28-feb-2006 NvE Memberfunction ProcessObject() introduced in AliJob for convenience.
[u/mrichter/AliRoot.git] / STEER / AliESDtrack.h
CommitLineData
ae982df3 1#ifndef ALIESDTRACK_H
2#define ALIESDTRACK_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
ac3faee4 6/* $Id$ */
7
ae982df3 8//-------------------------------------------------------------------------
9// Class AliESDtrack
15614b8b 10// This is the class to deal with during the physics analysis of data
ae982df3 11//
12// Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch
13//-------------------------------------------------------------------------
23904d16 14/*****************************************************************************
15 * Use GetExternalParameters() and GetExternalCovariance() to access the *
16 * track information regardless of its internal representation. *
17 * This formation is now fixed in the following way: *
18 * external param0: local Y-coordinate of a track (cm) *
19 * external param1: local Z-coordinate of a track (cm) *
20 * external param2: local sine of the track momentum azimuthal angle *
21 * external param3: tangent of the track momentum dip angle *
22 * external param4: 1/pt (1/(GeV/c)) *
23 *****************************************************************************/
ac3faee4 24
a866ac60 25#include <TBits.h>
c9ec41e8 26#include "AliExternalTrackParam.h"
304864ab 27#include "AliPID.h"
f6956857 28#include <TVector3.h>
29
49d13e89 30class AliESDVertex;
ae982df3 31class AliKalmanTrack;
98937d93 32class AliTrackPointArray;
ae982df3 33
eab5961e 34const Int_t kNPlane = 6;
35
c9ec41e8 36class AliESDtrack : public AliExternalTrackParam {
ae982df3 37public:
38 AliESDtrack();
c4d11b15 39 AliESDtrack(const AliESDtrack& track);
51ad6848 40 virtual ~AliESDtrack();
9559cbc4 41 void MakeMiniESDtrack();
51ad6848 42 void SetID(Int_t id) { fID =id;}
43 Int_t GetID(){ return fID;}
ae982df3 44 void SetStatus(ULong_t flags) {fFlags|=flags;}
45 void ResetStatus(ULong_t flags) {fFlags&=~flags;}
15614b8b 46 Bool_t UpdateTrackParams(const AliKalmanTrack *t, ULong_t flags);
ae982df3 47 void SetIntegratedLength(Double_t l) {fTrackLength=l;}
48 void SetIntegratedTimes(const Double_t *times);
8c6a71ab 49 void SetESDpid(const Double_t *p);
50 void GetESDpid(Double_t *p) const;
ae982df3 51
52 ULong_t GetStatus() const {return fFlags;}
53 Int_t GetLabel() const {return fLabel;}
a33a2f3d 54 void SetLabel(Int_t label) {fLabel = label;}
c9ec41e8 55
ae982df3 56 void GetExternalParameters(Double_t &x, Double_t p[5]) const;
57 void GetExternalCovariance(Double_t cov[15]) const;
23904d16 58
ae982df3 59 Double_t GetIntegratedLength() const {return fTrackLength;}
60 void GetIntegratedTimes(Double_t *times) const;
4a78b8c5 61 Double_t GetMass() const;
f6956857 62 TVector3 P3() const {Double_t p[3]; GetPxPyPz(p); return TVector3(p[0],p[1],p[2]);} //running track momentum
f6956857 63 TVector3 X3() const {Double_t x[3]; GetXYZ(x); return TVector3(x[0],x[1],x[2]);} //running track position
ae982df3 64
c0b978f0 65
c9ec41e8 66 Bool_t GetConstrainedPxPyPz(Double_t *p) const {
67 if (!fCp) return kFALSE;
68 return fCp->GetPxPyPz(p);
69 }
70 Bool_t GetConstrainedXYZ(Double_t *r) const {
