Setting splitlevel to 0 by default in treeH, TreeR and TreeT branches. TreeD is still...
[u/mrichter/AliRoot.git] / RICH / AliRICHParam.h
CommitLineData
d48cca74 1#ifndef AliRICHParam_h
2#define AliRICHParam_h
3
4#include <TObject.h>
5#include "AliRICHConst.h"
6
7class AliRICHParam :public TObject
8{
9public:
853634d3 10 AliRICHParam();
11 virtual ~AliRICHParam() {;}
12
543d5224 13 inline Int_t Neighbours(Int_t iPadX,Int_t iPadY,Int_t aListX[4],Int_t aListY[4])const; //pad->neibours
c2c6679b 14 inline void SigGenInit(Float_t x,Float_t y);
15 inline Bool_t SigGenCond(Float_t x,Float_t y);
543d5224 16 Int_t Local2Pad(Float_t x,Float_t y,Int_t &padx,Int_t &pady)const; //(x,y)->(padx,pady), returns sector code
17 Int_t Local2PadX(Float_t x,Float_t y) const {Int_t padx,pady;Local2Pad(x,y,padx,pady);return padx;}//(x,y)->padx
18 Int_t Local2PadY(Float_t x,Float_t y) const {Int_t padx,pady;Local2Pad(x,y,padx,pady);return pady;}//(x,y)->pady
19 void Pad2Local(Int_t padx,Int_t pady,Float_t &x,Float_t &y); //(padx,pady)->(x,y)
20 Int_t LocalX2Wire(Float_t x) const {return Int_t((x+PcSizeX()/2)/fWirePitch)+1;} //x->wire number
21 Float_t Wire2LocalX(Int_t iWireN) const {return iWireN*fWirePitch-PcSizeX()/2;} //wire number->x
22
c2c6679b 23 Float_t Gain(Float_t y); //Returns total charge induced by single photon
24 Float_t TotalCharge(Int_t iPID,Float_t eloss,Float_t y); //Returns total charge induced by particle lost eloss GeV
34988b46 25 Float_t PadCharge(Int_t /* iPadX */,Int_t /* iPadY */) {return 0;} //Returns charge for a given pad
c60862bf 26 void FirstPad(Float_t x,Float_t y);
27
543d5224 28 static Int_t NpadsX() {return 144;}
29 static Int_t NpadsY() {return 160;}
30 static Int_t NpadsXsec() {return NpadsX()/3;}
31 static Int_t NpadsYsec() {return NpadsY()/2;}
32 void DeadZone(Float_t a) { fDeadZone=a;}
3ba5db3e 33 Float_t DeadZone() const{return fDeadZone;}
543d5224 34 void PadSize(Float_t x,Float_t y) { fPadSizeX=x;fPadSizeY=y;}
c2c6679b 35 Float_t PadSizeX() const{return fPadSizeX;}
36 Float_t PadSizeY() const{return fPadSizeY;}
543d5224 37 Float_t SectorSizeX() const{return NpadsX()*PadSizeX()/3;}
38 Float_t SectorSizeY() const{return NpadsY()*PadSizeY()/2;}
39 Float_t PcSizeX() const{return NpadsX()*PadSizeX()+2*DeadZone();}
40 Float_t PcSizeY() const{return NpadsY()*PadSizeY()+DeadZone();}
41 Float_t WirePitch() const{return PadSizeX()/2;}
c2c6679b 42
3ba5db3e 43 void Size(Float_t x,Float_t y,Float_t z){fSizeX=x;fSizeY=y;fSizeZ=z;}
853634d3 44 void GeantSize(Float_t *pArr) const{pArr[0]=fSizeX/2;pArr[1]=fSizeY/2;pArr[2]=fSizeZ/2;}
3ba5db3e 45 Float_t SizeX() const{return fSizeX;}
46 Float_t SizeY() const{return fSizeY;}
47 Float_t SizeZ() const{return fSizeZ;}
48 void Offset(Float_t offset) { fOffset=offset;}
49 Float_t Offset() const{return fOffset;}
853634d3 50 void Angles(Float_t xy,Float_t yz) { fAngleXY=xy;fAngleYZ=yz;}
