Tracking in non-uniform nmagnetic field (Yu.Belikov)
[u/mrichter/AliRoot.git] / STEER / AliESDtrack.h
CommitLineData
ae982df3 1#ifndef ALIESDTRACK_H
2#define ALIESDTRACK_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
ac3faee4 6/* $Id$ */
7
ae982df3 8//-------------------------------------------------------------------------
9// Class AliESDtrack
15614b8b 10// This is the class to deal with during the physics analysis of data
ae982df3 11//
12// Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch
13//-------------------------------------------------------------------------
23904d16 14/*****************************************************************************
15 * Use GetExternalParameters() and GetExternalCovariance() to access the *
16 * track information regardless of its internal representation. *
17 * This formation is now fixed in the following way: *
18 * external param0: local Y-coordinate of a track (cm) *
19 * external param1: local Z-coordinate of a track (cm) *
20 * external param2: local sine of the track momentum azimuthal angle *
21 * external param3: tangent of the track momentum dip angle *
22 * external param4: 1/pt (1/(GeV/c)) *
23 *****************************************************************************/
ac3faee4 24
a866ac60 25#include <TBits.h>
ac3faee4 26#include <TObject.h>
304864ab 27#include "AliPID.h"
f6956857 28#include <TVector3.h>
29
ae982df3 30class AliKalmanTrack;
31
eab5961e 32const Int_t kNPlane = 6;
33
ae982df3 34class AliESDtrack : public TObject {
35public:
36 AliESDtrack();
c4d11b15 37 AliESDtrack(const AliESDtrack& track);
51ad6848 38 virtual ~AliESDtrack();
9559cbc4 39 void MakeMiniESDtrack();
51ad6848 40 void SetID(Int_t id) { fID =id;}
41 Int_t GetID(){ return fID;}
ae982df3 42 void SetStatus(ULong_t flags) {fFlags|=flags;}
43 void ResetStatus(ULong_t flags) {fFlags&=~flags;}
15614b8b 44 Bool_t UpdateTrackParams(const AliKalmanTrack *t, ULong_t flags);
399fb957 45 void SetImpactParameters(Float_t xy,Float_t z) {fD=xy; fZ=z;}
ae982df3 46 void SetIntegratedLength(Double_t l) {fTrackLength=l;}
47 void SetIntegratedTimes(const Double_t *times);
8c6a71ab 48 void SetESDpid(const Double_t *p);
49 void GetESDpid(Double_t *p) const;
ae982df3 50
51 ULong_t GetStatus() const {return fFlags;}
52 Int_t GetLabel() const {return fLabel;}
a33a2f3d 53 void SetLabel(Int_t label) {fLabel = label;}
ae982df3 54 Double_t GetAlpha() const {return fRalpha;}
55 void GetExternalParameters(Double_t &x, Double_t p[5]) const;
56 void GetExternalCovariance(Double_t cov[15]) const;
23904d16 57
c84a5e9e 58 Bool_t GetExternalParametersAt(Double_t x, Double_t b, Double_t p[5]) const;
59 Bool_t GetPxPyPzAt(Double_t x, Double_t b, Double_t p[3]) const;
60 Bool_t GetXYZAt(Double_t x, Double_t b, Double_t r[3]) const;
23904d16 61
399fb957 62 void GetImpactParameters(Float_t &xy,Float_t &z) const {xy=fD; z=fZ;}
c84a5e9e 63 Double_t GetD(Double_t b, Double_t x=0, Double_t y=0) const;
ae982df3 64 Double_t GetIntegratedLength() const {return fTrackLength;}
65 void GetIntegratedTimes(Double_t *times) const;
4a78b8c5 66 Double_t GetMass() const;
ae982df3 67 Double_t GetP() const;
09c96efc 68 Bool_t GetPxPyPz(Double_t *p) const;
