]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHDetectV1.cxx
Switch for different versions. (J. Barbosa)
[u/mrichter/AliRoot.git] / RICH / AliRICHDetectV1.cxx
CommitLineData
02b30ae7 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 $Log$
18
19*/
20
21#include <stdlib.h>
22
23#include "AliRICHDetectV1.h"
24#include "AliRICH.h"
25#include "AliRICHPoints.h"
26#include "AliRICHDetect.h"
27#include "AliRICHHit.h"
28#include "AliRICHDigit.h"
29#include "AliRICHRawCluster.h"
30#include "AliRICHCerenkov.h"
31#include "AliRICHSegmentationV0.h"
32#include "AliRun.h"
33#include "TParticle.h"
34#include "TTree.h"
35#include "TMath.h"
36#include "TRandom.h"
37#include "TH3.h"
38#include "TH2.h"
39#include "TCanvas.h"
40#include <TStyle.h>
41
42
43#include "malloc.h"
44
45
46ClassImp(AliRICHDetectV1)
47
48
49//___________________________________________
50AliRICHDetectV1::AliRICHDetectV1() : AliRICHDetect()
51{
52
53// Default constructor
54
55 fc1 = 0;
56 fc2 = 0;
57 fc3 = 0;
58
59}
60
61//___________________________________________
62AliRICHDetectV1::AliRICHDetectV1(const char *name, const char *title)
63 : AliRICHDetect()
64{
65
66 TStyle *mystyle=new TStyle("Plain","mystyle");
67 mystyle->SetPalette(1,0);
68 mystyle->cd();
69
70
71 fc1= new TCanvas("c1","Reconstructed points",50,50,300,350);
72 fc1->Divide(2,2);
73 fc2= new TCanvas("c2","Reconstructed points after SPOT",370,50,300,350);
74 fc2->Divide(2,2);
75 fc3= new TCanvas("c3","Used Digits",690,50,300,350);
76 fc4= new TCanvas("c4","Mesh activation data",50,430,600,350);
77 fc4->Divide(2,1);
78
79
80}
81
82//___________________________________________
83AliRICHDetectV1::~AliRICHDetectV1()
84{
85
86// Destructor
87
88}
89
90
91void AliRICHDetectV1::Detect(Int_t nev, Int_t type)
92{
93
94//
95// Detection algorithm
96
97
98 //printf("Detection started!\n");
99 Float_t omega,omega1,theta1,x,y,q=0,z,cx,cy,max,radius=0,meanradius=0;
100 Int_t maxi,maxj,maxk;
101 Float_t originalOmega, originalPhi, originalTheta;
102 Float_t steptheta,stepphi,stepomega;
103 Float_t binomega, bintheta, binphi;
104 Int_t intomega, inttheta, intphi;
105 Float_t maxRadius,minRadius,eccentricity,angularadius,offset,phi_relative;
106 Int_t i,j,k;
107
108 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
109 AliRICHSegmentationV0* segmentation;
110 AliRICHChamber* iChamber;
111 AliRICHGeometry* geometry;
112
113 iChamber = &(pRICH->Chamber(0));
114 segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(0);
115 geometry=iChamber->GetGeometryModel();
116
117
118 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
119 //const Float_t t=0.6; //Softening of Noise Correction (factor)
120
121 const Float_t kPi=TMath::Pi();
122
123 const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters
124 //printf("Distance to Pads:%f\n",kHeight);
125
126 const Int_t kSpot=2; //number of passes with spot algorithm
127 const Int_t activ_tresh=0; //activation treshold to identify a track
128
129 const Int_t kDimensionTheta=2; //Matrix dimension for angle Detection
130 const Int_t kDimensionPhi=2;
131 const Int_t kDimensionOmega=50;
132
133 const Float_t SPOTp=.25; //Percentage of spot action
134 const Float_t kMinOmega=.6;
135 const Float_t kMaxOmega=.7; //Maximum Cherenkov angle to identify
136 const Float_t kMinTheta=0;
137 const Float_t kMaxTheta=0.5*kPi/180;
138 const Float_t kMinPhi=0;
139 const Float_t kMaxPhi=20*kPi/180;
140
141 const Float_t sigma=0.5; //half thickness of fiducial band in cm
142
143 Float_t rechit[6]; //Reconstructed point data
144
145 Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
146 Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
147
148 steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta;
149 stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi;
150 stepomega=(kMaxOmega-kMinOmega)/kDimensionOmega;
151
152 static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
153 static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
