Removing obsolete macros (Yu.Belikov)
[u/mrichter/AliRoot.git] / STEER / AliESDtrack.h
CommitLineData
ae982df3 1#ifndef ALIESDTRACK_H
2#define ALIESDTRACK_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
ac3faee4 6/* $Id$ */
7
ae982df3 8//-------------------------------------------------------------------------
9// Class AliESDtrack
15614b8b 10// This is the class to deal with during the physics analysis of data
ae982df3 11//
12// Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch
13//-------------------------------------------------------------------------
23904d16 14/*****************************************************************************
15 * Use GetExternalParameters() and GetExternalCovariance() to access the *
16 * track information regardless of its internal representation. *
17 * This formation is now fixed in the following way: *
18 * external param0: local Y-coordinate of a track (cm) *
19 * external param1: local Z-coordinate of a track (cm) *
20 * external param2: local sine of the track momentum azimuthal angle *
21 * external param3: tangent of the track momentum dip angle *
22 * external param4: 1/pt (1/(GeV/c)) *
23 *****************************************************************************/
ac3faee4 24
a866ac60 25#include <TBits.h>
ac3faee4 26#include <TObject.h>
304864ab 27#include "AliPID.h"
f6956857 28#include <TVector3.h>
29
ae982df3 30class AliKalmanTrack;
31
eab5961e 32const Int_t kNPlane = 6;
33
ae982df3 34class AliESDtrack : public TObject {
35public:
36 AliESDtrack();
c4d11b15 37 AliESDtrack(const AliESDtrack& track);
51ad6848 38 virtual ~AliESDtrack();
39 void SetID(Int_t id) { fID =id;}
40 Int_t GetID(){ return fID;}
ae982df3 41 void SetStatus(ULong_t flags) {fFlags|=flags;}
42 void ResetStatus(ULong_t flags) {fFlags&=~flags;}
15614b8b 43 Bool_t UpdateTrackParams(const AliKalmanTrack *t, ULong_t flags);
399fb957 44 void SetImpactParameters(Float_t xy,Float_t z) {fD=xy; fZ=z;}
ae982df3 45 void SetIntegratedLength(Double_t l) {fTrackLength=l;}
46 void SetIntegratedTimes(const Double_t *times);
8c6a71ab 47 void SetESDpid(const Double_t *p);
48 void GetESDpid(Double_t *p) const;
ae982df3 49
50 ULong_t GetStatus() const {return fFlags;}
51 Int_t GetLabel() const {return fLabel;}
52 Double_t GetAlpha() const {return fRalpha;}
53 void GetExternalParameters(Double_t &x, Double_t p[5]) const;
54 void GetExternalCovariance(Double_t cov[15]) const;
23904d16 55
56 Bool_t GetExternalParametersAt(Double_t x, Double_t p[5]) const;
57 Bool_t GetPxPyPzAt(Double_t x, Double_t p[3]) const;
58 Bool_t GetXYZAt(Double_t x, Double_t r[3]) const;
59
399fb957 60 void GetImpactParameters(Float_t &xy,Float_t &z) const {xy=fD; z=fZ;}
ae982df3 61 Double_t GetIntegratedLength() const {return fTrackLength;}
62 void GetIntegratedTimes(Double_t *times) const;
4a78b8c5 63 Double_t GetMass() const;
ae982df3 64 Double_t GetP() const;
09c96efc 65 Bool_t GetPxPyPz(Double_t *p) const;
f6956857 66 TVector3 P3() const {Double_t p[3]; GetPxPyPz(p); return TVector3(p[0],p[1],p[2]);} //running track momentum
09c96efc 67 Bool_t GetXYZ(Double_t *r) const;
