c1076715 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | /* |
17 | $Log$ |
6e585aa2 |
18 | Revision 1.15 2001/10/21 18:31:23 hristov |
19 | Several pointers were set to zero in the default constructors to avoid memory management problems |
20 | |
2685bf00 |
21 | Revision 1.14 2001/05/14 13:25:54 hristov |
22 | stdlib.h included (for Alpha) |
23 | |
29803c51 |
24 | Revision 1.13 2001/05/10 12:26:31 jbarbosa |
25 | Totally reworked version of reconstruction algorithm. |
26 | |
ac6e04fc |
27 | Revision 1.12 2001/02/27 22:15:03 jbarbosa |
28 | Removed compiler warning. |
29 | |
2966f600 |
30 | Revision 1.11 2001/02/27 15:21:46 jbarbosa |
31 | Transition to SDigits. |
32 | |
b251a2b5 |
33 | Revision 1.10 2001/02/13 20:39:06 jbarbosa |
34 | Changes to make it work with new IO. |
35 | |
a5886574 |
36 | Revision 1.9 2001/01/22 21:39:11 jbarbosa |
37 | Several tune-ups |
38 | |
eb1ee126 |
39 | Revision 1.8 2000/11/15 15:52:53 jbarbosa |
40 | Turned on spot algorithm. |
41 | |
ceccff49 |
42 | Revision 1.7 2000/11/01 15:37:05 jbarbosa |
43 | Updated to use its own rec. point object. |
44 | |
4a5c8776 |
45 | Revision 1.6 2000/10/02 21:28:12 fca |
46 | Removal of useless dependecies via forward declarations |
47 | |
94de3818 |
48 | Revision 1.5 2000/06/30 16:30:28 dibari |
49 | Disabled writing to rechits. |
50 | |
a366fdbe |
51 | Revision 1.4 2000/06/15 15:46:59 jbarbosa |
52 | Corrected compilation errors on HP-UX (replaced pow with TMath::Power) |
53 | |
00df6e79 |
54 | Revision 1.3 2000/06/13 13:15:41 jbarbosa |
55 | Still some code cleanup done (variable names) |
56 | |
3a3df9e3 |
57 | Revision 1.2 2000/06/12 15:19:30 jbarbosa |
58 | Cleaned up version. |
59 | |
237c933d |
60 | Revision 1.1 2000/04/19 13:05:14 morsch |
61 | J. Barbosa's spot reconstruction algorithm. |
62 | |
c1076715 |
63 | */ |
64 | |
29803c51 |
65 | #include <stdlib.h> |
66 | |
c1076715 |
67 | |
68 | #include "AliRICH.h" |
69 | #include "AliRICHPoints.h" |
70 | #include "AliRICHDetect.h" |
237c933d |
71 | #include "AliRICHHit.h" |
72 | #include "AliRICHDigit.h" |
ac6e04fc |
73 | #include "AliRICHSegmentationV0.h" |
c1076715 |
74 | #include "AliRun.h" |
75 | #include "TParticle.h" |
94de3818 |
76 | #include "TTree.h" |
c1076715 |
77 | #include "TMath.h" |
78 | #include "TRandom.h" |
ac6e04fc |
79 | #include "TH3.h" |
80 | #include "TH2.h" |
81 | #include "TCanvas.h" |
c1076715 |
82 | |
ac6e04fc |
83 | #include "malloc.h" |
c1076715 |
84 | |
85 | |
86 | ClassImp(AliRICHDetect) |
87 | //___________________________________________ |
88 | AliRICHDetect::AliRICHDetect() : TObject() |
89 | { |
237c933d |
90 | |
91 | // Default constructor |
92 | |
2685bf00 |
93 | fc1 = 0; |
94 | fc2 = 0; |
95 | fc3 = 0; |
96 | |
c1076715 |
97 | } |
98 | |
99 | //___________________________________________ |
100 | AliRICHDetect::AliRICHDetect(const char *name, const char *title) |
101 | : TObject() |
102 | { |
237c933d |
103 | |
ac6e04fc |
104 | |
105 | fc1= new TCanvas("c1","Reconstructed points",50,50,300,350); |
106 | fc1->Divide(2,2); |
107 | fc2= new TCanvas("c2","Reconstructed points after SPOT",50,50,300,350); |
108 | fc2->Divide(2,2); |
109 | fc3= new TCanvas("c3","Used Digits",50,50,300,350); |
110 | //fc3->Divide(2,1); |
111 | |
112 | } |
113 | |
114 | //___________________________________________ |
115 | AliRICHDetect::~AliRICHDetect() |
116 | { |
c1076715 |
117 | |
ac6e04fc |
118 | // Destructor |
119 | |
c1076715 |
120 | } |
121 | |
122 | |
ac6e04fc |
123 | void AliRICHDetect::Detect(Int_t nev) |
c1076715 |
124 | { |
125 | |
237c933d |
126 | // |
127 | // Detection algorithm |
128 | |
129 | |
