]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHDetect.cxx
Transition to SDigits.
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
CommitLineData
c1076715 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 $Log$
b251a2b5 18 Revision 1.10 2001/02/13 20:39:06 jbarbosa
19 Changes to make it work with new IO.
20
a5886574 21 Revision 1.9 2001/01/22 21:39:11 jbarbosa
22 Several tune-ups
23
eb1ee126 24 Revision 1.8 2000/11/15 15:52:53 jbarbosa
25 Turned on spot algorithm.
26
ceccff49 27 Revision 1.7 2000/11/01 15:37:05 jbarbosa
28 Updated to use its own rec. point object.
29
4a5c8776 30 Revision 1.6 2000/10/02 21:28:12 fca
31 Removal of useless dependecies via forward declarations
32
94de3818 33 Revision 1.5 2000/06/30 16:30:28 dibari
34 Disabled writing to rechits.
35
a366fdbe 36 Revision 1.4 2000/06/15 15:46:59 jbarbosa
37 Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
38
00df6e79 39 Revision 1.3 2000/06/13 13:15:41 jbarbosa
40 Still some code cleanup done (variable names)
41
3a3df9e3 42 Revision 1.2 2000/06/12 15:19:30 jbarbosa
43 Cleaned up version.
44
237c933d 45 Revision 1.1 2000/04/19 13:05:14 morsch
46 J. Barbosa's spot reconstruction algorithm.
47
c1076715 48*/
49
50
51#include "AliRICH.h"
52#include "AliRICHPoints.h"
53#include "AliRICHDetect.h"
237c933d 54#include "AliRICHHit.h"
55#include "AliRICHDigit.h"
c1076715 56#include "AliRun.h"
57#include "TParticle.h"
94de3818 58#include "TTree.h"
c1076715 59#include "TMath.h"
60#include "TRandom.h"
61
62
63
64ClassImp(AliRICHDetect)
65//___________________________________________
66AliRICHDetect::AliRICHDetect() : TObject()
67{
237c933d 68
69// Default constructor
70
c1076715 71 //fChambers = 0;
72}
73
74//___________________________________________
75AliRICHDetect::AliRICHDetect(const char *name, const char *title)
76 : TObject()
77{
78
237c933d 79// Constructor
80
c1076715 81 /*fChambers = new TObjArray(7);
82 for (Int_t i=0; i<7; i++) {
83
84 (*fChambers)[i] = new AliRICHchamber();
85
86 } */
87}
88
89
90void AliRICHDetect::Detect()
91{
92
237c933d 93//
94// Detection algorithm
95
96
c1076715 97 //printf("Detection started!\n");
3a3df9e3 98 Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
c1076715 99 //Float_t theta,phi,realomega,realtheta;
100 Int_t i,j,k;
ceccff49 101
c1076715 102
eb1ee126 103 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
c1076715 104 //const Float_t t=0.6; //Softening of Noise Correction (factor)
105
3a3df9e3 106 const Float_t kPi=3.1415927;
c1076715 107
eb1ee126 108 const Float_t kHeight=10; //Distance from Radiator to Pads in pads
ceccff49 109
eb1ee126 110 const Int_t kSpot=0; //number of passes with spot algorithm
c1076715 111
ceccff49 112 const Int_t kDimensionTheta=50; //Matrix dimension for angle Detection
113 const Int_t kDimensionPhi=50;
114 const Int_t kDimensionOmega=50;
c1076715 115
eb1ee126 116 const Float_t SPOTp=.2; //Percentage of spot action
117 //const Int_t np=500; //Number of points to reconstruct elipse
118 const Float_t kMinOmega=30*kPi/180;
3a3df9e3 119 const Float_t kMaxOmega=65*kPi/180; //Maximum Cherenkov angle to identify
eb1ee126 120
121 const Float_t kCorr=.5; //Correction factor, accounting for aberration, refractive index, etc.