f6956857 68 TVector3 X3() const {Double_t x[3]; GetXYZ(x); return TVector3(x[0],x[1],x[2]);} //running track position
b322ab2f 69 void GetCovariance(Double_t cov[21]) const;
9f64824b 70 Int_t GetSign() const {return (fRp[4]>0) ? 1 : -1;}
ae982df3 71
5ccd1720 72 void SetConstrainedTrackParams(const AliKalmanTrack *t, Double_t chi2);
67c3dcbe 73
74 Double_t GetConstrainedAlpha() const {return fCalpha;}
75 Double_t GetConstrainedChi2() const {return fCchi2;}
76 void GetConstrainedExternalParameters(Double_t &x, Double_t p[5]) const;
77 void GetConstrainedExternalCovariance(Double_t cov[15]) const;
78
09c96efc 79 Bool_t GetConstrainedPxPyPz(Double_t *p) const;
80 Bool_t GetConstrainedXYZ(Double_t *r) const;
67c3dcbe 81
09c96efc 82 Bool_t GetInnerPxPyPz(Double_t *p) const;
83 Bool_t GetInnerXYZ(Double_t *r) const;
a866ac60 84 void GetInnerExternalParameters(Double_t &x, Double_t p[5]) const;//skowron
85 void GetInnerExternalCovariance(Double_t cov[15]) const;//skowron
86 Double_t GetInnerAlpha() const {return fIalpha;}
87
c630aafd 88 void SetITSpid(const Double_t *p);
babd135a 89 void SetITSChi2MIP(const Float_t *chi2mip);
c4d11b15 90 void SetITStrack(AliKalmanTrack * track){fITStrack=track;}
c630aafd 91 void GetITSpid(Double_t *p) const;
ae982df3 92 Float_t GetITSsignal() const {return fITSsignal;}
13da10da 93 Float_t GetITSchi2() const {return fITSchi2;}
ae982df3 94 Int_t GetITSclusters(UInt_t *idx) const;
6e5b1b04 95 Int_t GetITSLabel() const {return fITSLabel;}
babd135a 96 Float_t GetITSFakeRatio() const {return fITSFakeRatio;}
c4d11b15 97 AliKalmanTrack * GetITStrack(){return fITStrack;}
ae982df3 98
13da10da 99 void SetTPCpid(const Double_t *p);
100 void GetTPCpid(Double_t *p) const;
51ad6848 101 void SetTPCPoints(Float_t points[4]){for (Int_t i=0;i<4;i++) fTPCPoints[i]=points[i];}
102 void SetKinkIndexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fKinkIndexes[i] = points[i];}
103 void SetV0Indexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fV0Indexes[i] = points[i];}
13da10da 104 Float_t GetTPCsignal() const {return fTPCsignal;}
105 Float_t GetTPCchi2() const {return fTPCchi2;}
106 Int_t GetTPCclusters(Int_t *idx) const;
6e5b1b04 107 Int_t GetTPCLabel() const {return fTPCLabel;}
51ad6848 108 Int_t GetKinkIndex(Int_t i) const { return fKinkIndexes[i];}
109 Int_t GetV0Index(Int_t i) const { return fV0Indexes[i];}
3a83c716 110 const TBits& GetTPCClusterMap() const {return fTPCClusterMap;}
a866ac60 111
c630aafd 112 void SetTRDpid(const Double_t *p);
7c97ee80 113 void SetTRDQuality(Float_t quality){fTRDQuality=quality;}
114 Float_t GetTRDQuality()const {return fTRDQuality;}
c4d11b15 115 void SetTRDtrack(AliKalmanTrack * track){fTRDtrack=track;}
eab5961e 116 void SetTRDsignals(Float_t dedx, Int_t i) {fTRDsignals[i]=dedx;}
117 void SetTRDTimBin(Int_t timbin, Int_t i) {fTRDTimBin[i]=timbin;}
c630aafd 118 void GetTRDpid(Double_t *p) const;
79e94bf8 119 Float_t GetTRDsignal() const {return fTRDsignal;}
eab5961e 120 Float_t GetTRDsignals(Int_t i) const {return fTRDsignals[i];}
121 Int_t GetTRDTimBin(Int_t i) const {return fTRDTimBin[i];}
13da10da 122 Float_t GetTRDchi2() const {return fTRDchi2;}