c1076715 |
130 | //printf("Detection started!\n"); |
ac6e04fc |
131 | Float_t omega,omega1,theta1,steptheta,stepphi,x,y,z,cx,cy,l,aux1,aux2,aux3,max,radius=0,meanradius=0; |
132 | Int_t maxi,maxj,maxk; |
c1076715 |
133 | //Float_t theta,phi,realomega,realtheta; |
ac6e04fc |
134 | Float_t binomega, bintheta, binphi; |
135 | Int_t intomega, inttheta, intphi; |
c1076715 |
136 | Int_t i,j,k; |
ac6e04fc |
137 | |
138 | AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH"); |
139 | AliRICHSegmentationV0* segmentation; |
140 | AliRICHChamber* iChamber; |
141 | AliRICHGeometry* geometry; |
142 | |
143 | iChamber = &(pRICH->Chamber(0)); |
144 | segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(0); |
145 | geometry=iChamber->GetGeometryModel(); |
ceccff49 |
146 | |
c1076715 |
147 | |
ac6e04fc |
148 | //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points |
149 | //const Float_t t=0.6; //Softening of Noise Correction (factor) |
c1076715 |
150 | |
ac6e04fc |
151 | const Float_t kPi=TMath::Pi(); |
c1076715 |
152 | |
ac6e04fc |
153 | const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters |
154 | //printf("Distance to Pads:%f\n",kHeight); |
ceccff49 |
155 | |
ac6e04fc |
156 | const Int_t kSpot=0; //number of passes with spot algorithm |
c1076715 |
157 | |
ac6e04fc |
158 | const Int_t kDimensionTheta=30; //Matrix dimension for angle Detection |
159 | const Int_t kDimensionPhi=45; |
160 | const Int_t kDimensionOmega=100; |
c1076715 |
161 | |
ac6e04fc |
162 | const Float_t SPOTp=1; //Percentage of spot action |
163 | const Float_t kMinOmega=20*kPi/180; |
164 | const Float_t kMaxOmega=70*kPi/180; //Maximum Cherenkov angle to identify |
165 | const Float_t kMinTheta=0; |
166 | const Float_t kMaxTheta=15*kPi/180; |
167 | //const Float_t kMaxTheta=0.1; |
168 | const Float_t kMinPhi=0; |
169 | const Float_t kMaxPhi=360*kPi/180; |
170 | |
eb1ee126 |
171 | |
ac6e04fc |
172 | Float_t kCorr=0.61; //Correction factor, accounting for aberration, refractive index, etc. |
173 | //const Float_t kCorr=.9369; //from 0 incidence |
174 | //const Float_t kCorr=1; |
175 | |
176 | //TRandom* random=0; |
177 | |
178 | Float_t rechit[6]; //Reconstructed point data |
179 | |
c1076715 |
180 | |
c1076715 |
181 | |
ac6e04fc |
182 | //printf("Creating matrices\n"); |
183 | //Float_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega]; |
184 | //Float_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega]; |
185 | //printf("Created matrices\n"); |
186 | |
187 | Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); |
188 | Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); |
c1076715 |
189 | |
ac6e04fc |
190 | //Int_t **point = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega]; |
191 | //Int_t **point1 = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega]; |
192 | |
193 | steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta; |
194 | stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi; |
195 | |
196 | static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); |
197 | static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi); |
198 | static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega); |
199 | static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); |
200 | static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); |
201 | static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi); |
202 | static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega); |
203 | static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega); |
204 | static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25); |
