ESD track based on AliExternalTrackParam. Class redesign and clean-up (Yu.Belikov)
[u/mrichter/AliRoot.git] / STEER / AliESDtrack.h
CommitLineData
ae982df3 1#ifndef ALIESDTRACK_H
2#define ALIESDTRACK_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
ac3faee4 6/* $Id$ */
7
ae982df3 8//-------------------------------------------------------------------------
9// Class AliESDtrack
15614b8b 10// This is the class to deal with during the physics analysis of data
ae982df3 11//
12// Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch
13//-------------------------------------------------------------------------
23904d16 14/*****************************************************************************
15 * Use GetExternalParameters() and GetExternalCovariance() to access the *
16 * track information regardless of its internal representation. *
17 * This formation is now fixed in the following way: *
18 * external param0: local Y-coordinate of a track (cm) *
19 * external param1: local Z-coordinate of a track (cm) *
20 * external param2: local sine of the track momentum azimuthal angle *
21 * external param3: tangent of the track momentum dip angle *
22 * external param4: 1/pt (1/(GeV/c)) *
23 *****************************************************************************/
ac3faee4 24
a866ac60 25#include <TBits.h>
c9ec41e8 26#include "AliExternalTrackParam.h"
304864ab 27#include "AliPID.h"
f6956857 28#include <TVector3.h>
29
ae982df3 30class AliKalmanTrack;
98937d93 31class AliTrackPointArray;
ae982df3 32
eab5961e 33const Int_t kNPlane = 6;
34
c9ec41e8 35class AliESDtrack : public AliExternalTrackParam {
ae982df3 36public:
37 AliESDtrack();
c4d11b15 38 AliESDtrack(const AliESDtrack& track);
51ad6848 39 virtual ~AliESDtrack();
9559cbc4 40 void MakeMiniESDtrack();
51ad6848 41 void SetID(Int_t id) { fID =id;}
42 Int_t GetID(){ return fID;}
ae982df3 43 void SetStatus(ULong_t flags) {fFlags|=flags;}
44 void ResetStatus(ULong_t flags) {fFlags&=~flags;}
15614b8b 45 Bool_t UpdateTrackParams(const AliKalmanTrack *t, ULong_t flags);
399fb957 46 void SetImpactParameters(Float_t xy,Float_t z) {fD=xy; fZ=z;}
ae982df3 47 void SetIntegratedLength(Double_t l) {fTrackLength=l;}
48 void SetIntegratedTimes(const Double_t *times);
8c6a71ab 49 void SetESDpid(const Double_t *p);
50 void GetESDpid(Double_t *p) const;
ae982df3 51
52 ULong_t GetStatus() const {return fFlags;}
53 Int_t GetLabel() const {return fLabel;}
a33a2f3d 54 void SetLabel(Int_t label) {fLabel = label;}
c9ec41e8 55
ae982df3 56 void GetExternalParameters(Double_t &x, Double_t p[5]) const;
57 void GetExternalCovariance(Double_t cov[15]) const;
23904d16 58
399fb957 59 void GetImpactParameters(Float_t &xy,Float_t &z) const {xy=fD; z=fZ;}
ae982df3 60 Double_t GetIntegratedLength() const {return fTrackLength;}
61 void GetIntegratedTimes(Double_t *times) const;
4a78b8c5 62 Double_t GetMass() const;
f6956857 63 TVector3 P3() const {Double_t p[3]; GetPxPyPz(p); return TVector3(p[0],p[1],p[2]);} //running track momentum
f6956857 64 TVector3 X3() const {Double_t x[3]; GetXYZ(x); return TVector3(x[0],x[1],x[2]);} //running track position
ae982df3 65
5ccd1720 66 void SetConstrainedTrackParams(const AliKalmanTrack *t, Double_t chi2);
67c3dcbe 67
