d48cca74 |
1 | #ifndef AliRICHParam_h |
2 | #define AliRICHParam_h |
3 | |
4 | #include <TObject.h> |
5 | #include "AliRICHConst.h" |
6 | |
7 | class AliRICHParam :public TObject |
8 | { |
9 | public: |
853634d3 |
10 | AliRICHParam(); |
11 | virtual ~AliRICHParam() {;} |
12 | |
543d5224 |
13 | inline Int_t Neighbours(Int_t iPadX,Int_t iPadY,Int_t aListX[4],Int_t aListY[4])const; //pad->neibours |
c2c6679b |
14 | inline void SigGenInit(Float_t x,Float_t y); |
15 | inline Bool_t SigGenCond(Float_t x,Float_t y); |
6ce834b4 |
16 | static Int_t Local2Pad(Float_t x,Float_t y,Int_t &padx,Int_t &pady); //(x,y)->(padx,pady), returns sector code |
17 | static Int_t Local2PadX(Float_t x,Float_t y) {Int_t padx,pady;Local2Pad(x,y,padx,pady);return padx;}//(x,y)->padx |
18 | static Int_t Local2PadY(Float_t x,Float_t y) {Int_t padx,pady;Local2Pad(x,y,padx,pady);return pady;}//(x,y)->pady |
19 | static void Pad2Local(Int_t padx,Int_t pady,Float_t &x,Float_t &y); //(padx,pady)->(x,y) |
20 | static Int_t LocalX2Wire(Float_t x) {return Int_t((x+PcSizeX()/2)/WirePitch())+1;} //x->wire number |
21 | static Float_t Wire2LocalX(Int_t iWireN) {return iWireN*WirePitch()-PcSizeX()/2;} //wire number->x |
543d5224 |
22 | |
c2c6679b |
23 | Float_t Gain(Float_t y); //Returns total charge induced by single photon |
24 | Float_t TotalCharge(Int_t iPID,Float_t eloss,Float_t y); //Returns total charge induced by particle lost eloss GeV |
6ce834b4 |
25 | static Float_t AssignChargeToPad(Float_t hx,Float_t hy, Int_t px, Int_t py); //Returns charge assigned to given pad for a given hit |
c60862bf |
26 | void FirstPad(Float_t x,Float_t y); |
27 | |
6ce834b4 |
28 | static Float_t AnodeCathodeGap() {return 0.2;} |
29 | |
543d5224 |
30 | static Int_t NpadsX() {return 144;} |
31 | static Int_t NpadsY() {return 160;} |
32 | static Int_t NpadsXsec() {return NpadsX()/3;} |
33 | static Int_t NpadsYsec() {return NpadsY()/2;} |
6ce834b4 |
34 | static Float_t DeadZone() {return 2.6;} |
35 | static Float_t PadSizeX() {return 0.84;} |
36 | static Float_t PadSizeY() {return 0.8;} |
37 | static Float_t SectorSizeX() {return NpadsX()*PadSizeX()/3;} |
38 | static Float_t SectorSizeY() {return NpadsY()*PadSizeY()/2;} |
39 | static Float_t PcSizeX() {return NpadsX()*PadSizeX()+2*DeadZone();} |
40 | static Float_t PcSizeY() {return NpadsY()*PadSizeY()+DeadZone();} |
41 | static Float_t WirePitch() {return PadSizeX()/2;} |
c2c6679b |
42 | |
3ba5db3e |
43 | void Size(Float_t x,Float_t y,Float_t z){fSizeX=x;fSizeY=y;fSizeZ=z;} |
853634d3 |
44 | void GeantSize(Float_t *pArr) const{pArr[0]=fSizeX/2;pArr[1]=fSizeY/2;pArr[2]=fSizeZ/2;} |
3ba5db3e |
45 | Float_t SizeX() const{return fSizeX;} |
46 | Float_t SizeY() const{return fSizeY;} |
47 | Float_t SizeZ() const{return fSizeZ;} |
48 | void Offset(Float_t offset) { fOffset=offset;} |
49 | Float_t Offset() const{return fOffset;} |
853634d3 |
50 | void Angles(Float_t xy,Float_t yz) { fAngleXY=xy;fAngleYZ=yz;} |
a277aaca |
51 | Float_t AngleYZ() const{return fAngleYZ*kD2r;} |
52 | Float_t AngleXY() const{return fAngleXY*kD2r;} |
3ba5db3e |
53 | void AngleRot(Float_t angle) { fAngleRot=angle;} |
a277aaca |
54 | Float_t AngleRot() const{return fAngleRot*kD2r;} |
3ba5db3e |