bb2ceb1f 123 Int_t GetTRDclusters(UInt_t *idx) const;
51ad6848 124 Int_t GetTRDncls() const {return fTRDncls;}
79e94bf8 125 void SetTRDpid(Int_t iSpecies, Float_t p);
126 Float_t GetTRDpid(Int_t iSpecies) const;
6e5b1b04 127 Int_t GetTRDLabel() const {return fTRDLabel;}
35f4ab61 128 void GetTRDExternalParameters(Double_t &x, Double_t &alpha, Double_t p[5], Double_t cov[15]) const;//MI
c4d11b15 129 AliKalmanTrack * GetTRDtrack(){return fTRDtrack;}
79e94bf8 130
c630aafd 131 void SetTOFsignal(Double_t tof) {fTOFsignal=tof;}
132 Float_t GetTOFsignal() const {return fTOFsignal;}
13da10da 133 Float_t GetTOFchi2() const {return fTOFchi2;}
c630aafd 134 void SetTOFpid(const Double_t *p);
51ad6848 135 void SetTOFLabel(const Int_t *p);
c630aafd 136 void GetTOFpid(Double_t *p) const;
51ad6848 137 void GetTOFLabel(Int_t *p) const;
138 void GetTOFInfo(Float_t *info) const;
139 void SetTOFInfo(Float_t *info);
c630aafd 140 UInt_t GetTOFcluster() const {return fTOFindex;}
141 void SetTOFcluster(UInt_t index) {fTOFindex=index;}
4a78b8c5 142
143 void SetRICHsignal(Double_t beta) {fRICHsignal=beta;}
144 Float_t GetRICHsignal() const {return fRICHsignal;}
145 void SetRICHpid(const Double_t *p);
146 void GetRICHpid(Double_t *p) const;
1e5d06c3 147 void SetRICHchi2(Double_t chi2) {fRICHchi2=chi2;}
148 Float_t GetRICHchi2() const {return fRICHchi2;}
149 void SetRICHcluster(UInt_t index) {fRICHindex=index;}
150 UInt_t GetRICHcluster() const {return fRICHindex;}
151 void SetRICHnclusters(Int_t n) {fRICHncls=n;}
152 Int_t GetRICHnclusters() const {return fRICHncls;}
153 void SetRICHthetaPhi(Double_t theta, Double_t phi) {
154 fRICHtheta=theta; fRICHphi=phi;
155 }
156 void GetRICHthetaPhi(Double_t &theta, Double_t &phi) const {
157 theta=fRICHtheta; phi=fRICHphi;
158 }
159 void SetRICHdxdy(Double_t dx, Double_t dy) {
160 fRICHdx=dx; fRICHdy=dy;
161 }
162 void GetRICHdxdy(Double_t &dx, Double_t &dy) const {
f6956857 163 dx=fRICHdx; dy=fRICHdy;
1e5d06c3 164 }
4a78b8c5 165
166 void SetPHOSposition(const Double_t *pos) {
167 fPHOSpos[0] = pos[0]; fPHOSpos[1]=pos[1]; fPHOSpos[2]=pos[2];
168 }
169 void SetPHOSsignal(Double_t ene) {fPHOSsignal = ene; }
170 void SetPHOSpid(const Double_t *p);
171 void GetPHOSposition(Double_t *pos) const {
172 pos[0]=fPHOSpos[0]; pos[1]=fPHOSpos[1]; pos[2]=fPHOSpos[2];
173 }
174 Float_t GetPHOSsignal() const {return fPHOSsignal;}
175 void GetPHOSpid(Double_t *p) const;
176
704be597 177 void SetEMCALposition(const Double_t *pos) {
178 fEMCALpos[0] = pos[0]; fEMCALpos[1]=pos[1]; fEMCALpos[2]=pos[2];
179 }
180 void SetEMCALsignal(Double_t ene) {fEMCALsignal = ene; }
181 void SetEMCALpid(const Double_t *p);
182 void GetEMCALposition(Double_t *pos) const {
183 pos[0]=fEMCALpos[0]; pos[1]=fEMCALpos[1]; pos[2]=fEMCALpos[2];
184 }
185 Float_t GetEMCALsignal() const {return fEMCALsignal;}
186 void GetEMCALpid(Double_t *p) const;
187
3a83c716 188 Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;}
704be597 189 Bool_t IsRICH() const {return fFlags&kRICHpid;}
190 Bool_t IsPHOS() const {return fFlags&kPHOSpid;}
191 Bool_t IsEMCAL() const {return fFlags&kEMCALpid;}