c9ec41e8 68 Double_t GetConstrainedAlpha() const {
69 if (!fCp) return 720;
70 return fCp->GetAlpha();
71 }
72 Bool_t GetConstrainedPxPyPz(Double_t *p) const {
73 if (!fCp) return kFALSE;
74 return fCp->GetPxPyPz(p);
75 }
76 Bool_t GetConstrainedXYZ(Double_t *r) const {
77 if (!fCp) return kFALSE;
78 return fCp->GetXYZ(r);
79 }
67c3dcbe 80 void GetConstrainedExternalParameters(Double_t &x, Double_t p[5]) const;
81 void GetConstrainedExternalCovariance(Double_t cov[15]) const;
c9ec41e8 82 Double_t GetConstrainedChi2() const {return fCchi2;}
67c3dcbe 83
67c3dcbe 84
c9ec41e8 85 Double_t GetInnerAlpha() const {
86 if (!fIp) return 720;
87 return fIp->GetAlpha();
88 }
89 Bool_t GetInnerPxPyPz(Double_t *p) const {
90 if (!fIp) return kFALSE;
91 return fIp->GetPxPyPz(p);
92 }
93 Bool_t GetInnerXYZ(Double_t *r) const {
94 if (!fIp) return kFALSE;
95 return fIp->GetXYZ(r);
96 }
97 void GetInnerExternalParameters(Double_t &x, Double_t p[5]) const;
98 void GetInnerExternalCovariance(Double_t cov[15]) const;
98937d93 99
c9ec41e8 100 Double_t GetOuterAlpha() const {
101 if (!fOp) return 720;
102 return fOp->GetAlpha();
103 }
104 void GetOuterExternalParameters(Double_t &x, Double_t p[5]) const;
105 void GetOuterExternalCovariance(Double_t cov[15]) const;
106
98937d93 107 Int_t GetNcls(Int_t idet) const;
108 Int_t GetClusters(Int_t idet, UInt_t *idx) const;
109
c630aafd 110 void SetITSpid(const Double_t *p);
babd135a 111 void SetITSChi2MIP(const Float_t *chi2mip);
c4d11b15 112 void SetITStrack(AliKalmanTrack * track){fITStrack=track;}
c630aafd 113 void GetITSpid(Double_t *p) const;
ae982df3 114 Float_t GetITSsignal() const {return fITSsignal;}
13da10da 115 Float_t GetITSchi2() const {return fITSchi2;}
ae982df3 116 Int_t GetITSclusters(UInt_t *idx) const;
6e5b1b04 117 Int_t GetITSLabel() const {return fITSLabel;}
babd135a 118 Float_t GetITSFakeRatio() const {return fITSFakeRatio;}
c4d11b15 119 AliKalmanTrack * GetITStrack(){return fITStrack;}
ae982df3 120
13da10da 121 void SetTPCpid(const Double_t *p);
122 void GetTPCpid(Double_t *p) const;
51ad6848 123 void SetTPCPoints(Float_t points[4]){for (Int_t i=0;i<4;i++) fTPCPoints[i]=points[i];}
98937d93 124 Float_t GetTPCPoints(Int_t i){return fTPCPoints[i];}
51ad6848 125 void SetKinkIndexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fKinkIndexes[i] = points[i];}
126 void SetV0Indexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fV0Indexes[i] = points[i];}
13da10da 127 Float_t GetTPCsignal() const {return fTPCsignal;}
128 Float_t GetTPCchi2() const {return fTPCchi2;}
129 Int_t GetTPCclusters(Int_t *idx) const;
81e97e0d 130 Float_t GetTPCdensity(Int_t row0, Int_t row1) const;
6e5b1b04 131 Int_t GetTPCLabel() const {return fTPCLabel;}
51ad6848 132 Int_t GetKinkIndex(Int_t i) const { return fKinkIndexes[i];}
133 Int_t GetV0Index(Int_t i) const { return fV0Indexes[i];}
3a83c716 134 const TBits& GetTPCClusterMap() const {return fTPCClusterMap;}
a866ac60 135
c630aafd 136 void SetTRDpid(const Double_t *p);
7c97ee80 137 void SetTRDQuality(Float_t quality){fTRDQuality=quality;}
138 Float_t GetTRDQuality()const {return fTRDQuality;}
23d49657 139 void SetTRDBudget(Float_t budget){fTRDBudget=budget;}
140 Float_t GetTRDBudget()const {return fTRDBudget;}