55 | void GapThickness(Float_t a) { fGapThickness=a;} |
56 | Float_t GapThickness() const{return fGapThickness;} |
57 | void ProximityGapThickness(Float_t a) { fProximityGapThickness=a;} |
58 | Float_t ProximityGapThickness() const{return fProximityGapThickness;} |
59 | void QuartzLength(Float_t a) { fQuartzLength=a;} |
60 | Float_t QuartzLength() const{return fQuartzLength;} |
61 | void QuartzWidth(Float_t a) { fQuartzWidth=a;} |
62 | Float_t QuartzWidth() const{return fQuartzWidth;} |
63 | void QuartzThickness(Float_t a) { fQuartzThickness=a;} |
64 | Float_t QuartzThickness() const{return fQuartzThickness;} |
65 | void OuterFreonLength(Float_t a) { fOuterFreonLength=a;} |
66 | Float_t OuterFreonLength() const{return fOuterFreonLength;} |
67 | void OuterFreonWidth(Float_t a) { fOuterFreonWidth=a;} |
68 | Float_t OuterFreonWidth() const{return fOuterFreonWidth;} |
69 | void InnerFreonLength(Float_t a) { fInnerFreonLength=a;} |
70 | Float_t InnerFreonLength() const{return fInnerFreonLength;} |
71 | void InnerFreonWidth(Float_t a) { fInnerFreonWidth=a;} |
72 | Float_t InnerFreonWidth() const{return fInnerFreonWidth;} |
73 | void FreonThickness(Float_t a) { fFreonThickness=a;} |
74 | Float_t FreonThickness() const{return fFreonThickness;} |
75 | void RadiatorToPads(Float_t a) { fRadiatorToPads=a;} |
76 | Float_t RadiatorToPads() const{return fRadiatorToPads;} |
77 | |
78 | void SigmaIntegration(Float_t a) { fSigmaIntegration=a;} |
79 | Float_t SigmaIntegration() const{return fSigmaIntegration;} |
80 | void ChargeSpreadX(Float_t a) { fChargeSpreadX=a;} |
81 | Float_t ChargeSpreadX() const{return fChargeSpreadX;} |
c60862bf |
82 | void ChargeSpreadY(Float_t a) { fChargeSpreadY=a;} |
83 | Float_t ChargeSpreadY() const{return fChargeSpreadY;} |
84 | Float_t AreaX() const{return fSigmaIntegration*fChargeSpreadX;} |
85 | Float_t AreaY() const{return fSigmaIntegration*fChargeSpreadY;} |
3ba5db3e |
86 | void ChargeSlope(Float_t a) { fChargeSlope=a;} |
87 | Float_t ChargeSlope() {return fChargeSlope;} |
c60862bf |
88 | void MaxAdc(Int_t a) { fMaxAdc=a;} |
89 | Int_t MaxAdc() const{return fMaxAdc;} |
3ba5db3e |
90 | void AlphaFeedback(Float_t a) { fAlphaFeedback=a;} |
91 | Float_t AlphaFeedback() const{return fAlphaFeedback;} |
92 | void EIonisation(Float_t a) { fEIonisation=a;} |
93 | Float_t EIonisation() const{return fEIonisation;} |
6ce834b4 |
94 | static Float_t SqrtKx3() {return 0.77459667;} |
95 | static Float_t Kx2() {return 0.962;} |
96 | static Float_t Kx4() {return 0.379;} |
97 | static Float_t SqrtKy3() {return 0.77459667;} |
98 | static Float_t Ky2() {return 0.962;} |
99 | static Float_t Ky4() {return 0.379;} |
100 | |
c2c6679b |
101 | void WireSag(Int_t a) { fWireSag=a;} |
102 | void Voltage(Int_t a) { fVoltage=a;} |
103 | Float_t Voltage() const{return fVoltage;} |
d48cca74 |
104 | protected: |
6ce834b4 |
105 | static Int_t Local2Sector(Float_t &x,Float_t &y); //(x,y)->sector |
106 | static Int_t Pad2Sector(Int_t &padx,Int_t &pady); //(padx,pady)->sector |
c2c6679b |
107 | |
108 | Int_t fCurrentPadX,fCurrentPadY; //??? |
109 | Int_t fCurrentWire; //??? |
110 | |
111 | Float_t fSizeX; Float_t fSizeY; Float_t fSizeZ; //chamber outer size, cm |