205 | Points->SetXTitle("theta"); |
206 | Points->SetYTitle("phi"); |
207 | Points->SetZTitle("omega"); |
208 | ThetaPhi->SetXTitle("theta"); |
209 | ThetaPhi->SetYTitle("phi"); |
210 | OmegaTheta->SetXTitle("theta"); |
211 | OmegaTheta->SetYTitle("omega"); |
212 | OmegaPhi->SetXTitle("phi"); |
213 | OmegaPhi->SetYTitle("omega"); |
214 | SpotPoints->SetXTitle("theta"); |
215 | SpotPoints->SetYTitle("phi"); |
216 | SpotPoints->SetZTitle("omega"); |
217 | SpotThetaPhi->SetXTitle("theta"); |
218 | SpotThetaPhi->SetYTitle("phi"); |
219 | SpotOmegaTheta->SetXTitle("theta"); |
220 | SpotOmegaTheta->SetYTitle("omega"); |
221 | SpotOmegaPhi->SetXTitle("phi"); |
222 | SpotOmegaPhi->SetYTitle("omega"); |
223 | |
c1076715 |
224 | Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries(); |
225 | //Int_t ntrks = gAlice->GetNtrack(); |
226 | |
227 | Float_t trackglob[3]; |
228 | Float_t trackloc[3]; |
229 | |
c1076715 |
230 | //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45)); |
231 | |
4a5c8776 |
232 | Int_t track; |
c1076715 |
233 | |
4a5c8776 |
234 | for (track=0; track<ntracks;track++) { |
c1076715 |
235 | gAlice->ResetHits(); |
236 | gAlice->TreeH()->GetEvent(track); |
3a3df9e3 |
237 | TClonesArray *pHits = pRICH->Hits(); |
238 | if (pHits == 0) return; |
239 | Int_t nhits = pHits->GetEntriesFast(); |
c1076715 |
240 | if (nhits == 0) continue; |
2966f600 |
241 | //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries(); |
ac6e04fc |
242 | gAlice->TreeD()->GetEvent(0); |
c1076715 |
243 | AliRICHHit *mHit = 0; |
244 | AliRICHDigit *points = 0; |
245 | //Int_t npoints=0; |
246 | |
ac6e04fc |
247 | Int_t counter=0, counter1=0; |
c1076715 |
248 | //Initialization |
3a3df9e3 |
249 | for(i=0;i<kDimensionTheta;i++) |
c1076715 |
250 | { |
3a3df9e3 |
251 | for(j=0;j<kDimensionPhi;j++) |
c1076715 |
252 | { |
3a3df9e3 |
253 | for(k=0;k<kDimensionOmega;k++) |
c1076715 |
254 | { |
255 | counter++; |
3a3df9e3 |
256 | point[i][j][k]=0; |
257 | //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega); |
c1076715 |
258 | //printf("Resetting %d %d %d, time %d\n",i,j,k,counter); |
3a3df9e3 |
259 | //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)); |
260 | //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension))); |
c1076715 |
261 | } |
262 | } |
263 | } |
3a3df9e3 |
264 | mHit = (AliRICHHit*) pHits->UncheckedAt(0); |
c1076715 |
265 | //printf("Aqui vou eu\n"); |
6e585aa2 |
266 | Int_t nch = mHit->Chamber(); |
c1076715 |
267 | //printf("Aqui fui eu\n"); |
94de3818 |
268 | trackglob[0] = mHit->X(); |
269 | trackglob[1] = mHit->Y(); |
270 | trackglob[2] = mHit->Z(); |
c1076715 |
271 | |
ac6e04fc |
272 | printf("Chamber processed:%d\n",nch); |
ceccff49 |
273 | |
ac6e04fc |
274 | printf("Reconstructing particle at (global coordinates): %3.1f %3.1f %3.1f,\n",trackglob[0],trackglob[1],trackglob[2]); |
c1076715 |
275 | |
3a3df9e3 |
276 | iChamber = &(pRICH->Chamber(nch-1)); |
c1076715 |
277 | |
278 | //printf("Nch:%d\n",nch); |
279 | |
280 | iChamber->GlobaltoLocal(trackglob,trackloc); |
281 | |
ac6e04fc |
282 | printf("Reconstructing particle at (local coordinates) : %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]); |
c1076715 |
283 | |
284 | |
285 | iChamber->LocaltoGlobal(trackloc,trackglob); |
286 | |
3a3df9e3 |
287 | //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]); |
c1076715 |
288 | |
ac6e04fc |
289 | cx=trackloc[0]; |
290 | cy=trackloc[2]; |
c1076715 |
291 | |
292 | |
3a3df9e3 |
293 | TClonesArray *pDigits = pRICH->DigitsAddress(nch-1); |
294 | Int_t ndigits = pDigits->GetEntriesFast(); |
c1076715 |
295 | |
296 | //printf("Got %d digits\n",ndigits); |