f6956857 69 TVector3 P3() const {Double_t p[3]; GetPxPyPz(p); return TVector3(p[0],p[1],p[2]);} //running track momentum
09c96efc 70 Bool_t GetXYZ(Double_t *r) const;
f6956857 71 TVector3 X3() const {Double_t x[3]; GetXYZ(x); return TVector3(x[0],x[1],x[2]);} //running track position
b322ab2f 72 void GetCovariance(Double_t cov[21]) const;
9f64824b 73 Int_t GetSign() const {return (fRp[4]>0) ? 1 : -1;}
ae982df3 74
5ccd1720 75 void SetConstrainedTrackParams(const AliKalmanTrack *t, Double_t chi2);
67c3dcbe 76
77 Double_t GetConstrainedAlpha() const {return fCalpha;}
78 Double_t GetConstrainedChi2() const {return fCchi2;}
79 void GetConstrainedExternalParameters(Double_t &x, Double_t p[5]) const;
80 void GetConstrainedExternalCovariance(Double_t cov[15]) const;
81
09c96efc 82 Bool_t GetConstrainedPxPyPz(Double_t *p) const;
83 Bool_t GetConstrainedXYZ(Double_t *r) const;
67c3dcbe 84
09c96efc 85 Bool_t GetInnerPxPyPz(Double_t *p) const;
86 Bool_t GetInnerXYZ(Double_t *r) const;
a866ac60 87 void GetInnerExternalParameters(Double_t &x, Double_t p[5]) const;//skowron
88 void GetInnerExternalCovariance(Double_t cov[15]) const;//skowron
89 Double_t GetInnerAlpha() const {return fIalpha;}
90
c630aafd 91 void SetITSpid(const Double_t *p);
babd135a 92 void SetITSChi2MIP(const Float_t *chi2mip);
c4d11b15 93 void SetITStrack(AliKalmanTrack * track){fITStrack=track;}
c630aafd 94 void GetITSpid(Double_t *p) const;
ae982df3 95 Float_t GetITSsignal() const {return fITSsignal;}
13da10da 96 Float_t GetITSchi2() const {return fITSchi2;}
ae982df3 97 Int_t GetITSclusters(UInt_t *idx) const;
6e5b1b04 98 Int_t GetITSLabel() const {return fITSLabel;}
babd135a 99 Float_t GetITSFakeRatio() const {return fITSFakeRatio;}
c4d11b15 100 AliKalmanTrack * GetITStrack(){return fITStrack;}
ae982df3 101
13da10da 102 void SetTPCpid(const Double_t *p);
103 void GetTPCpid(Double_t *p) const;
51ad6848 104 void SetTPCPoints(Float_t points[4]){for (Int_t i=0;i<4;i++) fTPCPoints[i]=points[i];}
105 void SetKinkIndexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fKinkIndexes[i] = points[i];}
106 void SetV0Indexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fV0Indexes[i] = points[i];}
13da10da 107 Float_t GetTPCsignal() const {return fTPCsignal;}
108 Float_t GetTPCchi2() const {return fTPCchi2;}
109 Int_t GetTPCclusters(Int_t *idx) const;
81e97e0d 110 Float_t GetTPCdensity(Int_t row0, Int_t row1) const;
6e5b1b04 111 Int_t GetTPCLabel() const {return fTPCLabel;}
51ad6848 112 Int_t GetKinkIndex(Int_t i) const { return fKinkIndexes[i];}
113 Int_t GetV0Index(Int_t i) const { return fV0Indexes[i];}
3a83c716 114 const TBits& GetTPCClusterMap() const {return fTPCClusterMap;}
a866ac60 115
c630aafd 116 void SetTRDpid(const Double_t *p);
7c97ee80 117 void SetTRDQuality(Float_t quality){fTRDQuality=quality;}
118 Float_t GetTRDQuality()const {return fTRDQuality;}
c4d11b15 119 void SetTRDtrack(AliKalmanTrack * track){fTRDtrack=track;}
eab5961e 120 void SetTRDsignals(Float_t dedx, Int_t i) {fTRDsignals[i]=dedx;}
121 void SetTRDTimBin(Int_t timbin, Int_t i) {fTRDTimBin[i]=timbin;}
c630aafd 122 void GetTRDpid(Double_t *p) const;
79e94bf8 123 Float_t GetTRDsignal() const {return fTRDsignal;}
