]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/AOD/AliAODHeader.h
end-of-line normalization
[u/mrichter/AliRoot.git] / STEER / AOD / AliAODHeader.h
CommitLineData
77f43bb7 1#ifndef ALIAODHEADER_H
2#define ALIAODHEADER_H
df9db588 3/* Copyright(c) 1998-2007, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
8//-------------------------------------------------------------------------
9ae2e5e6 9// AOD event header class
df9db588 10// Author: Markus Oldenburg, CERN
11//-------------------------------------------------------------------------
12
c7d82ff7 13#include <TVector2.h>
14
9ae2e5e6 15#include "AliVHeader.h"
df9db588 16#include "AliAODVertex.h"
a5f7aba4 17#include <TString.h>
4ccebdba 18#include <TBits.h>
f1c1d7c6 19#include "AliCentrality.h"
ce7adfe9 20#include "AliEventplane.h"
df9db588 21
1aa76f71 22class TGeoHMatrix;
27346f69 23class TString;
1aa76f71 24
f1c1d7c6 25
9ae2e5e6 26class AliAODHeader : public AliVHeader {
df9db588 27
28 public :
31fd97b2 29 AliAODHeader();
df9db588 30
abfce367 31 AliAODHeader(Int_t nRun, UShort_t nBunchX, UInt_t nOrbit, UInt_t nPeriod, const Char_t *title="");
31fd97b2 32 AliAODHeader(Int_t nRun,
33 UShort_t nBunchX,
34 UInt_t nOrbit,
89cf15db 35 UInt_t nPeriod,
31fd97b2 36 Int_t refMult,
37 Int_t refMultPos,
38 Int_t refMultNeg,
e9f4e33d 39 Int_t refMultComb05,
40 Int_t refMultComb08,
31fd97b2 41 Double_t magField,
6b6f8d32 42 Double_t muonMagFieldScale,
43 Double_t cent,
ce7adfe9 44 Double_t eventplane,
6b6f8d32 45 Double_t n1Energy,
46 Double_t p1Energy,
47 Double_t n2Energy,
48 Double_t p2Energy,
a85132e7 49 Double_t *emEnergy,
31fd97b2 50 ULong64_t fTriggerMask,
51 UChar_t fTriggerCluster,
52 UInt_t fEventType,
5e14e698 53 const Float_t *vzeroEqFactors,
fa8b0e56 54 const Char_t *title="",
55 Int_t nMuons=0,
56 Int_t nDimuons=0);
31fd97b2 57
df9db588 58 virtual ~AliAODHeader();
59 AliAODHeader(const AliAODHeader& evt);
60 AliAODHeader& operator=(const AliAODHeader& evt);
a5f7aba4 61
62 Int_t GetRunNumber() const { return fRunNumber;}
63 Int_t GetEventNumberESDFile() const { return fEventNumberESDFile;}
ef7661fd 64 Int_t GetNumberOfESDTracks() const { return fNumberESDTracks;}
31fd97b2 65 UShort_t GetBunchCrossNumber() const { return fBunchCrossNumber; }
66 UInt_t GetOrbitNumber() const { return fOrbitNumber; }
89cf15db 67 UInt_t GetPeriodNumber() const { return fPeriodNumber; }
df9db588 68 ULong64_t GetTriggerMask() const { return fTriggerMask; }
69 UChar_t GetTriggerCluster() const { return fTriggerCluster; }
27346f69 70 TString GetFiredTriggerClasses()const { return fFiredTriggers;}
df9db588 71 UInt_t GetEventType() const { return fEventType; }
72 Double_t GetMagneticField() const { return fMagneticField; }
6b6f8d32 73 Double_t GetMuonMagFieldScale() const { return fMuonMagFieldScale; }
74
df9db588 75 Double_t GetCentrality() const { return fCentrality; }
ce7adfe9 76 Double_t GetEventplane() const { return fEventplane; }
a52246de 77 Double_t GetEventplaneMag() const { return fEventplaneMag; }