122
3a3df9e3 123 Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
ceccff49 124 Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
c1076715 125
3a3df9e3 126 steptheta=kPi/kDimensionTheta;
127 stepphi=kPi/kDimensionPhi;
c1076715 128
129 AliRICHChamber* iChamber;
130
3a3df9e3 131 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
c1076715 132 Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
133 //Int_t ntrks = gAlice->GetNtrack();
134
135 Float_t trackglob[3];
136 Float_t trackloc[3];
137
138 //printf("Got ntracks:%d\n",ntracks);
139 /*TVector *xp = new TVector(1000);
140 TVector *yp = new TVector(1000);
141 TVector *zp = new TVector(1000);
142 TVector *ptrk = new TVector(1000);
143 TVector *phit = new TVector(1000);*/
144
145 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
146
4a5c8776 147 Int_t track;
c1076715 148
4a5c8776 149 for (track=0; track<ntracks;track++) {
c1076715 150 gAlice->ResetHits();
151 gAlice->TreeH()->GetEvent(track);
3a3df9e3 152 TClonesArray *pHits = pRICH->Hits();
153 if (pHits == 0) return;
154 Int_t nhits = pHits->GetEntriesFast();
c1076715 155 if (nhits == 0) continue;
156 Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
b251a2b5 157 gAlice->TreeD()->GetEvent(1);
c1076715 158 AliRICHHit *mHit = 0;
159 AliRICHDigit *points = 0;
160 //Int_t npoints=0;
161
162 Int_t counter=0;
163 //Initialization
3a3df9e3 164 for(i=0;i<kDimensionTheta;i++)
c1076715 165 {
3a3df9e3 166 for(j=0;j<kDimensionPhi;j++)
c1076715 167 {
3a3df9e3 168 for(k=0;k<kDimensionOmega;k++)
c1076715 169 {
170 counter++;
3a3df9e3 171 point[i][j][k]=0;
172 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
c1076715 173 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
3a3df9e3 174 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
175 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
c1076715 176 }
177 }
178 }
3a3df9e3 179 mHit = (AliRICHHit*) pHits->UncheckedAt(0);
c1076715 180 //printf("Aqui vou eu\n");
181 Int_t nch = mHit->fChamber;
182 //printf("Aqui fui eu\n");
94de3818 183 trackglob[0] = mHit->X();
184 trackglob[1] = mHit->Y();
185 trackglob[2] = mHit->Z();
c1076715 186
187 cx=trackglob[0];
188 cy=trackglob[2];
189
190
191 //printf("Chamber processed:%d\n",nch);
ceccff49 192
193 printf("\nChamber %d, particle at: %3.1f %3.1f,\n",nch,trackglob[0],trackglob[2]);
c1076715 194
3a3df9e3 195 iChamber = &(pRICH->Chamber(nch-1));
c1076715 196
197 //printf("Nch:%d\n",nch);
198
199 iChamber->GlobaltoLocal(trackglob,trackloc);
200
3a3df9e3 201 //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
c1076715 202
203
204 iChamber->LocaltoGlobal(trackloc,trackglob);
205
3a3df9e3 206 //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
c1076715 207
208
209
210
3a3df9e3 211 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
212 Int_t ndigits = pDigits->GetEntriesFast();
c1076715 213
214 //printf("Got %d digits\n",ndigits);
215
216 //printf("Starting calculations\n");
217
3a3df9e3 218 for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
c1076715 219 {
3a3df9e3 220 for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
c1076715 221 {
222 for (Int_t dig=0;dig<ndigits;dig++)
223 {
3a3df9e3 224 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
c1076715 225
226 x=points->fPadX-cx;
227 y=points->fPadY-cy;
228 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
229 //cout<<"x="<<x<<" y="<<y<<endl;
eb1ee126 230
00df6e79 231 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
c1076715 232 {
233
eb1ee126 234
3a3df9e3 235 l=kHeight/cos(theta);
c1076715 236
237 aux1=-y*sin(phi)+x*cos(phi);
238 aux2=y*cos(phi)+x*sin(phi);
00df6e79 239 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
eb1ee126 240 //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
241
3a3df9e3 242 omega=atan(sqrt(aux3));
243 //printf("Omega: %f\n",omega);
c1076715 244
3a3df9e3 245 //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
c1076715 246 //{Int_t lixo;cin>>lixo;}
eb1ee126 247 if(omega<kMaxOmega && omega>kMinOmega)
248 {
249 omega=omega-kMinOmega;
250 //point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*2*omega*kDimensionOmega/kMaxOmega)]+=1;
251 point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*(omega/(kMaxOmega-kMinOmega)*kDimensionOmega))]+=1;
252 }
3a3df9e3 253 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
c1076715 254 }
255 }
256 }
257 }
258
259
c1076715 260 //SPOT execute twice
ceccff49 261 for(Int_t s=0;s<kSpot;s++)
c1076715 262 {
ceccff49 263 printf(" Applying Spot algorithm, pass %d\n", s);
264
c1076715 265 //buffer copy
3a3df9e3 266 for(i=0;i<=kDimensionTheta;i++)
ceccff49 267 {
268 for(j=0;j<=kDimensionPhi;j++)
269 {
270 for(k=0;k<=kDimensionOmega;k++)
271 {
272 point1[i][j][k]=point[i][j][k];
273 }
274 }
275 }
276
c1076715 277 //SPOT algorithm
3a3df9e3 278 for(i=1;i<kDimensionTheta;i++)
ceccff49 279 {
280 for(j=1;j<kDimensionPhi;j++)
c1076715 281 {
ceccff49 282 for(k=1;k<kDimensionOmega;k++)
c1076715 283 {
ceccff49 284 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
285 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
286 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
287 {
288 //cout<<"SPOT"<<endl;
289 //Execute SPOT on point
290 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
291 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
292 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
293 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
294 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