154 static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
155 static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
156 static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
157 static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
158 static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
159 static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
160 static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25);
161 static TH1F *AngleAct = new TH1F("AngleAct","Activation per angle",100,.45,1);
162 static TH1F *Activation = new TH1F("Activation","Activation per ring",100,0,25);
163 Points->SetXTitle("theta");
164 Points->SetYTitle("phi");
165 Points->SetZTitle("omega");
166 ThetaPhi->SetXTitle("theta");
167 ThetaPhi->SetYTitle("phi");
168 OmegaTheta->SetXTitle("theta");
169 OmegaTheta->SetYTitle("omega");
170 OmegaPhi->SetXTitle("phi");
171 OmegaPhi->SetYTitle("omega");
172 SpotPoints->SetXTitle("theta");
173 SpotPoints->SetYTitle("phi");
174 SpotPoints->SetZTitle("omega");
175 SpotThetaPhi->SetXTitle("theta");
176 SpotThetaPhi->SetYTitle("phi");
177 SpotOmegaTheta->SetXTitle("theta");
178 SpotOmegaTheta->SetYTitle("omega");
179 SpotOmegaPhi->SetXTitle("phi");
180 SpotOmegaPhi->SetYTitle("omega");
181 AngleAct->SetFillColor(5);
182 AngleAct->SetXTitle("rad");
183 AngleAct->SetYTitle("activation");
184 Activation->SetFillColor(5);
185 Activation->SetXTitle("activation");
186
187 Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
188
189 Float_t trackglob[3];
190 Float_t trackloc[3];
191
192 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
193
194 Int_t track;
195
196 for (track=0; track<ntracks;track++) {
197 gAlice->ResetHits();
198 gAlice->TreeH()->GetEvent(track);
199 TClonesArray *pHits = pRICH->Hits();
200 if (pHits == 0) return;
201 Int_t nhits = pHits->GetEntriesFast();
202 if (nhits == 0) continue;
203 //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
204 AliRICHHit *mHit = 0;
205 //Int_t npoints=0;
206
207 Int_t counter=0, counter1=0;
208 //Initialization
209 for(i=0;i<kDimensionTheta;i++)
210 {
211 for(j=0;j<kDimensionPhi;j++)
212 {
213 for(k=0;k<kDimensionOmega;k++)
214 {
215 counter++;
216 point[i][j][k]=0;
217 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
218 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
219 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
220 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
221 }
222 }
223 }
224
225 Int_t ncerenkovs = pRICH->Cerenkovs()->GetEntriesFast();
226
227
228 originalOmega = 0;
229 counter = 0;
230
231 for (Int_t hit=0;hit<ncerenkovs;hit++) {
232 AliRICHCerenkov* cHit = (AliRICHCerenkov*) pRICH->Cerenkovs()->UncheckedAt(hit);
233 Float_t loss = cHit->fLoss; //did it hit the CsI?
234 Float_t production = cHit->fProduction; //was it produced in freon?
235 Float_t cherenkov = cHit->fCerenkovAngle; //production cerenkov angle
236 if (loss == 4 && production == 1)
237 {
238 counter +=1;
239 originalOmega += cherenkov;
240 //printf("%f\n",cherenkov);
241 }
242 }
243
244 originalOmega = originalOmega/counter;
245
246 //printf("Cerenkovs : %d\n",counter);
247
248 mHit = (AliRICHHit*) pHits->UncheckedAt(0);
249 Int_t nch = mHit->Chamber();
250 originalTheta = mHit->Theta();
251 originalPhi = mHit->Phi();
252 trackglob[0] = mHit->X();
253 trackglob[1] = mHit->Y();
254 trackglob[2] = mHit->Z();
255
256
257 printf("\n--------------------------------------\n");
258 printf("Chamber %d, track %d\n", nch, track);
259 printf("Original omega: %f\n",originalOmega);
260
261 iChamber = &(pRICH->Chamber(nch-1));
262
263 printf("Nch:%d x:%f y:%f\n",nch,trackglob[0],trackglob[2]);
264
265 iChamber->GlobaltoLocal(trackglob,trackloc);
266
267 iChamber->LocaltoGlobal(trackloc,trackglob);
268
269
270 cx=trackloc[0];
271 cy=trackloc[2];
272
273 printf("cy:%f ", cy);
274
275 if(counter != 0) //if there are cerenkovs
276 {
277
278 AliRICHDigit *points = 0;