5a3b31b5 78 Double_t GetEventplaneQx() const { return fEventplaneQx; }
79 Double_t GetEventplaneQy() const { return fEventplaneQy; }
6b6f8d32 80 Double_t GetZDCN1Energy() const { return fZDCN1Energy; }
81 Double_t GetZDCP1Energy() const { return fZDCP1Energy; }
82 Double_t GetZDCN2Energy() const { return fZDCN2Energy; }
83 Double_t GetZDCP2Energy() const { return fZDCP2Energy; }
a85132e7 84 Double_t GetZDCEMEnergy(Int_t i) const { return fZDCEMEnergy[i]; }
df9db588 85 Int_t GetRefMultiplicity() const { return fRefMult; }
86 Int_t GetRefMultiplicityPos() const { return fRefMultPos; }
87 Int_t GetRefMultiplicityNeg() const { return fRefMultNeg; }
fa8b0e56 88 Int_t GetNumberOfMuons() const { return fNMuons; }
89 Int_t GetNumberOfDimuons() const { return fNDimuons; }
e9f4e33d 90 Int_t GetRefMultiplicityComb05() const { return fRefMultComb05; }
91 Int_t GetRefMultiplicityComb08() const { return fRefMultComb08; }
ff254193 92
93 Double_t GetQTheta(UInt_t i) const;
94 UInt_t GetNQTheta() const { return (UInt_t)fNQTheta; }
613fc341 95
96 Double_t GetDiamondX() const {return fDiamondXY[0];}
97 Double_t GetDiamondY() const {return fDiamondXY[1];}
49fc2e2c 98 Double_t GetDiamondZ() const {return fDiamondZ;}
613fc341 99 Double_t GetSigma2DiamondX() const {return fDiamondCovXY[0];}
100 Double_t GetSigma2DiamondY() const {return fDiamondCovXY[2];}
49fc2e2c 101 Double_t GetSigma2DiamondZ() const {return fDiamondSig2Z;}
613fc341 102 void GetDiamondCovXY(Float_t cov[3]) const {
103 for(Int_t i=0;i<3;i++) cov[i]=fDiamondCovXY[i]; return;
104 }
a5f7aba4 105 UInt_t GetL0TriggerInputs() const {return fL0TriggerInputs;}
106 UInt_t GetL1TriggerInputs() const {return fL1TriggerInputs;}
107 UShort_t GetL2TriggerInputs() const {return fL2TriggerInputs;}
f1c1d7c6 108 AliCentrality* GetCentralityP() const { return fCentralityP; }
ce7adfe9 109 AliEventplane* GetEventplaneP() const { return fEventplaneP; }
a5f7aba4 110
6b6f8d32 111
df9db588 112 void SetRunNumber(Int_t nRun) { fRunNumber = nRun; }
a5f7aba4 113 void SetEventNumberESDFile(Int_t n) { fEventNumberESDFile=n; }
ef7661fd 114 void SetNumberOfESDTracks(Int_t n) { fNumberESDTracks=n; }
31fd97b2 115 void SetBunchCrossNumber(UShort_t nBx) { fBunchCrossNumber = nBx; }
9ae2e5e6 116 void SetOrbitNumber(UInt_t nOr) { fOrbitNumber = nOr; }
117 void SetPeriodNumber(UInt_t nPer) { fPeriodNumber = nPer; }
df9db588 118 void SetTriggerMask(ULong64_t trigMsk) { fTriggerMask = trigMsk; }
27346f69 119 void SetFiredTriggerClasses(TString trig) { fFiredTriggers = trig;}
df9db588 120 void SetTriggerCluster(UChar_t trigClus) { fTriggerCluster = trigClus; }
121 void SetEventType(UInt_t evttype) { fEventType = evttype; }
122 void SetMagneticField(Double_t magFld) { fMagneticField = magFld; }
6b6f8d32 123 void SetMuonMagFieldScale(Double_t magFldScl){ fMuonMagFieldScale = magFldScl; }
77f43bb7 124 void SetCentrality(const AliCentrality* cent);
ce7adfe9 125 void SetEventplane(AliEventplane* eventplane);
6b6f8d32 126 void SetZDCN1Energy(Double_t n1Energy) { fZDCN1Energy = n1Energy; }