71 if (!fCp) return kFALSE;
72 return fCp->GetXYZ(r);
73 }
c0b978f0 74 Bool_t GetConstrainedExternalParameters
75 (Double_t &alpha, Double_t &x, Double_t p[5]) const;
76 Bool_t GetConstrainedExternalCovariance(Double_t cov[15]) const;
c9ec41e8 77 Double_t GetConstrainedChi2() const {return fCchi2;}
67c3dcbe 78
67c3dcbe 79
c9ec41e8 80 Bool_t GetInnerPxPyPz(Double_t *p) const {
81 if (!fIp) return kFALSE;
82 return fIp->GetPxPyPz(p);
83 }
84 Bool_t GetInnerXYZ(Double_t *r) const {
85 if (!fIp) return kFALSE;
86 return fIp->GetXYZ(r);
87 }
c0b978f0 88 Bool_t GetInnerExternalParameters
89 (Double_t &alpha, Double_t &x, Double_t p[5]) const;
90 Bool_t GetInnerExternalCovariance(Double_t cov[15]) const;
98937d93 91
c0b978f0 92
93 Bool_t GetOuterPxPyPz(Double_t *p) const {
94 if (!fOp) return kFALSE;
95 return fOp->GetPxPyPz(p);
96 }
97 Bool_t GetOuterXYZ(Double_t *r) const {
98 if (!fOp) return kFALSE;
99 return fOp->GetXYZ(r);
c9ec41e8 100 }
c0b978f0 101 Bool_t GetOuterExternalParameters
102 (Double_t &alpha, Double_t &x, Double_t p[5]) const;
103 Bool_t GetOuterExternalCovariance(Double_t cov[15]) const;
104
c9ec41e8 105
98937d93 106 Int_t GetNcls(Int_t idet) const;
107 Int_t GetClusters(Int_t idet, UInt_t *idx) const;
108
c630aafd 109 void SetITSpid(const Double_t *p);
babd135a 110 void SetITSChi2MIP(const Float_t *chi2mip);
c4d11b15 111 void SetITStrack(AliKalmanTrack * track){fITStrack=track;}
c630aafd 112 void GetITSpid(Double_t *p) const;
ae982df3 113 Float_t GetITSsignal() const {return fITSsignal;}
13da10da 114 Float_t GetITSchi2() const {return fITSchi2;}
ae982df3 115 Int_t GetITSclusters(UInt_t *idx) const;
6e5b1b04 116 Int_t GetITSLabel() const {return fITSLabel;}
babd135a 117 Float_t GetITSFakeRatio() const {return fITSFakeRatio;}
c4d11b15 118 AliKalmanTrack * GetITStrack(){return fITStrack;}
ae982df3 119
13da10da 120 void SetTPCpid(const Double_t *p);
121 void GetTPCpid(Double_t *p) const;
51ad6848 122 void SetTPCPoints(Float_t points[4]){for (Int_t i=0;i<4;i++) fTPCPoints[i]=points[i];}
98937d93 123 Float_t GetTPCPoints(Int_t i){return fTPCPoints[i];}
51ad6848 124 void SetKinkIndexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fKinkIndexes[i] = points[i];}
125 void SetV0Indexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fV0Indexes[i] = points[i];}
13da10da 126 Float_t GetTPCsignal() const {return fTPCsignal;}
127 Float_t GetTPCchi2() const {return fTPCchi2;}
128 Int_t GetTPCclusters(Int_t *idx) const;
81e97e0d 129 Float_t GetTPCdensity(Int_t row0, Int_t row1) const;
6e5b1b04 130 Int_t GetTPCLabel() const {return fTPCLabel;}
51ad6848 131 Int_t GetKinkIndex(Int_t i) const { return fKinkIndexes[i];}
132 Int_t GetV0Index(Int_t i) const { return fV0Indexes[i];}
3a83c716 133 const TBits& GetTPCClusterMap() const {return fTPCClusterMap;}
a866ac60 134
c630aafd 135 void SetTRDpid(const Double_t *p);
7c97ee80 136 void SetTRDQuality(Float_t quality){fTRDQuality=quality;}
137 Float_t GetTRDQuality()const {return fTRDQuality;}
23d49657 138 void SetTRDBudget(Float_t budget){fTRDBudget=budget;}
139 Float_t GetTRDBudget()const {return fTRDBudget;}
c4d11b15 140 void SetTRDtrack(AliKalmanTrack * track){fTRDtrack=track;}