ac2f7574 192
193 virtual void Print(Option_t * opt) const ;
194
ae982df3 195 enum {
8c6a71ab 196 kITSin=0x0001,kITSout=0x0002,kITSrefit=0x0004,kITSpid=0x0008,
197 kTPCin=0x0010,kTPCout=0x0020,kTPCrefit=0x0040,kTPCpid=0x0080,
198 kTRDin=0x0100,kTRDout=0x0200,kTRDrefit=0x0400,kTRDpid=0x0800,
199 kTOFin=0x1000,kTOFout=0x2000,kTOFrefit=0x4000,kTOFpid=0x8000,
c4d11b15 200 kPHOSpid=0x10000, kRICHpid=0x20000, kEMCALpid=0x40000,
201 kTRDbackup=0x80000,
4a78b8c5 202 kTRDStop=0x20000000,
8c6a71ab 203 kESDpid=0x40000000,
ae982df3 204 kTIME=0x80000000
205 };
ae982df3 206protected:
207 ULong_t fFlags; // Reconstruction status flags
208 Int_t fLabel; // Track label
51ad6848 209 Int_t fID; // Unique ID of the track
399fb957 210 Float_t fTrackLength; // Track length
211 Float_t fD; // Impact parameter in XY-plane
212 Float_t fZ; // Impact parameter in Z
304864ab 213 Float_t fTrackTime[AliPID::kSPECIES]; // TOFs estimated by the tracking
214 Float_t fR[AliPID::kSPECIES]; // combined "detector response probability"
ae982df3 215
216 Int_t fStopVertex; // Index of stop vertex
217
218//Running track parameters
219 Double_t fRalpha; // track rotation angle
220 Double_t fRx; // X-coordinate of the track reference plane
221 Double_t fRp[5]; // external track parameters
222 Double_t fRc[15]; // external cov. matrix of the track parameters
223
67c3dcbe 224//Track parameters constrained to the primary vertex
3a83c716 225 Double_t fCalpha; // Track rotation angle
226 Double_t fCx; // x-coordinate of the track reference plane
227 Double_t fCp[5]; // external track parameters
228 Double_t fCc[15]; // external cov. matrix of the track parameters
67c3dcbe 229 Double_t fCchi2; //chi2 at the primary vertex
230
672b5f43 231//Track parameters at the inner wall of the TPC
3a83c716 232 Double_t fIalpha; // Track rotation angle
233 Double_t fIx; // x-coordinate of the track reference plane
234 Double_t fIp[5]; // external track parameters
235 Double_t fIc[15]; // external cov. matrix of the track parameters
23904d16 236
c4d11b15 237//Track parameters at the inner wall of the TRD
238 Double_t fTalpha; // Track rotation angle
239 Double_t fTx; // x-coordinate of the track reference plane
240 Double_t fTp[5]; // external track parameters
241 Double_t fTc[15]; // external cov. matrix of the track parameters
ae982df3 242
ae982df3 243 // ITS related track information
244 Float_t fITSchi2; // chi2 in the ITS
c4d11b15 245 Float_t fITSchi2MIP[12]; // chi2s in the ITS
ae982df3 246 Int_t fITSncls; // number of clusters assigned in the ITS
247 UInt_t fITSindex[6]; //! indices of the assigned ITS clusters
248 Float_t fITSsignal; // detector's PID signal
304864ab 249 Float_t fITSr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 250 Int_t fITSLabel; // label according TPC
babd135a 251 Float_t fITSFakeRatio; // ration of fake tracks
3fd96ae3 252 AliKalmanTrack * fITStrack; //! OWNER: pointer to the ITS track -- currently for debug purpose
c4d11b15 253
ae982df3 254 // TPC related track information
255 Float_t fTPCchi2; // chi2 in the TPC
256 Int_t fTPCncls; // number of clusters assigned in the TPC