297 | |
ac6e04fc |
298 | counter=0; |
299 | printf("Starting calculations\n"); |
300 | for(Float_t theta=0;theta<kMaxTheta;theta+=steptheta) |
301 | { |
302 | //printf("."); |
303 | for(Float_t phi=0;phi<=kMaxPhi;phi+=stepphi) |
304 | { |
305 | //printf("Phi:%3.1f\n", phi*180/kPi); |
306 | counter1=0; |
c1076715 |
307 | for (Int_t dig=0;dig<ndigits;dig++) |
308 | { |
3a3df9e3 |
309 | points=(AliRICHDigit*) pDigits->UncheckedAt(dig); |
6e585aa2 |
310 | segmentation->GetPadC(points->PadX(), points->PadY(),x, y, z); |
ac6e04fc |
311 | x=x-cx; |
312 | y=y-cy; |
313 | radius=TMath::Sqrt(TMath::Power(x,2)+TMath::Power(y,2)); |
314 | |
315 | if(radius>4) |
c1076715 |
316 | { |
ac6e04fc |
317 | //if(theta==0 && phi==0) |
318 | //{ |
319 | //printf("Radius: %f, Max Radius: %f\n",radius,kCorr*kHeight*tan(theta+kMaxOmega)*3/4); |
320 | meanradius+=radius; |
321 | counter++; |
322 | //} |
c1076715 |
323 | |
ac6e04fc |
324 | if (radius<2*kHeight*tan(theta+kMaxOmega)*3/4) |
eb1ee126 |
325 | { |
ac6e04fc |
326 | |
327 | if(phi==0) |
328 | { |
329 | //printf("Radius: %f, Max Radius: %f\n",radius,2*kHeight*tan(theta+kMaxOmega)*3/4); |
330 | //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y); |
331 | //printf("Using digit %d, for theta %f\n",dig,theta); |
332 | } |
333 | |
334 | counter1++; |
335 | |
336 | l=kHeight/cos(theta); |
337 | |
338 | //x=x*kCorr; |
339 | //y=y*kCorr; |
340 | /*if(SnellAngle(theta+omega)<999) |
341 | { |
342 | //printf("(Angle)/(Snell angle):%f\n",(theta+omega)/SnellAngle(theta+omega)); |
343 | x=x*(theta+omega)/SnellAngle(theta+omega); |
344 | y=y*(theta+omega)/SnellAngle(theta+omega); |
345 | } |
346 | else |
347 | { |
348 | x=0; |
349 | y=0; |
350 | }*/ |
351 | |
352 | //main calculation |
353 | |
354 | DigitsXY->Fill(x,y,(float) 1); |
355 | |
356 | theta1=SnellAngle(theta)*1.5; |
357 | |
358 | aux1=-y*sin(phi)+x*cos(phi); |
359 | aux2=y*cos(phi)+x*sin(phi); |
360 | aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta1)*aux2 ,2))/TMath::Power(sin(theta1)*aux2+l,2); |
361 | omega=atan(sqrt(aux3)); |
362 | |
363 | //omega is distorted, theta1 is distorted |
364 | |
365 | if(InvSnellAngle(theta+omega)<999) |
366 | { |
367 | omega1=InvSnellAngle(omega+theta1) - theta; |
368 | //theta1=InvSnellAngle(omega+theta) - omega1; |
369 | //omega1=kCorr*omega; |
370 | |
371 | kCorr=InvSnellAngle(omega+theta)/(omega+theta); |
372 | theta1=kCorr*theta/1.4; |
373 | //if(phi==0) |
374 | //printf("Omega:%f Theta:%f Omega1:%f Theta1:%f ISA(o+t):%f ISA(t):%f\n",omega*180/kPi,theta*180/kPi,omega1*180/kPi,theta1*180/kPi,InvSnellAngle(omega+theta)*180/kPi,InvSnellAngle(theta)*180/kPi); |
375 | } |
376 | else |
377 | { |
378 | omega1=0; |
379 | theta1=0; |
380 | } |
381 | |
382 | //printf("Omega:%f\n",omega); |
383 | |
384 | |
385 | //if(SnellAngle(theta+omega)<999) |
386 | //printf("(Angle)/(Snell angle):%f\n",(theta+omega)/SnellAngle(theta+omega)); |
387 | if(theta==0 && phi==0) |
388 | { |
389 | //printf("Omega: %f Corrected Omega: %f\n",omega, omega/kCorr); |
390 | //omega=omega/kCorr; |
391 | } |
392 | |
393 | //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl; |
394 | //{Int_t lixo;cin>>lixo;} |
395 | if(omega1<kMaxOmega && omega1>kMinOmega) |
396 | { |
397 | //printf("Omega found:%f\n",omega); |
398 | omega1=omega1-kMinOmega; |
399 | |
400 | //printf("Omega: %f Theta: %3.1f Phi:%3.1f\n",omega, theta*180/kPi, phi*180/kPi); |
401 | |
402 | bintheta=theta1*kDimensionTheta/kMaxTheta; |
403 | binphi=phi*kDimensionPhi/kMaxPhi; |
404 | binomega=omega1*kDimensionOmega/(kMaxOmega-kMinOmega); |
405 | |
406 | if(Int_t(bintheta+0.5)==Int_t(bintheta)) |