eab5961e 141 void SetTRDsignals(Float_t dedx, Int_t i) {fTRDsignals[i]=dedx;}
142 void SetTRDTimBin(Int_t timbin, Int_t i) {fTRDTimBin[i]=timbin;}
c630aafd 143 void GetTRDpid(Double_t *p) const;
79e94bf8 144 Float_t GetTRDsignal() const {return fTRDsignal;}
eab5961e 145 Float_t GetTRDsignals(Int_t i) const {return fTRDsignals[i];}
146 Int_t GetTRDTimBin(Int_t i) const {return fTRDTimBin[i];}
13da10da 147 Float_t GetTRDchi2() const {return fTRDchi2;}
bb2ceb1f 148 Int_t GetTRDclusters(UInt_t *idx) const;
51ad6848 149 Int_t GetTRDncls() const {return fTRDncls;}
79e94bf8 150 void SetTRDpid(Int_t iSpecies, Float_t p);
151 Float_t GetTRDpid(Int_t iSpecies) const;
6e5b1b04 152 Int_t GetTRDLabel() const {return fTRDLabel;}
c9ec41e8 153
154
c4d11b15 155 AliKalmanTrack * GetTRDtrack(){return fTRDtrack;}
79e94bf8 156
c630aafd 157 void SetTOFsignal(Double_t tof) {fTOFsignal=tof;}
158 Float_t GetTOFsignal() const {return fTOFsignal;}
13da10da 159 Float_t GetTOFchi2() const {return fTOFchi2;}
c630aafd 160 void SetTOFpid(const Double_t *p);
51ad6848 161 void SetTOFLabel(const Int_t *p);
c630aafd 162 void GetTOFpid(Double_t *p) const;
51ad6848 163 void GetTOFLabel(Int_t *p) const;
164 void GetTOFInfo(Float_t *info) const;
165 void SetTOFInfo(Float_t *info);
c630aafd 166 UInt_t GetTOFcluster() const {return fTOFindex;}
167 void SetTOFcluster(UInt_t index) {fTOFindex=index;}
4a78b8c5 168
169 void SetRICHsignal(Double_t beta) {fRICHsignal=beta;}
170 Float_t GetRICHsignal() const {return fRICHsignal;}
171 void SetRICHpid(const Double_t *p);
172 void GetRICHpid(Double_t *p) const;
1e5d06c3 173 void SetRICHchi2(Double_t chi2) {fRICHchi2=chi2;}
174 Float_t GetRICHchi2() const {return fRICHchi2;}
175 void SetRICHcluster(UInt_t index) {fRICHindex=index;}
176 UInt_t GetRICHcluster() const {return fRICHindex;}
177 void SetRICHnclusters(Int_t n) {fRICHncls=n;}
178 Int_t GetRICHnclusters() const {return fRICHncls;}
179 void SetRICHthetaPhi(Double_t theta, Double_t phi) {
180 fRICHtheta=theta; fRICHphi=phi;
181 }
182 void GetRICHthetaPhi(Double_t &theta, Double_t &phi) const {
183 theta=fRICHtheta; phi=fRICHphi;
184 }
185 void SetRICHdxdy(Double_t dx, Double_t dy) {
186 fRICHdx=dx; fRICHdy=dy;
187 }
188 void GetRICHdxdy(Double_t &dx, Double_t &dy) const {
f6956857 189 dx=fRICHdx; dy=fRICHdy;
1e5d06c3 190 }
4a78b8c5 191
192 void SetPHOSposition(const Double_t *pos) {
193 fPHOSpos[0] = pos[0]; fPHOSpos[1]=pos[1]; fPHOSpos[2]=pos[2];
194 }
195 void SetPHOSsignal(Double_t ene) {fPHOSsignal = ene; }
196 void SetPHOSpid(const Double_t *p);
197 void GetPHOSposition(Double_t *pos) const {
198 pos[0]=fPHOSpos[0]; pos[1]=fPHOSpos[1]; pos[2]=fPHOSpos[2];
199 }
200 Float_t GetPHOSsignal() const {return fPHOSsignal;}
201 void GetPHOSpid(Double_t *p) const;
202
704be597 203 void SetEMCALposition(const Double_t *pos) {
204 fEMCALpos[0] = pos[0]; fEMCALpos[1]=pos[1]; fEMCALpos[2]=pos[2];
205 }
206 void SetEMCALsignal(Double_t ene) {fEMCALsignal = ene; }
207 void SetEMCALpid(const Double_t *p);
208 void GetEMCALposition(Double_t *pos) const {
209 pos[0]=fEMCALpos[0]; pos[1]=fEMCALpos[1]; pos[2]=fEMCALpos[2];
210 }
211 Float_t GetEMCALsignal() const {return fEMCALsignal;}
212 void GetEMCALpid(Double_t *p) const;
213