279 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
280
281 AliRICHRawCluster *cluster =0;
282 TClonesArray *pClusters = pRICH->RawClustAddress(nch-1);
283
284 Int_t maxcycle=0;
285
286 //digitize from digits
287
288 if(type==0)
289 {
290 gAlice->TreeD()->GetEvent(0);
291 Int_t ndigits = pDigits->GetEntriesFast();
292 maxcycle=ndigits;
293 //printf("Got %d digits\n",ndigits);
294 }
295
296 //digitize from clusters
297
298 if(type==1)
299 {
300 Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
301 gAlice->TreeR()->GetEvent(nent-1);
302 Int_t nclusters = pClusters->GetEntriesFast();
303 maxcycle=nclusters;
304 //printf("Got %d clusters\n",nclusters);
305 }
306
307
308
309
310 counter=0;
311 printf("Starting calculations\n");
312 printf(" Start Finish\n");
313 printf("Progress: ");
314
315
316 for(Float_t theta=0;theta<kMaxTheta;theta+=steptheta)
317 {
318 printf(".");
319 for(Float_t phi=0;phi<=kMaxPhi;phi+=stepphi)
320 {
321 for(omega=kMinOmega;omega<=kMaxOmega;omega+=stepomega)
322 {
323 //printf("Entering angle cycle\n");
324 omega1=SnellAngle(omega);
325 theta1=SnellAngle(theta);
326
327 maxRadius = kHeight*(tan(omega1+theta1)+tan(omega1-theta1))/2;
328 minRadius = kHeight*tan(omega1);
329 eccentricity = sqrt(1-(minRadius*minRadius)/(maxRadius*maxRadius));
330
331
332
333 offset = kHeight*(tan(omega1+theta1)-tan(omega1-theta1))/2;
334
335 //printf("phi:%f theta:%f omega:%f \n", phi,theta,omega);
336
337 //printf("offset:%f cx:%f cy:%f \n", offset,cx,cy);
338
339 Float_t cxn = cx + offset * sin(phi);
340 Float_t cyn = cy + offset * cos(phi);
341
342 //printf("cxn:%f cyn:%f\n", cxn, cyn);
343
344 for (Int_t cycle=0;cycle<maxcycle;cycle++)
345 {
346 //printf("Entering point cycle");
347 if(type==0)
348 {
349 points=(AliRICHDigit*) pDigits->UncheckedAt(cycle);
350 segmentation->GetPadC(points->PadX(), points->PadY(),x, y, z);
351 }
352
353 if(type==1)
354 {
355 cluster=(AliRICHRawCluster*) pClusters->UncheckedAt(cycle);
356 x=cluster->fX;
357 y=cluster->fY;
358 q=cluster->fQ;
359 }
360
361 if(type ==0 || q > 100)
362
363 {
364
365 x=x-cxn;
366 y=y-cyn;
367 radius=TMath::Sqrt(TMath::Power(x,2)+TMath::Power(y,2));
368
369 phi_relative = asin(y/radius);
370 phi_relative = TMath::Abs(phi_relative - phi);
371
372 angularadius = maxRadius*sqrt((1-eccentricity*eccentricity)/(1-eccentricity*eccentricity*cos(phi_relative)*cos(phi_relative)));
373
374 //printf("omega:%f min:%f rad:%f max:%f\n",omega, angularadius-sigma,radius,angularadius+sigma);
375
376
377 if((angularadius-sigma)<radius && (angularadius+sigma)>radius)
378 {
379 printf("omega:%f min:%f rad:%f max:%f\n",omega, angularadius-sigma,radius,angularadius+sigma);
380
381 bintheta=theta*kDimensionTheta/kMaxTheta;
382 binphi=phi*kDimensionPhi/kMaxPhi;
383 binomega=omega*kDimensionOmega/(kMaxOmega-kMinOmega);
384
385 if(Int_t(bintheta+0.5)==Int_t(bintheta))
386 inttheta=Int_t(bintheta);
387 else
388 inttheta=Int_t(bintheta+0.5);
389
390 if(Int_t(binomega+0.5)==Int_t(binomega))
391 intomega=Int_t(binomega);
392 else
393 intomega=Int_t(binomega+0.5);
394
395 if(Int_t(binphi+0.5)==Int_t(binphi))
396 intphi=Int_t(binphi);
397 else
398 intphi=Int_t(binphi+0.5);
399
400 //printf("Point added at %d %d %d\n",inttheta,intphi,intomega);
401
402 //if(type==0)
403 point[inttheta][intphi][intomega]+=1;
404 //if(type==1)
405 //point[inttheta][intphi][intomega]+=(Int_t)(q);
406
407 //printf("Omega stored:%d\n",intomega);
408 Points->Fill(inttheta,intphi,intomega,(float) 1);
409 ThetaPhi->Fill(inttheta,intphi,(float) 1);
410 OmegaTheta->Fill(inttheta,intomega,(float) 1);
411 OmegaPhi->Fill(intphi,intomega,(float) 1);
412 //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega));
413 }
414 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
415 }
416 }
417 }
418 }
419
420 }
421 //printf("Used %d digits for theta %3.1f\n",counter1, theta*180/kPi);
422
423 printf("\n");
424
425 meanradius=meanradius/counter;
426 //printf("Mean radius:%f, counter:%d\n",meanradius,counter);