127 void SetZDCP1Energy(Double_t p1Energy) { fZDCP1Energy = p1Energy; }
128 void SetZDCN2Energy(Double_t n2Energy) { fZDCN2Energy = n2Energy; }
129 void SetZDCP2Energy(Double_t p2Energy) { fZDCP2Energy = p2Energy; }
a85132e7 130 void SetZDCEMEnergy(Double_t emEnergy1, Double_t emEnergy2)
131 { fZDCEMEnergy[0] = emEnergy1; fZDCEMEnergy[1] = emEnergy2;}
df9db588 132 void SetRefMultiplicity(Int_t refMult) { fRefMult = refMult; }
133 void SetRefMultiplicityPos(Int_t refMultPos) { fRefMultPos = refMultPos; }
134 void SetRefMultiplicityNeg(Int_t refMultNeg) { fRefMultNeg = refMultNeg; }
fa8b0e56 135 void SetNumberOfMuons(Int_t nMuons) { fNMuons = nMuons; }
136 void SetNumberOfDimuons(Int_t nDimuons) { fNDimuons = nDimuons; }
e9f4e33d 137 void SetRefMultiplicityComb05(Int_t refMult) { fRefMultComb05 = refMult; }
138 void SetRefMultiplicityComb08(Int_t refMult) { fRefMultComb08 = refMult; }
139
ff254193 140 void SetQTheta(Double_t *QTheta, UInt_t size = 5);
141 void RemoveQTheta();
142
c7d82ff7 143 void ResetEventplanePointer();
144
613fc341 145 void SetDiamond(Float_t xy[2],Float_t cov[3]) {
11becff8 146 for(Int_t i=0;i<3;i++) {fDiamondCovXY[i] = cov[i];}
147 for(Int_t i=0;i<2;i++) {fDiamondXY[i] = xy[i] ;}
613fc341 148 }
49fc2e2c 149 void SetDiamondZ(Float_t z, Float_t sig2z){
150 fDiamondZ=z; fDiamondSig2Z=sig2z;
151 }
a5f7aba4 152 void SetL0TriggerInputs(UInt_t n) {fL0TriggerInputs=n;}
153 void SetL1TriggerInputs(UInt_t n) {fL1TriggerInputs=n;}
154 void SetL2TriggerInputs(UShort_t n) {fL2TriggerInputs=n;}
155 void SetESDFileName(TString name) {fESDFileName = name;}
df9db588 156 void Print(Option_t* option = "") const;
1aa76f71 157
158 void SetPHOSMatrix(TGeoHMatrix*matrix, Int_t i) {
159 if ((i >= 0) && (i < kNPHOSMatrix)) fPHOSMatrix[i] = matrix;
160 }
161 const TGeoHMatrix* GetPHOSMatrix(Int_t i) const {
162 return ((i >= 0) && (i < kNPHOSMatrix)) ? fPHOSMatrix[i] : NULL;
163 }
6b6f8d32 164
1aa76f71 165 void SetEMCALMatrix(TGeoHMatrix*matrix, Int_t i) {
166 if ((i >= 0) && (i < kNEMCALMatrix)) fEMCALMatrix[i] = matrix;
167 }
168 const TGeoHMatrix* GetEMCALMatrix(Int_t i) const {
169 return ((i >= 0) && (i < kNEMCALMatrix)) ? fEMCALMatrix[i] : NULL;
170 }
171
0c6c629b 172 UInt_t GetOfflineTrigger() { return fOfflineTrigger; }
f7ce7a37 173 void SetOfflineTrigger(UInt_t trigger) { fOfflineTrigger = trigger; }
174 UInt_t GetNumberOfITSClusters(Int_t ilay) const {return fITSClusters[ilay];}
175 void SetITSClusters(Int_t ilay, UInt_t nclus);
176 Int_t GetTPConlyRefMultiplicity() const {return fTPConlyRefMult;}
177 void SetTPConlyRefMultiplicity(Int_t mult) {fTPConlyRefMult = mult;}
178
5e6a3170 179 TString GetESDFileName() const {return fESDFileName;}
99dbf027 180 void Clear(Option_t* = "");
1aa76f71 181 enum {kNPHOSMatrix = 5};
182 enum {kNEMCALMatrix = 12};
949be341 183 enum {kT0SpreadSize = 4};
5e14e698 184
185 void SetVZEROEqFactors(const Float_t* factors) {
186 if (factors)
187 for (Int_t i = 0; i < 64; ++i) fVZEROEqFactors[i] = factors[i];}
188 const Float_t* GetVZEROEqFactors() const {return fVZEROEqFactors;}