407 | inttheta=Int_t(bintheta); |
408 | else |
409 | inttheta=Int_t(bintheta+0.5); |
410 | |
411 | if(Int_t(binomega+0.5)==Int_t(binomega)) |
412 | intomega=Int_t(binomega); |
413 | else |
414 | intomega=Int_t(binomega+0.5); |
415 | |
416 | if(Int_t(binphi+0.5)==Int_t(binphi)) |
417 | intphi=Int_t(binphi); |
418 | else |
419 | intphi=Int_t(binphi+0.5); |
420 | |
421 | //printf("Point added at %d %d %d\n",inttheta,intphi,intomega); |
422 | point[inttheta][intphi][intomega]+=1; |
423 | //printf("Omega stored:%d\n",intomega); |
424 | Points->Fill(inttheta,intphi,intomega,(float) 1); |
425 | ThetaPhi->Fill(inttheta,intphi,(float) 1); |
426 | OmegaTheta->Fill(inttheta,intomega,(float) 1); |
427 | OmegaPhi->Fill(intphi,intomega,(float) 1); |
428 | //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega)); |
429 | } |
430 | //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1; |
eb1ee126 |
431 | } |
c1076715 |
432 | } |
ac6e04fc |
433 | } |
c1076715 |
434 | } |
ac6e04fc |
435 | //printf("Used %d digits for theta %3.1f\n",counter1, theta*180/kPi); |
436 | } |
437 | |
438 | meanradius=meanradius/counter; |
439 | printf("Mean radius:%f, counter:%d\n",meanradius,counter); |
440 | rechit[5]=meanradius; |
441 | printf("Used %d digits\n",counter1); |
442 | //printf("\n"); |
443 | |
444 | if(nev<20) |
445 | { |
446 | if(nev==0) |
447 | { |
448 | fc1->cd(1); |
449 | Points->Draw(); |
450 | fc1->cd(2); |
451 | ThetaPhi->Draw(); |
452 | fc1->cd(3); |
453 | OmegaTheta->Draw(); |
454 | fc1->cd(4); |
455 | OmegaPhi->Draw(); |
456 | fc3->cd(); |
457 | DigitsXY->Draw(); |
458 | } |
459 | else |
460 | { |
461 | //fc1->cd(1); |
462 | //Points->Draw("same"); |
463 | //fc1->cd(2); |
464 | //ThetaPhi->Draw("same"); |
465 | //fc1->cd(3); |
466 | //OmegaTheta->Draw("same"); |
467 | //fc1->cd(4); |
468 | //OmegaPhi->Draw("same"); |
469 | } |
470 | } |
471 | |
c1076715 |
472 | |
c1076715 |
473 | //SPOT execute twice |
ceccff49 |
474 | for(Int_t s=0;s<kSpot;s++) |
c1076715 |
475 | { |
ceccff49 |
476 | printf(" Applying Spot algorithm, pass %d\n", s); |
477 | |
c1076715 |
478 | //buffer copy |
3a3df9e3 |
479 | for(i=0;i<=kDimensionTheta;i++) |
ceccff49 |
480 | { |
481 | for(j=0;j<=kDimensionPhi;j++) |
482 | { |
483 | for(k=0;k<=kDimensionOmega;k++) |
484 | { |
485 | point1[i][j][k]=point[i][j][k]; |
486 | } |
487 | } |
488 | } |
489 | |
c1076715 |
490 | //SPOT algorithm |
ac6e04fc |
491 | for(i=1;i<kDimensionTheta-1;i++) |
ceccff49 |
492 | { |
ac6e04fc |
493 | for(j=1;j<kDimensionPhi-1;j++) |
c1076715 |
494 | { |
ac6e04fc |
495 | for(k=1;k<kDimensionOmega-1;k++) |
c1076715 |
496 | { |
ceccff49 |
497 | if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&& |
498 | (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&& |
499 | (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1])) |
500 | { |
501 | //cout<<"SPOT"<<endl; |
502 | //Execute SPOT on point |
503 | point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1])); |
504 | point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]); |
505 | point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]); |
506 | point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]); |
507 | point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]); |
508 | point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]); |
509 | point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]); |
510 | } |
c1076715 |
511 | } |
512 | } |
ceccff49 |
513 | } |
514 | |
c1076715 |
515 | //copy from buffer copy |
ac6e04fc |
516 | counter1=0; |
3a3df9e3 |
517 | for(i=1;i<kDimensionTheta;i++) |
ceccff49 |
518 | { |