427 rechit[5]=meanradius;
428 //printf("Used %d digits\n",counter1);
429 //printf("\n");
430
431 if(nev<2)
432 {
433 if(nev==0)
434 {
435 fc1->cd(1);
436 Points->Draw("colz");
437 fc1->cd(2);
438 ThetaPhi->Draw("colz");
439 fc1->cd(3);
440 OmegaTheta->Draw("colz");
441 fc1->cd(4);
442 OmegaPhi->Draw("colz");
443 fc3->cd();
444 DigitsXY->Draw("colz");
445 }
446 else
447 {
448 //fc1->cd(1);
449 //Points->Draw("same");
450 //fc1->cd(2);
451 //ThetaPhi->Draw("same");
452 //fc1->cd(3);
453 //OmegaTheta->Draw("same");
454 //fc1->cd(4);
455 //OmegaPhi->Draw("same");
456 }
457 }
458
459
460 //SPOT execute twice
461 for(Int_t s=0;s<kSpot;s++)
462 {
463 printf(" Applying Spot algorithm, pass %d\n", s);
464
465 //buffer copy
466 for(i=0;i<=kDimensionTheta;i++)
467 {
468 for(j=0;j<=kDimensionPhi;j++)
469 {
470 for(k=0;k<=kDimensionOmega;k++)
471 {
472 point1[i][j][k]=point[i][j][k];
473 }
474 }
475 }
476
477 //SPOT algorithm
478 for(i=1;i<kDimensionTheta-1;i++)
479 {
480 for(j=1;j<kDimensionPhi-1;j++)
481 {
482 for(k=1;k<kDimensionOmega-1;k++)
483 {
484 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
485 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
486 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
487 {
488 //cout<<"SPOT"<<endl;
489 //Execute SPOT on point
490 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
491 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
492 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
493 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
494 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
495 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
496 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
497 }
498 }
499 }
500 }
501
502 //copy from buffer copy
503 counter1=0;
504 for(i=1;i<kDimensionTheta;i++)
505 {
506 for(j=1;j<kDimensionPhi;j++)
507 {
508 for(k=1;k<kDimensionOmega;k++)
509 {
510 point[i][j][k]=point1[i][j][k];
511 if(nev<20)
512 {
513 if(s==kSpot-1)
514 {
515 if(point1[i][j][k] != 0)
516 {
517 SpotPoints->Fill(i,j,k,(float) point1[i][j][k]);
518 //printf("Random number %f\n",random->Rndm(2));
519 //if(random->Rndm() < .2)
520 //{
521 SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]);
522 SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]);
523 SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]);
524 counter1++;
525 //}
526 //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]);
527 }
528 }
529 }
530 //if(point1[i][j][k] != 0)
531 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
532 }
533 }
534 }
535 }
536
537 //printf("Filled %d cells\n",counter1);
538
539 if(nev<2)
540 {
541 if(nev==0)
542 {
543 fc2->cd(1);
544 SpotPoints->Draw("colz");
545 fc2->cd(2);
546 SpotThetaPhi->Draw("colz");
547 fc2->cd(3);
548 SpotOmegaTheta->Draw("colz");
549 fc2->cd(4);
550 SpotOmegaPhi->Draw("colz");
551 }
552 else
553 {
554 //fc2->cd(1);
555 //SpotPoints->Draw("same");
556 //fc2->cd(2);
557 //SpotThetaPhi->Draw("same");
558 //fc2->cd(3);
559 //SpotOmegaTheta->Draw("same");
560 //fc2->cd(4);
561 //SpotOmegaPhi->Draw("same");
562 }
563 }
564
565
566 //Identification is equivalent to maximum determination
567 max=0;maxi=0;maxj=0;maxk=0;
568
569 printf(" Proceeding to identification");
570
571 for(i=0;i<kDimensionTheta;i++)
572 for(j=0;j<kDimensionPhi;j++)
573 for(k=0;k<kDimensionOmega;k++)
574 if(point[i][j][k]>max)
575 {
576 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
577 maxi=i;maxj=j;maxk=k;
578 max=point[i][j][k];
579 printf(".");
580 //printf("Max Omega %d, Max Theta %d, Max Phi %d (%d counts)\n",maxk,maxi,maxj,max);
581 }
582 printf("\n");
583
584 Float_t FinalOmega;
585 Float_t FinalTheta;
586 Float_t FinalPhi;
587
588
589 if(max>activ_tresh)
590 {
591 FinalOmega = maxk*(kMaxOmega-kMinOmega)/kDimensionOmega;
592 FinalTheta = maxi*kMaxTheta/kDimensionTheta;
593 FinalPhi = maxj*kMaxPhi/kDimensionPhi;
594
595 FinalOmega += kMinOmega;
596 }
597 else
598 {
599 FinalOmega = 0;
600 FinalTheta = 0;