295 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
296 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
297 }
c1076715 298 }
299 }
ceccff49 300 }
301
c1076715 302 //copy from buffer copy
3a3df9e3 303 for(i=1;i<kDimensionTheta;i++)
ceccff49 304 {
305 for(j=1;j<kDimensionPhi;j++)
306 {
307 for(k=1;k<kDimensionOmega;k++)
308 {
309 point[i][j][k]=point1[i][j][k];
310 //if(point1[i][j][k] != 0)
311 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
312 }
313 }
314 }
315 }
c1076715 316
317
318 //Identification is equivalent to maximum determination
319 max=0;maxi=0;maxj=0;maxk=0;
320
ceccff49 321 printf(" Proceeding to identification");
c1076715 322
3a3df9e3 323 for(i=1;i<kDimensionTheta-3;i++)
324 for(j=1;j<=kDimensionPhi-3;j++)
325 for(k=0;k<=kDimensionOmega;k++)
ceccff49 326 if(point[i][j][k]>max)
327 {
328 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
329 maxi=i;maxj=j;maxk=k;
330 max=point[i][j][k];
331 printf(".");
332 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
333 }
334 printf("\n");
c1076715 335
eb1ee126 336 maxk=maxk*(kMaxOmega-kMinOmega)/kDimensionOmega + kMinOmega;
337
338
3a3df9e3 339 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
eb1ee126 340 printf(" Indentified cerenkov angle: %f\n", maxk);
3a3df9e3 341 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
c1076715 342
343
344 //fscanf(omegas,"%f",&realomega);
345 //fscanf(thetas,"%f",&realtheta);
346 //printf("Real Omega: %f",realomega);
3a3df9e3 347 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
c1076715 348
3a3df9e3 349 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
c1076715 350
351 /*for(j=0;j<np;j++)
3a3df9e3 352 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
c1076715 353
354
355 //Start filling rec. hits
356
a366fdbe 357 Float_t rechit[6];
c1076715 358
3a3df9e3 359 rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
360 rechit[1] = (Float_t)( maxj*kPi/(kDimensionPhi*4));
eb1ee126 361 rechit[2] = (Float_t)( maxk);
c1076715 362 //rechit[0] = (Float_t)( maxi);
363 //rechit[1] = (Float_t)( maxj);
364 //rechit[2] = (Float_t)( maxk);
365 rechit[3] = cx;
366 rechit[4] = cy;
a366fdbe 367 rechit[5] = 0.5;
c1076715 368
369 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
370
371 // fill rechits
4a5c8776 372 pRICH->AddRecHit3D(nch-1,rechit);
ceccff49 373 //printf("Chamber:%d",nch);
c1076715 374 }
375 //printf("\n\n\n\n");
376 gAlice->TreeR()->Fill();
377 //TTree *TR=gAlice->TreeR();
378 //Stat_t ndig=TR->GetEntries();
379 TClonesArray *fRec;
237c933d 380 for (i=0;i<kNCH;i++) {
4a5c8776 381 fRec=pRICH->RecHitsAddress3D(i);
c1076715 382 int ndig=fRec->GetEntriesFast();
383 printf ("Chamber %d, rings %d\n",i,ndig);
384 }
385 //printf("Number of rec. hits: %d",ndig);
4a5c8776 386 pRICH->ResetRecHits3D();
c1076715 387 //char hname[30];
388 //sprintf(hname,"TreeR%d",track);
389 //gAlice->TreeR()->Write(hname);
390
391}
392
3a3df9e3 393Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
c1076715 394{
237c933d 395
396//
397// Calculates area of an ellipse for given incidence angles
398
399
c1076715 400 Float_t area;
3a3df9e3 401 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
c1076715 402
00df6e79 403 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
c1076715 404
405 return (area);
406}
407
408/*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
409// allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
410{
411long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
412Int_t ***t;
413
414// allocate pointers to pointers to rows
415t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
416if (!t) printf("allocation failure 1 in f3tensor()");
417t += NR_END;
418t -= nrl;
419
420// allocate pointers to rows and set pointers to them
421t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
422if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
423t[nrl] += NR_END;
424t[nrl] -= ncl;
425
426// allocate rows and set pointers to them
427t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
428if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
429t[nrl][ncl] += NR_END;
430t[nrl][ncl] -= ndl;
431
432for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
433for(i=nrl+1;i<=nrh;i++) {
434t[i]=t[i-1]+ncol;
435t[i][ncl]=t[i-1][ncl]+ncol*ndep;
436for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
437}
438
439// return pointer to array of pointers to rows
440return t;
441}*/
442
3a3df9e3 443/*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
c1076715 444 {
445 Int_t s;
3a3df9e3 446 Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
c1076715 447
448 //cout<<"fiducial="<<fiducial<<endl;
449
450 c0=0;c1=0;c2=0;
451 while((c1*c1-4*c2*c0)<=0)
452 {
453 //Choose which side to go...
454 if(aleat(1)>.5) s=1; else s=-1;
455 //Trial a y
456 y=s*aleat(fiducial);
3a3df9e3 457 Float_t alfa1=alfa*kPi/180;
458 Float_t theta1=theta*kPi/180;
459 Float_t omega1=omega*kPi/180;
c1076715 460 //Solve the eq for a trial x
00df6e79 461 c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
462 c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
463 c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
c1076715 464 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
465 }
466 //Choose which side to go...
467 if(aleat(1)>.5) s=1; else s=-1;
468 xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
469 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
470 fprintf(final,"%f %f\n",xtrial,cy+y);
471 }*/
472
473
474
475
476
477