112 | Float_t fAngleRot; //azimuthal rotation XY plane, deg |
113 | Float_t fAngleYZ; //angle between chambers YZ plane, deg |
114 | Float_t fAngleXY; //angle between chambers XY plane, deg |
115 | Float_t fOffset; //chambers offset from IP, cm |
116 | Float_t fGapThickness; //gap thickness, cm |
117 | Float_t fProximityGapThickness; //proximity gap thickness, cm |
118 | Float_t fQuartzLength; Float_t fQuartzWidth; Float_t fQuartzThickness; //quartz window size, cm |
119 | Float_t fOuterFreonLength; Float_t fOuterFreonWidth; //freon box outer size, cm |
120 | Float_t fInnerFreonLength; Float_t fInnerFreonWidth; //freon box inner size, cm |
121 | Float_t fFreonThickness; //freon thickness |
122 | Float_t fRadiatorToPads; //distance from radiator to pads, cm |
d48cca74 |
123 | |
d48cca74 |
124 | Float_t fChargeSlope; //Slope of the charge distribution |
125 | Float_t fChargeSpreadX; //Width of the charge distribution in x |
126 | Float_t fChargeSpreadY; //Width of the charge distribution in y |
127 | Float_t fSigmaIntegration; //Number of sigma's used for charge distribution |
128 | Float_t fAlphaFeedback; //Feedback photons coefficient |
129 | Float_t fEIonisation; //Mean ionisation energy |
c60862bf |
130 | Int_t fMaxAdc; //Maximum ADC channel |
d48cca74 |
131 | Int_t fWireSag; //Flag to turn on/off (0/1) wire sag |
132 | Int_t fVoltage; //Working voltage (2000, 2050, 2100, 2150) |
133 | |
6ce834b4 |
134 | ClassDef(AliRICHParam,2) //RICH main parameters |
d48cca74 |
135 | }; |
c2c6679b |
136 | //__________________________________________________________________________________________________ |
c2c6679b |
137 | void AliRICHParam::SigGenInit(Float_t x,Float_t y) |
138 | {//Initialises pad and wire position during stepping |
543d5224 |
139 | Local2Pad(x,y,fCurrentPadX,fCurrentPadY); |
6ce834b4 |
140 | fCurrentWire= (x>0) ? Int_t(x/WirePitch())+1 : Int_t(x/WirePitch())-1 ; |
c2c6679b |
141 | } |
142 | //__________________________________________________________________________________________________ |
143 | Bool_t AliRICHParam::SigGenCond(Float_t x,Float_t y) |
144 | {//Signal will be generated if particle crosses pad boundary or boundary between two wires. |
145 | Int_t curPadX,curPadY; |
543d5224 |
146 | Local2Pad(x,y,curPadX,curPadY); |
6ce834b4 |
147 | Int_t currentWire=(x>0) ? Int_t(x/WirePitch())+1 : Int_t(x/WirePitch())-1; |
c2c6679b |
148 | if((curPadX != fCurrentPadX) || (curPadY != fCurrentPadY) || (currentWire!=fCurrentWire)) |
149 | return kTRUE; |
150 | else |
151 | return kFALSE; |
c60862bf |
152 | }//Bool_t AliRICHParam::SigGenCond(Float_t x,Float_t y) |
153 | //__________________________________________________________________________________________________ |
543d5224 |
154 | Int_t AliRICHParam::Neighbours(Int_t iPadX,Int_t iPadY,Int_t listX[4],Int_t listY[4])const |
c60862bf |
155 | { |
543d5224 |
156 | listX[0]=iPadX; listY[0]=iPadY-1; |
157 | listX[1]=iPadX+1; listY[1]=iPadY; |
158 | listX[2]=iPadX; listY[2]=iPadY+1; |
159 | listX[3]=iPadX-1; listY[3]=iPadY; |
160 | return 4; |
161 | } |
c2c6679b |
162 | //__________________________________________________________________________________________________ |
d48cca74 |
163 | #endif //AliRICHParam_h |