eab5961e 124 Float_t GetTRDsignals(Int_t i) const {return fTRDsignals[i];}
125 Int_t GetTRDTimBin(Int_t i) const {return fTRDTimBin[i];}
13da10da 126 Float_t GetTRDchi2() const {return fTRDchi2;}
bb2ceb1f 127 Int_t GetTRDclusters(UInt_t *idx) const;
51ad6848 128 Int_t GetTRDncls() const {return fTRDncls;}
79e94bf8 129 void SetTRDpid(Int_t iSpecies, Float_t p);
130 Float_t GetTRDpid(Int_t iSpecies) const;
6e5b1b04 131 Int_t GetTRDLabel() const {return fTRDLabel;}
35f4ab61 132 void GetTRDExternalParameters(Double_t &x, Double_t &alpha, Double_t p[5], Double_t cov[15]) const;//MI
c4d11b15 133 AliKalmanTrack * GetTRDtrack(){return fTRDtrack;}
79e94bf8 134
c630aafd 135 void SetTOFsignal(Double_t tof) {fTOFsignal=tof;}
136 Float_t GetTOFsignal() const {return fTOFsignal;}
13da10da 137 Float_t GetTOFchi2() const {return fTOFchi2;}
c630aafd 138 void SetTOFpid(const Double_t *p);
51ad6848 139 void SetTOFLabel(const Int_t *p);
c630aafd 140 void GetTOFpid(Double_t *p) const;
51ad6848 141 void GetTOFLabel(Int_t *p) const;
142 void GetTOFInfo(Float_t *info) const;
143 void SetTOFInfo(Float_t *info);
c630aafd 144 UInt_t GetTOFcluster() const {return fTOFindex;}
145 void SetTOFcluster(UInt_t index) {fTOFindex=index;}
4a78b8c5 146
147 void SetRICHsignal(Double_t beta) {fRICHsignal=beta;}
148 Float_t GetRICHsignal() const {return fRICHsignal;}
149 void SetRICHpid(const Double_t *p);
150 void GetRICHpid(Double_t *p) const;
1e5d06c3 151 void SetRICHchi2(Double_t chi2) {fRICHchi2=chi2;}
152 Float_t GetRICHchi2() const {return fRICHchi2;}
153 void SetRICHcluster(UInt_t index) {fRICHindex=index;}
154 UInt_t GetRICHcluster() const {return fRICHindex;}
155 void SetRICHnclusters(Int_t n) {fRICHncls=n;}
156 Int_t GetRICHnclusters() const {return fRICHncls;}
157 void SetRICHthetaPhi(Double_t theta, Double_t phi) {
158 fRICHtheta=theta; fRICHphi=phi;
159 }
160 void GetRICHthetaPhi(Double_t &theta, Double_t &phi) const {
161 theta=fRICHtheta; phi=fRICHphi;
162 }
163 void SetRICHdxdy(Double_t dx, Double_t dy) {
164 fRICHdx=dx; fRICHdy=dy;
165 }
166 void GetRICHdxdy(Double_t &dx, Double_t &dy) const {
f6956857 167 dx=fRICHdx; dy=fRICHdy;
1e5d06c3 168 }
4a78b8c5 169
170 void SetPHOSposition(const Double_t *pos) {
171 fPHOSpos[0] = pos[0]; fPHOSpos[1]=pos[1]; fPHOSpos[2]=pos[2];
172 }
173 void SetPHOSsignal(Double_t ene) {fPHOSsignal = ene; }
174 void SetPHOSpid(const Double_t *p);
175 void GetPHOSposition(Double_t *pos) const {
176 pos[0]=fPHOSpos[0]; pos[1]=fPHOSpos[1]; pos[2]=fPHOSpos[2];
177 }
178 Float_t GetPHOSsignal() const {return fPHOSsignal;}
179 void GetPHOSpid(Double_t *p) const;
180
704be597 181 void SetEMCALposition(const Double_t *pos) {
182 fEMCALpos[0] = pos[0]; fEMCALpos[1]=pos[1]; fEMCALpos[2]=pos[2];
183 }
184 void SetEMCALsignal(Double_t ene) {fEMCALsignal = ene; }
185 void SetEMCALpid(const Double_t *p);
186 void GetEMCALposition(Double_t *pos) const {
187 pos[0]=fEMCALpos[0]; pos[1]=fEMCALpos[1]; pos[2]=fEMCALpos[2];
188 }
189 Float_t GetEMCALsignal() const {return fEMCALsignal;}
190 void GetEMCALpid(Double_t *p) const;
191
3a83c716 192 Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;}
704be597 193 Bool_t IsRICH() const {return fFlags&kRICHpid;}