51ad6848 257 Int_t fTPCindex[180]; //! indices of the assigned TPC clusters
a866ac60 258 TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow
ae982df3 259 Float_t fTPCsignal; // detector's PID signal
304864ab 260 Float_t fTPCr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 261 Int_t fTPCLabel; // label according TPC
51ad6848 262 Float_t fTPCPoints[4]; // TPC points -first, max. dens, last and max density
263 Int_t fKinkIndexes[3]; // array of indexes of posible kink candidates
264 Int_t fV0Indexes[3]; // array of indexes of posible kink candidates
23904d16 265
ae982df3 266 // TRD related track information
79e94bf8 267 Float_t fTRDchi2; // chi2 in the TRD
268 Int_t fTRDncls; // number of clusters assigned in the TRD
c4d11b15 269 Int_t fTRDncls0; // number of clusters assigned in the TRD before first material cross
270 UInt_t fTRDindex[130]; //! indices of the assigned TRD clusters
79e94bf8 271 Float_t fTRDsignal; // detector's PID signal
eab5961e 272 Float_t fTRDsignals[kNPlane]; // TRD signals from all six planes
273 Int_t fTRDTimBin[kNPlane]; // Time bin of Max cluster from all six planes
304864ab 274 Float_t fTRDr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 275 Int_t fTRDLabel; // label according TRD
7c97ee80 276 Float_t fTRDQuality; //trd quality factor for TOF
3fd96ae3 277 AliKalmanTrack * fTRDtrack; //! OWNER: pointer to the TRD track -- currently for debug purpose
23904d16 278
ae982df3 279 // TOF related track information
c630aafd 280 Float_t fTOFchi2; // chi2 in the TOF
bb2ceb1f 281 UInt_t fTOFindex; // index of the assigned TOF cluster
c630aafd 282 Float_t fTOFsignal; // detector's PID signal
304864ab 283 Float_t fTOFr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
51ad6848 284 Int_t fTOFLabel[3]; // TOF label
285 Float_t fTOFInfo[10]; //! TOF informations
23904d16 286
4a78b8c5 287 // PHOS related track information
51ad6848 288 Float_t fPHOSpos[3]; // position localised by PHOS in global coordinate system
4a78b8c5 289 Float_t fPHOSsignal; // energy measured by PHOS
304864ab 290 Float_t fPHOSr[AliPID::kSPECIESN]; // PID information from PHOS
704be597 291
292 // EMCAL related track information
293 Float_t fEMCALpos[3]; //position localised by EMCAL in global coordinate system
294 Float_t fEMCALsignal; // energy measured by EMCAL
304864ab 295 Float_t fEMCALr[AliPID::kSPECIESN]; // PID information from EMCAL
ae982df3 296
4a78b8c5 297 // HMPID related track information
1e5d06c3 298 Float_t fRICHchi2; // chi2 in the RICH
299 Int_t fRICHncls; // number of photon clusters
300 UInt_t fRICHindex; // index of the assigned MIP cluster
301 Float_t fRICHsignal; // RICH PID signal
304864ab 302 Float_t fRICHr[AliPID::kSPECIES];// "detector response probabilities" (for the PID)
1e5d06c3 303 Float_t fRICHtheta; // theta of the track extrapolated to the RICH
304 Float_t fRICHphi; // phi of the track extrapolated to the RICH
305 Float_t fRICHdx; // x of the track impact minus x of the MIP
306 Float_t fRICHdy; // y of the track impact minus y of the MIP
4a78b8c5 307
7c97ee80 308 ClassDef(AliESDtrack,13) //ESDtrack
ae982df3 309};
310
311#endif
312