189 Float_t GetVZEROEqFactors(Int_t i) const {return fVZEROEqFactors[i];}
949be341 190 Float_t GetT0spread(Int_t i) const {
191 return ((i >= 0) && (i<kT0SpreadSize)) ? fT0spread[i] : 0;}
192 void SetT0spread(Int_t i, Float_t t) {
193 if ((i>=0)&&(i<kT0SpreadSize)) fT0spread[i]=t;}
194
299994c6 195 Int_t FindIRIntInteractionsBXMap(Int_t difference) const;
4ccebdba 196 void SetIRInt2InteractionMap(TBits bits) { fIRInt2InteractionsMap = bits; }
197 void SetIRInt1InteractionMap(TBits bits) { fIRInt1InteractionsMap = bits; }
299994c6 198 TBits GetIRInt2InteractionMap() const { return fIRInt2InteractionsMap; }
199 TBits GetIRInt1InteractionMap() const { return fIRInt1InteractionsMap; }
200 Int_t GetIRInt2ClosestInteractionMap() const;
201 Int_t GetIRInt1ClosestInteractionMap(Int_t gap = 3) const;
202 Int_t GetIRInt2LastInteractionMap() const;
6b6f8d32 203
df9db588 204 private :
6b6f8d32 205
206 Double32_t fMagneticField; // Solenoid Magnetic Field in kG
207 Double32_t fMuonMagFieldScale; // magnetic field scale of muon arm magnet
208 Double32_t fCentrality; // Centrality
ce7adfe9 209 Double32_t fEventplane; // Event plane angle
c7d82ff7 210 Double32_t fEventplaneMag; // Length of Q vector from TPC event plance
5a3b31b5 211 Double32_t fEventplaneQx; // Q vector component x from TPC event plance
212 Double32_t fEventplaneQy; // Q vector component y from TPC event plance
6b6f8d32 213 Double32_t fZDCN1Energy; // reconstructed energy in the neutron1 ZDC
214 Double32_t fZDCP1Energy; // reconstructed energy in the proton1 ZDC
215 Double32_t fZDCN2Energy; // reconstructed energy in the neutron2 ZDC
216 Double32_t fZDCP2Energy; // reconstructed energy in the proton2 ZDC
a85132e7 217 Double32_t fZDCEMEnergy[2]; // reconstructed energy in the electromagnetic ZDCs
ff254193 218 Int_t fNQTheta; // number of QTheta elements
219 Double32_t *fQTheta; // [fNQTheta] values to store Lee-Yang-Zeros
6b6f8d32 220 ULong64_t fTriggerMask; // Trigger Type (mask)
27346f69 221 TString fFiredTriggers; // String with fired triggers
6b6f8d32 222 Int_t fRunNumber; // Run Number
223 Int_t fRefMult; // reference multiplicity
224 Int_t fRefMultPos; // reference multiplicity of positive particles
225 Int_t fRefMultNeg; // reference multiplicity of negative particles
fa8b0e56 226 Int_t fNMuons; // number of muons in the forward spectrometer
227 Int_t fNDimuons; // number of dimuons in the forward spectrometer
9333290e 228 UInt_t fEventType; // Type of Event
229 UInt_t fOrbitNumber; // Orbit Number
230 UInt_t fPeriodNumber; // Period Number
231 UShort_t fBunchCrossNumber; // BunchCrossingNumber
e9f4e33d 232 Short_t fRefMultComb05; // combined reference multiplicity (tracklets + ITSTPC) in |eta|<0.5
233 Short_t fRefMultComb08; // combined reference multiplicity (tracklets + ITSTPC) in |eta|<0.8
6b6f8d32 234 UChar_t fTriggerCluster; // Trigger cluster (mask)
613fc341 235 Double32_t fDiamondXY[2]; // Interaction diamond (x,y) in RUN
236 Double32_t fDiamondCovXY[3]; // Interaction diamond covariance (x,y) in RUN
