/180; //Maximum Cherenkov angle to identify
eb1ee126 123
124 const Float_t kCorr=.5; //Correction factor, accounting for aberration, refractive index, etc.
125
3a3df9e3 126 Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
ceccff49 127 Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
c1076715 128
3a3df9e3 129 steptheta=kPi/kDimensionTheta;
130 stepphi=kPi/kDimensionPhi;
c1076715 131
132 AliRICHChamber* iChamber;
133
3a3df9e3 134 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
c1076715 135 Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
136 //Int_t ntrks = gAlice->GetNtrack();
137
138 Float_t trackglob[3];
139 Float_t trackloc[3];
140
141 //printf("Got ntracks:%d\n",ntracks);
142 /*TVector *xp = new TVector(1000);
143 TVector *yp = new TVector(1000);
144 TVector *zp = new TVector(1000);
145 TVector *ptrk = new TVector(1000);
146 TVector *phit = new TVector(1000);*/
147
148 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
149
4a5c8776 150 Int_t track;
c1076715 151
4a5c8776 152 for (track=0; track<ntracks;track++) {
c1076715 153 gAlice->ResetHits();
154 gAlice->TreeH()->GetEvent(track);
3a3df9e3 155 TClonesArray *pHits = pRICH->Hits();
156 if (pHits == 0) return;
157 Int_t nhits = pHits->GetEntriesFast();
c1076715 158 if (nhits == 0) continue;
2966f600 159 //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
b251a2b5 160 gAlice->TreeD()->GetEvent(1);
c1076715 161 AliRICHHit *mHit = 0;
162 AliRICHDigit *points = 0;
163 //Int_t npoints=0;
164
165 Int_t counter=0;
166 //Initialization
3a3df9e3 167 for(i=0;i<kDimensionTheta;i++)
c1076715 168 {
3a3df9e3 169 for(j=0;j<kDimensionPhi;j++)
c1076715 170 {
3a3df9e3 171 for(k=0;k<kDimensionOmega;k++)
c1076715 172 {
173 counter++;
3a3df9e3 174 point[i][j][k]=0;
175 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
c1076715 176 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
3a3df9e3 177 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
178 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
c1076715 179 }
180 }
181 }
3a3df9e3 182 mHit = (AliRICHHit*) pHits->UncheckedAt(0);
c1076715 183 //printf("Aqui vou eu\n");
184 Int_t nch = mHit->fChamber;
185 //printf("Aqui fui eu\n");
94de3818 186 trackglob[0] = mHit->X();
187 trackglob[1] = mHit->Y();
188 trackglob[2] = mHit->Z();
c1076715 189
190 cx=trackglob[0];
191 cy=trackglob[2];
192
193
194 //printf("Chamber processed:%d\n",nch);
ceccff49 195
196 printf("\nChamber %d, particle at: %3.1f %3.1f,\n",nch,trackglob[0],trackglob[2]);
c1076715 197
3a3df9e3 198 iChamber = &(pRICH->Chamber(nch-1));
c1076715 199
200 //printf("Nch:%d\n",nch);
201
202 iChamber->GlobaltoLocal(trackglob,trackloc);
203
3a3df9e3 204 //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
c1076715 205
206
207 iChamber->LocaltoGlobal(trackloc,trackglob);
208
3a3df9e3 209 //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
c1076715 210
211
212
213
3a3df9e3 214 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
215 Int_t ndigits = pDigits->GetEntriesFast();
c1076715 216
217 //printf("Got %d digits\n",ndigits);
218
219 //printf("Starting calculations\n");
220
3a3df9e3 221 for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
c1076715 222 {
3a3df9e3 223 for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
c1076715 224 {
225 for (Int_t dig=0;dig<ndigits;dig++)
226 {
3a3df9e3 227 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
c1076715 228
229 x=points->fPadX-cx;
230 y=points->fPadY-cy;
231 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
232 //cout<<"x="<<x<<" y="<<y<<endl;
eb1ee126 233
00df6e79 234 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
c1076715 235 {
236
eb1ee126 237
3a3df9e3 238 l=kHeight/cos(theta);