194 Bool_t IsPHOS() const {return fFlags&kPHOSpid;}
195 Bool_t IsEMCAL() const {return fFlags&kEMCALpid;}
ac2f7574 196
197 virtual void Print(Option_t * opt) const ;
198
ae982df3 199 enum {
8c6a71ab 200 kITSin=0x0001,kITSout=0x0002,kITSrefit=0x0004,kITSpid=0x0008,
201 kTPCin=0x0010,kTPCout=0x0020,kTPCrefit=0x0040,kTPCpid=0x0080,
202 kTRDin=0x0100,kTRDout=0x0200,kTRDrefit=0x0400,kTRDpid=0x0800,
203 kTOFin=0x1000,kTOFout=0x2000,kTOFrefit=0x4000,kTOFpid=0x8000,
c4d11b15 204 kPHOSpid=0x10000, kRICHpid=0x20000, kEMCALpid=0x40000,
205 kTRDbackup=0x80000,
4a78b8c5 206 kTRDStop=0x20000000,
8c6a71ab 207 kESDpid=0x40000000,
ae982df3 208 kTIME=0x80000000
209 };
ae982df3 210protected:
90e48c0c 211
81e97e0d 212 //AliESDtrack & operator=(const AliESDtrack & );
90e48c0c 213
ae982df3 214 ULong_t fFlags; // Reconstruction status flags
215 Int_t fLabel; // Track label
51ad6848 216 Int_t fID; // Unique ID of the track
399fb957 217 Float_t fTrackLength; // Track length
218 Float_t fD; // Impact parameter in XY-plane
219 Float_t fZ; // Impact parameter in Z
304864ab 220 Float_t fTrackTime[AliPID::kSPECIES]; // TOFs estimated by the tracking
221 Float_t fR[AliPID::kSPECIES]; // combined "detector response probability"
ae982df3 222
223 Int_t fStopVertex; // Index of stop vertex
224
225//Running track parameters
226 Double_t fRalpha; // track rotation angle
227 Double_t fRx; // X-coordinate of the track reference plane
228 Double_t fRp[5]; // external track parameters
229 Double_t fRc[15]; // external cov. matrix of the track parameters
230
67c3dcbe 231//Track parameters constrained to the primary vertex
3a83c716 232 Double_t fCalpha; // Track rotation angle
233 Double_t fCx; // x-coordinate of the track reference plane
234 Double_t fCp[5]; // external track parameters
235 Double_t fCc[15]; // external cov. matrix of the track parameters
67c3dcbe 236 Double_t fCchi2; //chi2 at the primary vertex
237
672b5f43 238//Track parameters at the inner wall of the TPC
3a83c716 239 Double_t fIalpha; // Track rotation angle
240 Double_t fIx; // x-coordinate of the track reference plane
241 Double_t fIp[5]; // external track parameters
242 Double_t fIc[15]; // external cov. matrix of the track parameters
23904d16 243
c4d11b15 244//Track parameters at the inner wall of the TRD
245 Double_t fTalpha; // Track rotation angle
246 Double_t fTx; // x-coordinate of the track reference plane
247 Double_t fTp[5]; // external track parameters
248 Double_t fTc[15]; // external cov. matrix of the track parameters
ae982df3 249
ae982df3 250 // ITS related track information
251 Float_t fITSchi2; // chi2 in the ITS
c4d11b15 252 Float_t fITSchi2MIP[12]; // chi2s in the ITS
ae982df3 253 Int_t fITSncls; // number of clusters assigned in the ITS
254 UInt_t fITSindex[6]; //! indices of the assigned ITS clusters
255 Float_t fITSsignal; // detector's PID signal
304864ab 256 Float_t fITSr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 257 Int_t fITSLabel; // label according TPC
babd135a 258 Float_t fITSFakeRatio; // ration of fake tracks
3fd96ae3 259 AliKalmanTrack * fITStrack; //! OWNER: pointer to the ITS track -- currently for debug purpose
c4d11b15 260
ae982df3 261 // TPC related track information
262 Float_t fTPCchi2; // chi2 in the TPC