519 | for(j=1;j<kDimensionPhi;j++) |
520 | { |
521 | for(k=1;k<kDimensionOmega;k++) |
522 | { |
523 | point[i][j][k]=point1[i][j][k]; |
ac6e04fc |
524 | if(nev<20) |
525 | { |
526 | if(s==kSpot-1) |
527 | { |
528 | if(point1[i][j][k] != 0) |
529 | { |
530 | SpotPoints->Fill(i,j,k,(float) point1[i][j][k]); |
531 | //printf("Random number %f\n",random->Rndm(2)); |
532 | //if(random->Rndm() < .2) |
533 | //{ |
534 | SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]); |
535 | SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]); |
536 | SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]); |
537 | counter1++; |
538 | //} |
539 | //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]); |
540 | } |
541 | } |
542 | } |
ceccff49 |
543 | //if(point1[i][j][k] != 0) |
544 | //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]); |
545 | } |
546 | } |
547 | } |
548 | } |
c1076715 |
549 | |
ac6e04fc |
550 | //printf("Filled %d cells\n",counter1); |
551 | |
552 | if(nev<20) |
553 | { |
554 | if(nev==0) |
555 | { |
556 | fc2->cd(1); |
557 | SpotPoints->Draw(); |
558 | fc2->cd(2); |
559 | SpotThetaPhi->Draw(); |
560 | fc2->cd(3); |
561 | SpotOmegaTheta->Draw(); |
562 | fc2->cd(4); |
563 | SpotOmegaPhi->Draw(); |
564 | } |
565 | else |
566 | { |
567 | //fc2->cd(1); |
568 | //SpotPoints->Draw("same"); |
569 | //fc2->cd(2); |
570 | //SpotThetaPhi->Draw("same"); |
571 | //fc2->cd(3); |
572 | //SpotOmegaTheta->Draw("same"); |
573 | //fc2->cd(4); |
574 | //SpotOmegaPhi->Draw("same"); |
575 | } |
576 | } |
577 | |
c1076715 |
578 | |
579 | //Identification is equivalent to maximum determination |
580 | max=0;maxi=0;maxj=0;maxk=0; |
581 | |
ceccff49 |
582 | printf(" Proceeding to identification"); |
c1076715 |
583 | |
ac6e04fc |
584 | for(i=0;i<kDimensionTheta;i++) |
585 | for(j=0;j<kDimensionPhi;j++) |
586 | for(k=0;k<kDimensionOmega;k++) |
ceccff49 |
587 | if(point[i][j][k]>max) |
588 | { |
589 | //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl; |
590 | maxi=i;maxj=j;maxk=k; |
591 | max=point[i][j][k]; |
592 | printf("."); |
ac6e04fc |
593 | //printf("Max Omega %d, Max Theta %d, Max Phi %d (%d counts)\n",maxk,maxi,maxj,max); |
ceccff49 |
594 | } |
595 | printf("\n"); |
c1076715 |
596 | |
ac6e04fc |
597 | Float_t FinalOmega = maxk*(kMaxOmega-kMinOmega)/kDimensionOmega; |
598 | Float_t FinalTheta = maxi*kMaxTheta/kDimensionTheta; |
599 | Float_t FinalPhi = maxj*kMaxPhi/kDimensionPhi; |
eb1ee126 |
600 | |
ac6e04fc |
601 | FinalOmega += kMinOmega; |
eb1ee126 |
602 | |
3a3df9e3 |
603 | //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4)); |
ac6e04fc |
604 | printf(" Indentified angles: cerenkov - %f, theta - %3.1f, phi - %3.1f (%f activation)\n", FinalOmega, FinalTheta*180/kPi, FinalPhi*180/kPi, max); |
3a3df9e3 |
605 | //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk); |
c1076715 |
606 | |
c1076715 |
607 | //fscanf(omegas,"%f",&realomega); |
608 | //fscanf(thetas,"%f",&realtheta); |
609 | //printf("Real Omega: %f",realomega); |
3a3df9e3 |
610 | //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl; |
c1076715 |
611 | |
3a3df9e3 |
612 | //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta)); |
c1076715 |
613 | |
614 | /*for(j=0;j<np;j++) |
3a3df9e3 |
615 | pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/ |
c1076715 |
616 | |
617 | |
618 | //Start filling rec. hits |
619 | |
ac6e04fc |
620 | rechit[0] = FinalTheta; |
621 | rechit[1] = 90*kPi/180 + FinalPhi; |
622 | rechit[2] = FinalOmega; |
c1076715 |
623 | rechit[3] = cx; |
624 | rechit[4] = cy; |
ac6e04fc |
625 | |
626 | //CreatePoints(FinalTheta, 270*kPi/180 + FinalPhi, FinalOmega, kHeight); |