c1076715 239
240 aux1=-y*sin(phi)+x*cos(phi);
241 aux2=y*cos(phi)+x*sin(phi);
00df6e79 242 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
eb1ee126 243 //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
244
3a3df9e3 245 omega=atan(sqrt(aux3));
246 //printf("Omega: %f\n",omega);
c1076715 247
3a3df9e3 248 //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
c1076715 249 //{Int_t lixo;cin>>lixo;}
eb1ee126 250 if(omega<kMaxOmega && omega>kMinOmega)
251 {
252 omega=omega-kMinOmega;
253 //point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*2*omega*kDimensionOmega/kMaxOmega)]+=1;
254 point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*(omega/(kMaxOmega-kMinOmega)*kDimensionOmega))]+=1;
255 }
3a3df9e3 256 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
c1076715 257 }
258 }
259 }
260 }
261
262
c1076715 263 //SPOT execute twice
ceccff49 264 for(Int_t s=0;s<kSpot;s++)
c1076715 265 {
ceccff49 266 printf(" Applying Spot algorithm, pass %d\n", s);
267
c1076715 268 //buffer copy
3a3df9e3 269 for(i=0;i<=kDimensionTheta;i++)
ceccff49 270 {
271 for(j=0;j<=kDimensionPhi;j++)
272 {
273 for(k=0;k<=kDimensionOmega;k++)
274 {
275 point1[i][j][k]=point[i][j][k];
276 }
277 }
278 }
279
c1076715 280 //SPOT algorithm
3a3df9e3 281 for(i=1;i<kDimensionTheta;i++)
ceccff49 282 {
283 for(j=1;j<kDimensionPhi;j++)
c1076715 284 {
ceccff49 285 for(k=1;k<kDimensionOmega;k++)
c1076715 286 {
ceccff49 287 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
288 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
289 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
290 {
291 //cout<<"SPOT"<<endl;
292 //Execute SPOT on point
293 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
294 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
295 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
296 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
297 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
298 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
299 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
300 }
c1076715 301 }
302 }
ceccff49 303 }
304
c1076715 305 //copy from buffer copy
3a3df9e3 306 for(i=1;i<kDimensionTheta;i++)
ceccff49 307 {
308 for(j=1;j<kDimensionPhi;j++)
309 {
310 for(k=1;k<kDimensionOmega;k++)
311 {
312 point[i][j][k]=point1[i][j][k];
313 //if(point1[i][j][k] != 0)
314 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
315 }
316 }
317 }
318 }
c1076715 319
320
321 //Identification is equivalent to maximum determination
322 max=0;maxi=0;maxj=0;maxk=0;
323
ceccff49 324 printf(" Proceeding to identification");
c1076715 325
3a3df9e3 326 for(i=1;i<kDimensionTheta-3;i++)
327 for(j=1;j<=kDimensionPhi-3;j++)
328 for(k=0;k<=kDimensionOmega;k++)
ceccff49 329 if(point[i][j][k]>max)
330 {
331 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
332 maxi=i;maxj=j;maxk=k;
333 max=point[i][j][k];
334 printf(".");
335 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
336 }
337 printf("\n");
c1076715 338
eb1ee126 339 maxk=maxk*(kMaxOmega-kMinOmega)/kDimensionOmega + kMinOmega;
340
341
3a3df9e3 342 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
eb1ee126 343 printf(" Indentified cerenkov angle: %f\n", maxk);
3a3df9e3 344 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
c1076715 345
346
347 //fscanf(omegas,"%f",&realomega);
348 //fscanf(thetas,"%f",&realtheta);
349 //printf("Real Omega: %f",realomega);
3a3df9e3 350 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
c1076715 351
3a3df9e3 352 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
c1076715 353
354 /*for(j=0;j<np;j++)
3a3df9e3 355 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
c1076715 356
357
358 //Start filling rec. hits