c4d11b15 141 void SetTRDtrack(AliKalmanTrack * track){fTRDtrack=track;}
eab5961e 142 void SetTRDsignals(Float_t dedx, Int_t i) {fTRDsignals[i]=dedx;}
143 void SetTRDTimBin(Int_t timbin, Int_t i) {fTRDTimBin[i]=timbin;}
c630aafd 144 void GetTRDpid(Double_t *p) const;
79e94bf8 145 Float_t GetTRDsignal() const {return fTRDsignal;}
eab5961e 146 Float_t GetTRDsignals(Int_t i) const {return fTRDsignals[i];}
147 Int_t GetTRDTimBin(Int_t i) const {return fTRDTimBin[i];}
13da10da 148 Float_t GetTRDchi2() const {return fTRDchi2;}
bb2ceb1f 149 Int_t GetTRDclusters(UInt_t *idx) const;
51ad6848 150 Int_t GetTRDncls() const {return fTRDncls;}
79e94bf8 151 void SetTRDpid(Int_t iSpecies, Float_t p);
152 Float_t GetTRDpid(Int_t iSpecies) const;
6e5b1b04 153 Int_t GetTRDLabel() const {return fTRDLabel;}
c9ec41e8 154
155
c4d11b15 156 AliKalmanTrack * GetTRDtrack(){return fTRDtrack;}
79e94bf8 157
c630aafd 158 void SetTOFsignal(Double_t tof) {fTOFsignal=tof;}
159 Float_t GetTOFsignal() const {return fTOFsignal;}
13da10da 160 Float_t GetTOFchi2() const {return fTOFchi2;}
c630aafd 161 void SetTOFpid(const Double_t *p);
51ad6848 162 void SetTOFLabel(const Int_t *p);
c630aafd 163 void GetTOFpid(Double_t *p) const;
51ad6848 164 void GetTOFLabel(Int_t *p) const;
165 void GetTOFInfo(Float_t *info) const;
166 void SetTOFInfo(Float_t *info);
c630aafd 167 UInt_t GetTOFcluster() const {return fTOFindex;}
168 void SetTOFcluster(UInt_t index) {fTOFindex=index;}
4a78b8c5 169
170 void SetRICHsignal(Double_t beta) {fRICHsignal=beta;}
171 Float_t GetRICHsignal() const {return fRICHsignal;}
172 void SetRICHpid(const Double_t *p);
173 void GetRICHpid(Double_t *p) const;
1e5d06c3 174 void SetRICHchi2(Double_t chi2) {fRICHchi2=chi2;}
175 Float_t GetRICHchi2() const {return fRICHchi2;}
176 void SetRICHcluster(UInt_t index) {fRICHindex=index;}
177 UInt_t GetRICHcluster() const {return fRICHindex;}
178 void SetRICHnclusters(Int_t n) {fRICHncls=n;}
179 Int_t GetRICHnclusters() const {return fRICHncls;}
180 void SetRICHthetaPhi(Double_t theta, Double_t phi) {
181 fRICHtheta=theta; fRICHphi=phi;
182 }
183 void GetRICHthetaPhi(Double_t &theta, Double_t &phi) const {
184 theta=fRICHtheta; phi=fRICHphi;
185 }
186 void SetRICHdxdy(Double_t dx, Double_t dy) {
187 fRICHdx=dx; fRICHdy=dy;
188 }
189 void GetRICHdxdy(Double_t &dx, Double_t &dy) const {
f6956857 190 dx=fRICHdx; dy=fRICHdy;
1e5d06c3 191 }
4a78b8c5 192
193 void SetPHOSposition(const Double_t *pos) {
194 fPHOSpos[0] = pos[0]; fPHOSpos[1]=pos[1]; fPHOSpos[2]=pos[2];
195 }
196 void SetPHOSsignal(Double_t ene) {fPHOSsignal = ene; }
197 void SetPHOSpid(const Double_t *p);
198 void GetPHOSposition(Double_t *pos) const {
199 pos[0]=fPHOSpos[0]; pos[1]=fPHOSpos[1]; pos[2]=fPHOSpos[2];
200 }
201 Float_t GetPHOSsignal() const {return fPHOSsignal;}
202 void GetPHOSpid(Double_t *p) const;
203
704be597 204 void SetEMCALposition(const Double_t *pos) {
205 fEMCALpos[0] = pos[0]; fEMCALpos[1]=pos[1]; fEMCALpos[2]=pos[2];
206 }
207 void SetEMCALsignal(Double_t ene) {fEMCALsignal = ene; }
208 void SetEMCALpid(const Double_t *p);
209 void GetEMCALposition(Double_t *pos) const {
210 pos[0]=fEMCALpos[0]; pos[1]=fEMCALpos[1]; pos[2]=fEMCALpos[2];
211 }
212 Float_t GetEMCALsignal() const {return fEMCALsignal;}