3a83c716 214 Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;}
704be597 215 Bool_t IsRICH() const {return fFlags&kRICHpid;}
216 Bool_t IsPHOS() const {return fFlags&kPHOSpid;}
217 Bool_t IsEMCAL() const {return fFlags&kEMCALpid;}
ac2f7574 218
98937d93 219 void SetTrackPointArray(AliTrackPointArray *points) { fPoints = points; }
220 AliTrackPointArray *GetTrackPointArray() const { return fPoints; }
221
49d13e89 222 Bool_t
223 RelateToVertex(const AliESDVertex *vtx, Double_t b, Double_t maxd);
224 void GetImpactParameters(Float_t &xy,Float_t &z) const {xy=fD; z=fZ;}
225 void GetImpactParameters(Float_t p[2], Float_t cov[3]) const {
226 p[0]=fD; p[1]=fZ; cov[0]=fCdd; cov[1]=fCdz; cov[2]=fCzz;
227 }
ac2f7574 228 virtual void Print(Option_t * opt) const ;
229
ae982df3 230 enum {
8c6a71ab 231 kITSin=0x0001,kITSout=0x0002,kITSrefit=0x0004,kITSpid=0x0008,
232 kTPCin=0x0010,kTPCout=0x0020,kTPCrefit=0x0040,kTPCpid=0x0080,
233 kTRDin=0x0100,kTRDout=0x0200,kTRDrefit=0x0400,kTRDpid=0x0800,
234 kTOFin=0x1000,kTOFout=0x2000,kTOFrefit=0x4000,kTOFpid=0x8000,
c4d11b15 235 kPHOSpid=0x10000, kRICHpid=0x20000, kEMCALpid=0x40000,
236 kTRDbackup=0x80000,
4a78b8c5 237 kTRDStop=0x20000000,
8c6a71ab 238 kESDpid=0x40000000,
ae982df3 239 kTIME=0x80000000
240 };
ae982df3 241protected:
90e48c0c 242
81e97e0d 243 //AliESDtrack & operator=(const AliESDtrack & );
90e48c0c 244
49d13e89 245 ULong_t fFlags; // Reconstruction status flags
246 Int_t fLabel; // Track label
247 Int_t fID; // Unique ID of the track
248 Float_t fTrackLength; // Track length
249 Float_t fD; // Impact parameter in XY plane
250 Float_t fZ; // Impact parameter in Z
251 Float_t fCdd,fCdz,fCzz; // Covariance matrix of the impact parameters
304864ab 252 Float_t fTrackTime[AliPID::kSPECIES]; // TOFs estimated by the tracking
c9ec41e8 253 Float_t fR[AliPID::kSPECIES]; // combined "detector response probability"
ae982df3 254
49d13e89 255 Int_t fStopVertex; // Index of the stop vertex
ae982df3 256
67c3dcbe 257//Track parameters constrained to the primary vertex
c9ec41e8 258 AliExternalTrackParam *fCp;
67c3dcbe 259 Double_t fCchi2; //chi2 at the primary vertex
260
672b5f43 261//Track parameters at the inner wall of the TPC
c9ec41e8 262 AliExternalTrackParam *fIp;
23904d16 263
c4d11b15 264//Track parameters at the inner wall of the TRD
c9ec41e8 265 AliExternalTrackParam *fOp;
ae982df3 266
ae982df3 267 // ITS related track information
268 Float_t fITSchi2; // chi2 in the ITS
c4d11b15 269 Float_t fITSchi2MIP[12]; // chi2s in the ITS
ae982df3 270 Int_t fITSncls; // number of clusters assigned in the ITS
271 UInt_t fITSindex[6]; //! indices of the assigned ITS clusters
272 Float_t fITSsignal; // detector's PID signal
304864ab 273 Float_t fITSr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 274 Int_t fITSLabel; // label according TPC
babd135a 275 Float_t fITSFakeRatio; // ration of fake tracks
3fd96ae3 276 AliKalmanTrack * fITStrack; //! OWNER: pointer to the ITS track -- currently for debug purpose
c4d11b15 277
ae982df3 278 // TPC related track information
279 Float_t fTPCchi2; // chi2 in the TPC
280 Int_t fTPCncls; // number of clusters assigned in the TPC
c84a5e9e 281 Int_t fTPCindex[180]; //! indices of the assigned TPC clusters