359
a366fdbe 360 Float_t rechit[6];
c1076715 361
3a3df9e3 362 rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
363 rechit[1] = (Float_t)( maxj*kPi/(kDimensionPhi*4));
eb1ee126 364 rechit[2] = (Float_t)( maxk);
c1076715 365 //rechit[0] = (Float_t)( maxi);
366 //rechit[1] = (Float_t)( maxj);
367 //rechit[2] = (Float_t)( maxk);
368 rechit[3] = cx;
369 rechit[4] = cy;
a366fdbe 370 rechit[5] = 0.5;
c1076715 371
372 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
373
374 // fill rechits
4a5c8776 375 pRICH->AddRecHit3D(nch-1,rechit);
ceccff49 376 //printf("Chamber:%d",nch);
c1076715 377 }
378 //printf("\n\n\n\n");
379 gAlice->TreeR()->Fill();
380 //TTree *TR=gAlice->TreeR();
381 //Stat_t ndig=TR->GetEntries();
382 TClonesArray *fRec;
237c933d 383 for (i=0;i<kNCH;i++) {
4a5c8776 384 fRec=pRICH->RecHitsAddress3D(i);
c1076715 385 int ndig=fRec->GetEntriesFast();
386 printf ("Chamber %d, rings %d\n",i,ndig);
387 }
388 //printf("Number of rec. hits: %d",ndig);
4a5c8776 389 pRICH->ResetRecHits3D();
c1076715 390 //char hname[30];
391 //sprintf(hname,"TreeR%d",track);
392 //gAlice->TreeR()->Write(hname);
393
394}
395
3a3df9e3 396Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
c1076715 397{
237c933d 398
399//
400// Calculates area of an ellipse for given incidence angles
401
402
c1076715 403 Float_t area;
3a3df9e3 404 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
c1076715 405
00df6e79 406 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
c1076715 407
408 return (area);
409}
410
411/*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
412// allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
413{
414long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
415Int_t ***t;
416
417// allocate pointers to pointers to rows
418t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
419if (!t) printf("allocation failure 1 in f3tensor()");
420t += NR_END;
421t -= nrl;
422
423// allocate pointers to rows and set pointers to them
424t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
425if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
426t[nrl] += NR_END;
427t[nrl] -= ncl;
428
429// allocate rows and set pointers to them
430t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
431if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
432t[nrl][ncl] += NR_END;
433t[nrl][ncl] -= ndl;
434
435for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
436for(i=nrl+1;i<=nrh;i++) {
437t[i]=t[i-1]+ncol;
438t[i][ncl]=t[i-1][ncl]+ncol*ndep;
439for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
440}
441
442// return pointer to array of pointers to rows
443return t;
444}*/
445
3a3df9e3 446/*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
c1076715 447 {
448 Int_t s;
3a3df9e3 449 Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
c1076715 450
451 //cout<<"fiducial="<<fiducial<<endl;
452
453 c0=0;c1=0;c2=0;
454 while((c1*c1-4*c2*c0)<=0)
455 {
456 //Choose which side to go...
457 if(aleat(1)>.5) s=1; else s=-1;
458 //Trial a y
459 y=s*aleat(fiducial);
3a3df9e3 460 Float_t alfa1=alfa*kPi/180;
461 Float_t theta1=theta*kPi/180;
462 Float_t omega1=omega*kPi/180;
c1076715 463 //Solve the eq for a trial x
00df6e79 464 c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
465 c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
466 c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
c1076715 467 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
468 }
469 //Choose which side to go...
470 if(aleat(1)>.5) s=1; else s=-1;
471 xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
472 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
473 fprintf(final,"%f %f\n",xtrial,cy+y);
474 }*/
475
476
477
478
479
480