263 Int_t fTPCncls; // number of clusters assigned in the TPC
c84a5e9e 264 Int_t fTPCindex[180]; //! indices of the assigned TPC clusters
a866ac60 265 TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow
ae982df3 266 Float_t fTPCsignal; // detector's PID signal
304864ab 267 Float_t fTPCr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 268 Int_t fTPCLabel; // label according TPC
51ad6848 269 Float_t fTPCPoints[4]; // TPC points -first, max. dens, last and max density
270 Int_t fKinkIndexes[3]; // array of indexes of posible kink candidates
271 Int_t fV0Indexes[3]; // array of indexes of posible kink candidates
23904d16 272
ae982df3 273 // TRD related track information
79e94bf8 274 Float_t fTRDchi2; // chi2 in the TRD
275 Int_t fTRDncls; // number of clusters assigned in the TRD
c4d11b15 276 Int_t fTRDncls0; // number of clusters assigned in the TRD before first material cross
277 UInt_t fTRDindex[130]; //! indices of the assigned TRD clusters
79e94bf8 278 Float_t fTRDsignal; // detector's PID signal
eab5961e 279 Float_t fTRDsignals[kNPlane]; // TRD signals from all six planes
280 Int_t fTRDTimBin[kNPlane]; // Time bin of Max cluster from all six planes
304864ab 281 Float_t fTRDr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 282 Int_t fTRDLabel; // label according TRD
7c97ee80 283 Float_t fTRDQuality; //trd quality factor for TOF
3fd96ae3 284 AliKalmanTrack * fTRDtrack; //! OWNER: pointer to the TRD track -- currently for debug purpose
23904d16 285
ae982df3 286 // TOF related track information
c630aafd 287 Float_t fTOFchi2; // chi2 in the TOF
bb2ceb1f 288 UInt_t fTOFindex; // index of the assigned TOF cluster
c630aafd 289 Float_t fTOFsignal; // detector's PID signal
304864ab 290 Float_t fTOFr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
51ad6848 291 Int_t fTOFLabel[3]; // TOF label
c84a5e9e 292 Float_t fTOFInfo[10]; //! TOF informations
23904d16 293
4a78b8c5 294 // PHOS related track information
51ad6848 295 Float_t fPHOSpos[3]; // position localised by PHOS in global coordinate system
4a78b8c5 296 Float_t fPHOSsignal; // energy measured by PHOS
304864ab 297 Float_t fPHOSr[AliPID::kSPECIESN]; // PID information from PHOS
704be597 298
299 // EMCAL related track information
300 Float_t fEMCALpos[3]; //position localised by EMCAL in global coordinate system
301 Float_t fEMCALsignal; // energy measured by EMCAL
304864ab 302 Float_t fEMCALr[AliPID::kSPECIESN]; // PID information from EMCAL
ae982df3 303
4a78b8c5 304 // HMPID related track information
1e5d06c3 305 Float_t fRICHchi2; // chi2 in the RICH
306 Int_t fRICHncls; // number of photon clusters
307 UInt_t fRICHindex; // index of the assigned MIP cluster
308 Float_t fRICHsignal; // RICH PID signal
304864ab 309 Float_t fRICHr[AliPID::kSPECIES];// "detector response probabilities" (for the PID)
1e5d06c3 310 Float_t fRICHtheta; // theta of the track extrapolated to the RICH
311 Float_t fRICHphi; // phi of the track extrapolated to the RICH
312 Float_t fRICHdx; // x of the track impact minus x of the MIP
313 Float_t fRICHdy; // y of the track impact minus y of the MIP
4a78b8c5 314
3ee391b5 315 ClassDef(AliESDtrack,15) //ESDtrack
ae982df3 316};
317
318#endif
319