a866ac60 282 TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow
ae982df3 283 Float_t fTPCsignal; // detector's PID signal
304864ab 284 Float_t fTPCr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 285 Int_t fTPCLabel; // label according TPC
51ad6848 286 Float_t fTPCPoints[4]; // TPC points -first, max. dens, last and max density
287 Int_t fKinkIndexes[3]; // array of indexes of posible kink candidates
288 Int_t fV0Indexes[3]; // array of indexes of posible kink candidates
23904d16 289
ae982df3 290 // TRD related track information
79e94bf8 291 Float_t fTRDchi2; // chi2 in the TRD
292 Int_t fTRDncls; // number of clusters assigned in the TRD
c4d11b15 293 Int_t fTRDncls0; // number of clusters assigned in the TRD before first material cross
294 UInt_t fTRDindex[130]; //! indices of the assigned TRD clusters
79e94bf8 295 Float_t fTRDsignal; // detector's PID signal
eab5961e 296 Float_t fTRDsignals[kNPlane]; // TRD signals from all six planes
297 Int_t fTRDTimBin[kNPlane]; // Time bin of Max cluster from all six planes
304864ab 298 Float_t fTRDr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 299 Int_t fTRDLabel; // label according TRD
7c97ee80 300 Float_t fTRDQuality; //trd quality factor for TOF
23d49657 301 Float_t fTRDBudget; //trd material budget
3fd96ae3 302 AliKalmanTrack * fTRDtrack; //! OWNER: pointer to the TRD track -- currently for debug purpose
23904d16 303
ae982df3 304 // TOF related track information
c630aafd 305 Float_t fTOFchi2; // chi2 in the TOF
bb2ceb1f 306 UInt_t fTOFindex; // index of the assigned TOF cluster
c630aafd 307 Float_t fTOFsignal; // detector's PID signal
304864ab 308 Float_t fTOFr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
51ad6848 309 Int_t fTOFLabel[3]; // TOF label
c84a5e9e 310 Float_t fTOFInfo[10]; //! TOF informations
23904d16 311
4a78b8c5 312 // PHOS related track information
51ad6848 313 Float_t fPHOSpos[3]; // position localised by PHOS in global coordinate system
4a78b8c5 314 Float_t fPHOSsignal; // energy measured by PHOS
304864ab 315 Float_t fPHOSr[AliPID::kSPECIESN]; // PID information from PHOS
704be597 316
317 // EMCAL related track information
318 Float_t fEMCALpos[3]; //position localised by EMCAL in global coordinate system
319 Float_t fEMCALsignal; // energy measured by EMCAL
304864ab 320 Float_t fEMCALr[AliPID::kSPECIESN]; // PID information from EMCAL
ae982df3 321
4a78b8c5 322 // HMPID related track information
1e5d06c3 323 Float_t fRICHchi2; // chi2 in the RICH
324 Int_t fRICHncls; // number of photon clusters
325 UInt_t fRICHindex; // index of the assigned MIP cluster
326 Float_t fRICHsignal; // RICH PID signal
304864ab 327 Float_t fRICHr[AliPID::kSPECIES];// "detector response probabilities" (for the PID)
1e5d06c3 328 Float_t fRICHtheta; // theta of the track extrapolated to the RICH
329 Float_t fRICHphi; // phi of the track extrapolated to the RICH
330 Float_t fRICHdx; // x of the track impact minus x of the MIP
331 Float_t fRICHdy; // y of the track impact minus y of the MIP
98937d93 332
333 AliTrackPointArray *fPoints; // Array which contains the track space points in the global frame
334
49d13e89 335 ClassDef(AliESDtrack,21) //ESDtrack
ae982df3 336};
337
338#endif
339