627 | |
c1076715 |
628 | //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]); |
629 | |
630 | // fill rechits |
4a5c8776 |
631 | pRICH->AddRecHit3D(nch-1,rechit); |
ac6e04fc |
632 | //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]); |
ceccff49 |
633 | //printf("Chamber:%d",nch); |
c1076715 |
634 | } |
635 | //printf("\n\n\n\n"); |
636 | gAlice->TreeR()->Fill(); |
c1076715 |
637 | TClonesArray *fRec; |
237c933d |
638 | for (i=0;i<kNCH;i++) { |
4a5c8776 |
639 | fRec=pRICH->RecHitsAddress3D(i); |
c1076715 |
640 | int ndig=fRec->GetEntriesFast(); |
ac6e04fc |
641 | printf ("Chamber %d, rings %d\n",i+1,ndig); |
c1076715 |
642 | } |
4a5c8776 |
643 | pRICH->ResetRecHits3D(); |
ac6e04fc |
644 | |
645 | free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); |
646 | free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega); |
c1076715 |
647 | } |
648 | |
ac6e04fc |
649 | |
650 | |
3a3df9e3 |
651 | Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega) |
c1076715 |
652 | { |
237c933d |
653 | |
654 | // |
655 | // Calculates area of an ellipse for given incidence angles |
656 | |
657 | |
c1076715 |
658 | Float_t area; |
3a3df9e3 |
659 | const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads |
c1076715 |
660 | |
00df6e79 |
661 | area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2); |
c1076715 |
662 | |
663 | return (area); |
664 | } |
665 | |
c1076715 |
666 | |
ac6e04fc |
667 | Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh) |
668 | // allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] |
669 | { |
670 | long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1; |
671 | Int_t ***t; |
672 | |
673 | int NR_END=1; |
c1076715 |
674 | |
ac6e04fc |
675 | // allocate pointers to pointers to rows |
676 | t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**))); |
677 | if (!t) printf("allocation failure 1 in f3tensor()"); |
678 | t += NR_END; |
679 | t -= nrl; |
680 | |
681 | // allocate pointers to rows and set pointers to them |
682 | t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*))); |
683 | if (!t[nrl]) printf("allocation failure 2 in f3tensor()"); |
684 | t[nrl] += NR_END; |
685 | t[nrl] -= ncl; |
c1076715 |
686 | |
ac6e04fc |
687 | // allocate rows and set pointers to them |
688 | t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t))); |
689 | if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()"); |
690 | t[nrl][ncl] += NR_END; |
691 | t[nrl][ncl] -= ndl; |
c1076715 |
692 | |
ac6e04fc |
693 | for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep; |
694 | for(i=nrl+1;i<=nrh;i++) { |
695 | t[i]=t[i-1]+ncol; |
696 | t[i][ncl]=t[i-1][ncl]+ncol*ndep; |
697 | for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep; |
c1076715 |
698 | } |
ac6e04fc |
699 | |
700 | // return pointer to array of pointers to rows |
701 | return t; |
702 | } |
703 | |
704 | void AliRICHDetect::free_i3tensor(int ***t, long nrl, long nrh, long ncl, long nch,long ndl, long ndh) |
705 | // free a Int_t f3tensor allocated by i3tensor() |
706 | { |
707 | int NR_END=1; |
708 | |
709 | free((char*) (t[nrl][ncl]+ndl-NR_END)); |
710 | free((char*) (t[nrl]+ncl-NR_END)); |
711 | free((char*) (t+nrl-NR_END)); |
712 | } |
713 | |
714 | |
715 | Float_t AliRICHDetect:: SnellAngle(Float_t iangle) |
716 | { |
717 | |
718 | // Compute the Snell angle |
719 | |
720 | Float_t nfreon = 1.295; |
721 | Float_t nquartz = 1.585; |
722 | Float_t ngas = 1; |
723 | |
724 | Float_t sinrangle; |
725 | Float_t rangle; |
726 | Float_t a1, a2; |
727 | |
728 | a1=nfreon/nquartz; |
729 | a2=nquartz/ngas; |
730 | |