601 FinalPhi = 0;
602
603 printf(" Ambiguous data!\n");
604 }
605
606
607
608 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
609 printf(" Indentified angles: cerenkov - %f, theta - %3.1f, phi - %3.1f (%f activation)\n", FinalOmega, FinalTheta*180/kPi, FinalPhi*180/kPi, max);
610 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
611
612 AngleAct->Fill(FinalOmega, (float) max);
613 Activation->Fill(max, (float) 1);
614
615 //fscanf(omegas,"%f",&realomega);
616 //fscanf(thetas,"%f",&realtheta);
617 //printf("Real Omega: %f",realomega);
618 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
619
620 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
621
622 /*for(j=0;j<np;j++)
623 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
624
625
626 //Start filling rec. hits
627
628 rechit[0] = FinalTheta;
629 rechit[1] = 90*kPi/180 + FinalPhi;
630 rechit[2] = FinalOmega;
631 rechit[3] = cx;
632 rechit[4] = cy;
633
634 //CreatePoints(FinalTheta, 270*kPi/180 + FinalPhi, FinalOmega, kHeight);
635
636 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
637 //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]);
638 //printf("Chamber:%d",nch);
639
640
641 }
642
643 else //if no cerenkovs
644
645 {
646
647 rechit[0] = 0;
648 rechit[1] = 0;
649 rechit[2] = 0;
650 rechit[3] = 0;
651 rechit[4] = 0;
652 originalOmega = 0;
653 originalTheta = 0;
654 originalPhi =0;
655 }
656
657
658 // fill rechits
659 pRICH->AddRecHit3D(nch-1,rechit,originalOmega, originalTheta, originalPhi);
660 printf("track %d, theta r:%f o:%f, phi r:%f o:%f, omega r:%f o:%f cx:%f cy%f\n\n\n", track, rechit[0], originalTheta, rechit[1], originalPhi, rechit[2], originalOmega, cx, cy);
661
662 }
663
664 if(type==1) //reco from clusters
665 {
666 pRICH->ResetRawClusters();
667 //Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
668 //gAlice->TreeR()->GetEvent(track);
669 //printf("Going to branch %d\n",track);
670 //gAlice->GetEvent(nev);
671 }
672
673
674 //printf("\n\n\n\n");
675 gAlice->TreeR()->Fill();
676 TClonesArray *fRec;
677 for (i=0;i<kNCH;i++) {
678 fRec=pRICH->RecHitsAddress3D(i);
679 int ndig=fRec->GetEntriesFast();
680 printf ("Chamber %d, rings %d\n",i+1,ndig);
681 }
682
683 fc4->cd(1);
684 AngleAct->Draw();
685 fc4->cd(2);
686 Activation->Draw();
687
688 pRICH->ResetRecHits3D();
689
690 free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
691 free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
692
693
694}
695
696Int_t ***AliRICHDetectV1::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
697// allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
698{
699 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
700 Int_t ***t;
701
702 int NR_END=1;
703
704 // allocate pointers to pointers to rows
705 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
706 if (!t) printf("allocation failure 1 in f3tensor()");
707 t += NR_END;
708 t -= nrl;
709
710 // allocate pointers to rows and set pointers to them
711 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
712 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
713 t[nrl] += NR_END;
714 t[nrl] -= ncl;
715
716 // allocate rows and set pointers to them
717 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
718 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
719 t[nrl][ncl] += NR_END;
720 t[nrl][ncl] -= ndl;
721
722 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
723 for(i=nrl+1;i<=nrh;i++) {
724 t[i]=t[i-1]+ncol;
725 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
726 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
727 }
728
729 // return pointer to array of pointers to rows
730 return t;
731}
732
733
734void AliRICHDetectV1::free_i3tensor(int ***t, long nrl, long nrh, long ncl, long nch,long ndl, long ndh)
735// free a Int_t f3tensor allocated by i3tensor()
736{
737 int NR_END=1;
738
739 free((char*) (t[nrl][ncl]+ndl-NR_END));
740 free((char*) (t[nrl]+ncl-NR_END));
741 free((char*) (t+nrl-NR_END));
742}