49fc2e2c 237 Double32_t fDiamondZ; // Interaction diamond (z) in RUN
238 Double32_t fDiamondSig2Z; // Interaction diamond sigma^2 (z) in RUN
1aa76f71 239 TGeoHMatrix* fPHOSMatrix[kNPHOSMatrix]; //PHOS module position and orientation matrices
240 TGeoHMatrix* fEMCALMatrix[kNEMCALMatrix]; //EMCAL supermodule position and orientation matrices
0c6c629b 241 UInt_t fOfflineTrigger; // fired offline triggers for this event
a5f7aba4 242 TString fESDFileName; // ESD file name to which this event belongs
243 Int_t fEventNumberESDFile; // Event number in ESD file
ef7661fd 244 Int_t fNumberESDTracks; // Number of tracks in origingal ESD event
a5f7aba4 245 UInt_t fL0TriggerInputs; // L0 Trigger Inputs (mask)
246 UInt_t fL1TriggerInputs; // L1 Trigger Inputs (mask)
247 UShort_t fL2TriggerInputs; // L2 Trigger Inputs (mask)
f7ce7a37 248 UInt_t fITSClusters[6]; // Number of ITS cluster per layer
249 Int_t fTPConlyRefMult; // Reference multiplicty for standard TPC only tracks
f1c1d7c6 250 AliCentrality* fCentralityP; // Pointer to full centrality information
ce7adfe9 251 AliEventplane* fEventplaneP; // Pointer to full event plane information
5e14e698 252 Float_t fVZEROEqFactors[64]; // V0 channel equalization factors for event-plane reconstruction
949be341 253 Float_t fT0spread[kT0SpreadSize]; // spread of time distributions: (TOA+T0C/2), T0A, T0C, (T0A-T0C)/2
4ccebdba 254 TBits fIRInt2InteractionsMap; // map of the Int2 events (normally 0TVX) near the event, that's Int2Id-EventId in a -90 to 90 window
255 TBits fIRInt1InteractionsMap; // map of the Int1 events (normally V0A&V0C) near the event, that's Int1Id-EventId in a -90 to 90 window
ef7661fd 256 ClassDef(AliAODHeader, 23);
df9db588 257};
5e6a3170 258inline
77f43bb7 259void AliAODHeader::SetCentrality(const AliCentrality* cent) {
5e6a3170 260 if(cent){
261 if(fCentralityP)*fCentralityP = *cent;
262 else fCentralityP = new AliCentrality(*cent);
263 fCentrality = cent->GetCentralityPercentile("V0M");
264 }
265 else{
266 fCentrality = -999;
267 }
268}
ce7adfe9 269inline
270void AliAODHeader::SetEventplane(AliEventplane* eventplane) {
271 if(eventplane){
272 if(fEventplaneP)*fEventplaneP = *eventplane;
273 else fEventplaneP = new AliEventplane(*eventplane);
274 fEventplane = eventplane->GetEventplane("Q");
c7d82ff7 275 const TVector2* qvect=eventplane->GetQVector();
276 fEventplaneMag = -999;
5a3b31b5 277 fEventplaneQx = -999;
278 fEventplaneQy = -999;
279 if (qvect) {
280 fEventplaneMag=qvect->Mod();
281 fEventplaneQx=qvect->X();
282 fEventplaneQy=qvect->Y();
283 }
ce7adfe9 284 }
285 else{
286 fEventplane = -999;
c7d82ff7 287 fEventplaneMag = -999;
5a3b31b5 288 fEventplaneQx = -999;
289 fEventplaneQy = -999;
ce7adfe9 290 }
291}
c7d82ff7 292inline
293void AliAODHeader::ResetEventplanePointer() {
294 delete fEventplaneP;
295 fEventplaneP = 0x0;
296}
f7ce7a37 297
298inline
299void AliAODHeader::SetITSClusters(Int_t ilay, UInt_t nclus)
300{
301 if (ilay >= 0 && ilay < 6) fITSClusters[ilay] = nclus;
302}
303
304
df9db588 305#endif