a277aaca 51 Float_t AngleYZ() const{return fAngleYZ*kD2r;}
52 Float_t AngleXY() const{return fAngleXY*kD2r;}
3ba5db3e 53 void AngleRot(Float_t angle) { fAngleRot=angle;}
a277aaca 54 Float_t AngleRot() const{return fAngleRot*kD2r;}
3ba5db3e 55 void GapThickness(Float_t a) { fGapThickness=a;}
56 Float_t GapThickness() const{return fGapThickness;}
57 void ProximityGapThickness(Float_t a) { fProximityGapThickness=a;}
58 Float_t ProximityGapThickness() const{return fProximityGapThickness;}
59 void QuartzLength(Float_t a) { fQuartzLength=a;}
60 Float_t QuartzLength() const{return fQuartzLength;}
61 void QuartzWidth(Float_t a) { fQuartzWidth=a;}
62 Float_t QuartzWidth() const{return fQuartzWidth;}
63 void QuartzThickness(Float_t a) { fQuartzThickness=a;}
64 Float_t QuartzThickness() const{return fQuartzThickness;}
65 void OuterFreonLength(Float_t a) { fOuterFreonLength=a;}
66 Float_t OuterFreonLength() const{return fOuterFreonLength;}
67 void OuterFreonWidth(Float_t a) { fOuterFreonWidth=a;}
68 Float_t OuterFreonWidth() const{return fOuterFreonWidth;}
69 void InnerFreonLength(Float_t a) { fInnerFreonLength=a;}
70 Float_t InnerFreonLength() const{return fInnerFreonLength;}
71 void InnerFreonWidth(Float_t a) { fInnerFreonWidth=a;}
72 Float_t InnerFreonWidth() const{return fInnerFreonWidth;}
73 void FreonThickness(Float_t a) { fFreonThickness=a;}
74 Float_t FreonThickness() const{return fFreonThickness;}
75 void RadiatorToPads(Float_t a) { fRadiatorToPads=a;}
76 Float_t RadiatorToPads() const{return fRadiatorToPads;}
77
78 void SigmaIntegration(Float_t a) { fSigmaIntegration=a;}
79 Float_t SigmaIntegration() const{return fSigmaIntegration;}
80 void ChargeSpreadX(Float_t a) { fChargeSpreadX=a;}
81 Float_t ChargeSpreadX() const{return fChargeSpreadX;}
c60862bf 82 void ChargeSpreadY(Float_t a) { fChargeSpreadY=a;}
83 Float_t ChargeSpreadY() const{return fChargeSpreadY;}
84 Float_t AreaX() const{return fSigmaIntegration*fChargeSpreadX;}
85 Float_t AreaY() const{return fSigmaIntegration*fChargeSpreadY;}
3ba5db3e 86 void ChargeSlope(Float_t a) { fChargeSlope=a;}
87 Float_t ChargeSlope() {return fChargeSlope;}
c60862bf 88 void MaxAdc(Int_t a) { fMaxAdc=a;}
89 Int_t MaxAdc() const{return fMaxAdc;}
c2c6679b 90 void Pitch(Float_t a) { fPitch=a;}
3ba5db3e 91 Float_t Pitch() const{return fPitch;}
92 void AlphaFeedback(Float_t a) { fAlphaFeedback=a;}
93 Float_t AlphaFeedback() const{return fAlphaFeedback;}
94 void EIonisation(Float_t a) { fEIonisation=a;}
95 Float_t EIonisation() const{return fEIonisation;}
96 void SqrtKx3(Float_t a) { fSqrtKx3=a;};
c2c6679b 97 void Kx2(Float_t a) { fKx2=a;}
98 void Kx4(Float_t a) { fKx4=a;}
99 void SqrtKy3(Float_t a) { fSqrtKy3=a;}
100 void Ky2(Float_t a) { fKy2=a;}
101 void Ky4(Float_t a) { fKy4=a;}
102 void WireSag(Int_t a) { fWireSag=a;}
103 void Voltage(Int_t a) { fVoltage=a;}
104 Float_t Voltage() const{return fVoltage;}
d48cca74 105protected:
543d5224 106 Int_t Local2Sector(Float_t &x,Float_t &y)const; //(x,y)->sector
107 Int_t Pad2Sector(Int_t &padx,Int_t &pady)const; //(padx,pady)->sector
108
109 Float_t fDeadZone; //space between PC sectors, cm
110 Float_t fPadSizeX,fPadSizeY; //pad size, cm
111 Float_t fWirePitch; //distance between wires along x
c2c6679b 112
113 Int_t fCurrentPadX,fCurrentPadY; //???
114 Int_t fCurrentWire; //???
115
116 Float_t fSizeX; Float_t fSizeY; Float_t fSizeZ; //chamber outer size, cm
117 Float_t fAngleRot; //azimuthal rotation XY plane, deg
118 Float_t fAngleYZ; //angle between chambers YZ plane, deg
119 Float_t fAngleXY; //angle between chambers XY plane, deg
120 Float_t fOffset; //chambers offset from IP, cm
121 Float_t fGapThickness; //gap thickness, cm
122 Float_t fProximityGapThickness; //proximity gap thickness, cm
123 Float_t fQuartzLength; Float_t fQuartzWidth; Float_t fQuartzThickness; //quartz window size, cm
124 Float_t fOuterFreonLength; Float_t fOuterFreonWidth; //freon box outer size, cm
125 Float_t fInnerFreonLength; Float_t fInnerFreonWidth; //freon box inner size, cm
126 Float_t fFreonThickness; //freon thickness
127 Float_t fRadiatorToPads; //distance from radiator to pads, cm
d48cca74 128
d48cca74 129 Float_t fChargeSlope; //Slope of the charge distribution
130 Float_t fChargeSpreadX; //Width of the charge distribution in x
131 Float_t fChargeSpreadY; //Width of the charge distribution in y
132 Float_t fSigmaIntegration; //Number of sigma's used for charge distribution
133 Float_t fAlphaFeedback; //Feedback photons coefficient
134 Float_t fEIonisation; //Mean ionisation energy
c60862bf 135 Int_t fMaxAdc; //Maximum ADC channel
d48cca74 136 Float_t fSqrtKx3; //Mathieson parameters for x
137 Float_t fKx2; //Mathieson parameters for x
138 Float_t fKx4; //Mathieson parameters for x
139 Float_t fSqrtKy3; //Mathieson parameters for y
140 Float_t fKy2; //Mathieson parameters for y
141 Float_t fKy4; //Mathieson parameters for y
142 Float_t fPitch; //Anode-cathode pitch
143 Int_t fWireSag; //Flag to turn on/off (0/1) wire sag
144 Int_t fVoltage; //Working voltage (2000, 2050, 2100, 2150)
145
146 ClassDef(AliRICHParam,1) //RICH main parameters
147};
c2c6679b 148//__________________________________________________________________________________________________
c2c6679b 149void AliRICHParam::SigGenInit(Float_t x,Float_t y)
150{//Initialises pad and wire position during stepping
543d5224 151 Local2Pad(x,y,fCurrentPadX,fCurrentPadY);
c2c6679b 152 fCurrentWire= (x>0) ? Int_t(x/fWirePitch)+1 : Int_t(x/fWirePitch)-1 ;
153}
154//__________________________________________________________________________________________________
155Bool_t AliRICHParam::SigGenCond(Float_t x,Float_t y)
156{//Signal will be generated if particle crosses pad boundary or boundary between two wires.
157 Int_t curPadX,curPadY;
543d5224 158 Local2Pad(x,y,curPadX,curPadY);
c2c6679b 159 Int_t currentWire=(x>0) ? Int_t(x/fWirePitch)+1 : Int_t(x/fWirePitch)-1;
160 if((curPadX != fCurrentPadX) || (curPadY != fCurrentPadY) || (currentWire!=fCurrentWire))
161 return kTRUE;
162 else
163 return kFALSE;
c60862bf 164}//Bool_t AliRICHParam::SigGenCond(Float_t x,Float_t y)
165//__________________________________________________________________________________________________
543d5224 166Int_t AliRICHParam::Neighbours(Int_t iPadX,Int_t iPadY,Int_t listX[4],Int_t listY[4])const
c60862bf 167{
543d5224 168 listX[0]=iPadX; listY[0]=iPadY-1;
169 listX[1]=iPadX+1; listY[1]=iPadY;
170 listX[2]=iPadX; listY[2]=iPadY+1;
171 listX[3]=iPadX-1; listY[3]=iPadY;
172 return 4;
173}
c2c6679b 174//__________________________________________________________________________________________________
d48cca74 175#endif //AliRICHParam_h