731 | sinrangle = a1*a2*sin(iangle); |
732 | |
733 | if(sinrangle>1.) { |
734 | rangle = 999.; |
735 | return rangle; |
736 | } |
737 | |
738 | rangle = asin(sinrangle); |
739 | return rangle; |
740 | } |
741 | |
742 | Float_t AliRICHDetect:: InvSnellAngle(Float_t rangle) |
743 | { |
744 | |
745 | // Compute the inverse Snell angle |
c1076715 |
746 | |
ac6e04fc |
747 | Float_t nfreon = 1.295; |
748 | Float_t nquartz = 1.585; |
749 | Float_t ngas = 1; |
c1076715 |
750 | |
ac6e04fc |
751 | Float_t siniangle; |
752 | Float_t iangle; |
753 | Float_t a1,a2; |
c1076715 |
754 | |
ac6e04fc |
755 | a1=nfreon/nquartz; |
756 | a2=nquartz/ngas; |
c1076715 |
757 | |
ac6e04fc |
758 | siniangle = sin(rangle)/(a1*a2); |
759 | iangle = asin(siniangle); |
760 | |
761 | if(siniangle>1.) { |
762 | iangle = 999.; |
763 | return iangle; |
764 | } |
765 | |
766 | iangle = asin(siniangle); |
767 | return iangle; |
768 | } |
c1076715 |
769 | |
770 | |
ac6e04fc |
771 | |
772 | //________________________________________________________________________________ |
773 | void AliRICHDetect::CreatePoints(Float_t theta, Float_t phi, Float_t omega, Float_t h) |
774 | { |
775 | |
776 | // Create points along the ellipse equation |
777 | |
778 | Int_t s1,s2; |
779 | Float_t fiducial=h*TMath::Tan(omega+theta), l=h/TMath::Cos(theta), xtrial, y=0, c0, c1, c2; |
780 | //TRandom *random=new TRandom(); |
781 | |
782 | static TH2F *REllipse = new TH2F("REllipse","Reconstructed ellipses",150,-25,25,150,-25,25); |
783 | |
784 | for(Float_t i=0;i<1000;i++) |
785 | { |
786 | |
787 | Float_t counter=0; |
788 | |
789 | c0=0;c1=0;c2=0; |
790 | while((c1*c1-4*c2*c0)<=0 && counter<1000) |
791 | { |
792 | //Choose which side to go... |
793 | if(i>250 && i<750) s1=1; |
794 | //if (gRandom->Rndm(1)>.5) s1=1; |
795 | else s1=-1; |
796 | //printf("s1:%d\n",s1); |
797 | //Trial a y |
798 | y=s1*i*gRandom->Rndm(Int_t(fiducial/50)); |
799 | //printf("Fiducial %f for omega:%f theta:%f phi:%f\n",fiducial,omega,theta,fphi); |
800 | Float_t alfa1=theta; |
801 | Float_t theta1=phi; |
802 | Float_t omega1=omega; |
803 | |
804 | //Solve the eq for a trial x |
805 | c0=-TMath::Power(y*TMath::Cos(alfa1)*TMath::Cos(theta1),2)-TMath::Power(y*TMath::Sin(alfa1),2)+TMath::Power(l*TMath::Tan(omega1),2)+2*l*y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+TMath::Power(y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2); |
806 | c1=2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)-2*y*TMath::Cos(alfa1)*TMath::Power(TMath::Cos(theta1),2)*TMath::Sin(alfa1)+2*l*TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)*TMath::Power(TMath::Sin(theta1),2)*TMath::Power(TMath::Tan(omega1),2); |
807 | c2=-TMath::Power(TMath::Cos(alfa1),2)-TMath::Power(TMath::Cos(theta1)*TMath::Sin(alfa1),2)+TMath::Power(TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2); |
808 | //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl; |
809 | //printf("Result:%f\n\n",c1*c1-4*c2*c0); |
810 | //i+=.01; |
811 | counter +=1; |
812 | } |
813 | |
814 | if (counter>=1000) |
815 | y=0; |
816 | |
817 | //Choose which side to go... |
818 | //if(gRandom->Rndm(1)>.5) s=1; |
819 | //else s=-1; |
820 | if(i>500) s2=1; |
821 | //if (gRandom->Rndm(1)>.5) s2=1; |
822 | else s2=-1; |
823 | xtrial=(-c1+s2*TMath::Sqrt(c1*c1-4*c2*c0))/(2*c2); |
824 | //cout<<"x="<<xtrial<<" y="<<cy+y<<endl; |
825 | //printf("Coordinates: %f %f\n",xtrial,fCy+y); |
826 | |
827 | REllipse->Fill(xtrial,y); |
828 | |
829 | //printf("Coordinates: %f %f %f\n",vectorGlob[0],vectorGlob[1],vectorGlob[2]); |
830 | } |
831 | |
832 | fc3->cd(2); |
833 | REllipse->Draw(); |
834 | } |