213 void GetEMCALpid(Double_t *p) const;
214
3a83c716 215 Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;}
704be597 216 Bool_t IsRICH() const {return fFlags&kRICHpid;}
217 Bool_t IsPHOS() const {return fFlags&kPHOSpid;}
218 Bool_t IsEMCAL() const {return fFlags&kEMCALpid;}
ac2f7574 219
98937d93 220 void SetTrackPointArray(AliTrackPointArray *points) { fPoints = points; }
221 AliTrackPointArray *GetTrackPointArray() const { return fPoints; }
222
ac2f7574 223 virtual void Print(Option_t * opt) const ;
224
ae982df3 225 enum {
8c6a71ab 226 kITSin=0x0001,kITSout=0x0002,kITSrefit=0x0004,kITSpid=0x0008,
227 kTPCin=0x0010,kTPCout=0x0020,kTPCrefit=0x0040,kTPCpid=0x0080,
228 kTRDin=0x0100,kTRDout=0x0200,kTRDrefit=0x0400,kTRDpid=0x0800,
229 kTOFin=0x1000,kTOFout=0x2000,kTOFrefit=0x4000,kTOFpid=0x8000,
c4d11b15 230 kPHOSpid=0x10000, kRICHpid=0x20000, kEMCALpid=0x40000,
231 kTRDbackup=0x80000,
4a78b8c5 232 kTRDStop=0x20000000,
8c6a71ab 233 kESDpid=0x40000000,
ae982df3 234 kTIME=0x80000000
235 };
ae982df3 236protected:
90e48c0c 237
81e97e0d 238 //AliESDtrack & operator=(const AliESDtrack & );
90e48c0c 239
ae982df3 240 ULong_t fFlags; // Reconstruction status flags
241 Int_t fLabel; // Track label
51ad6848 242 Int_t fID; // Unique ID of the track
399fb957 243 Float_t fTrackLength; // Track length
244 Float_t fD; // Impact parameter in XY-plane
245 Float_t fZ; // Impact parameter in Z
304864ab 246 Float_t fTrackTime[AliPID::kSPECIES]; // TOFs estimated by the tracking
c9ec41e8 247 Float_t fR[AliPID::kSPECIES]; // combined "detector response probability"
ae982df3 248
c9ec41e8 249 Int_t fStopVertex; // Index of stop vertex
ae982df3 250
67c3dcbe 251//Track parameters constrained to the primary vertex
c9ec41e8 252 AliExternalTrackParam *fCp;
67c3dcbe 253 Double_t fCchi2; //chi2 at the primary vertex
254
672b5f43 255//Track parameters at the inner wall of the TPC
c9ec41e8 256 AliExternalTrackParam *fIp;
23904d16 257
c4d11b15 258//Track parameters at the inner wall of the TRD
c9ec41e8 259 AliExternalTrackParam *fOp;
ae982df3 260
ae982df3 261 // ITS related track information
262 Float_t fITSchi2; // chi2 in the ITS
c4d11b15 263 Float_t fITSchi2MIP[12]; // chi2s in the ITS
ae982df3 264 Int_t fITSncls; // number of clusters assigned in the ITS
265 UInt_t fITSindex[6]; //! indices of the assigned ITS clusters
266 Float_t fITSsignal; // detector's PID signal
304864ab 267 Float_t fITSr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 268 Int_t fITSLabel; // label according TPC
babd135a 269 Float_t fITSFakeRatio; // ration of fake tracks
3fd96ae3 270 AliKalmanTrack * fITStrack; //! OWNER: pointer to the ITS track -- currently for debug purpose
c4d11b15 271
ae982df3 272 // TPC related track information
273 Float_t fTPCchi2; // chi2 in the TPC
274 Int_t fTPCncls; // number of clusters assigned in the TPC
c84a5e9e 275 Int_t fTPCindex[180]; //! indices of the assigned TPC clusters
a866ac60 276 TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow
ae982df3 277 Float_t fTPCsignal; // detector's PID signal
304864ab 278 Float_t fTPCr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 279 Int_t fTPCLabel; // label according TPC
51ad6848 280 Float_t fTPCPoints[4]; // TPC points -first, max. dens, last and max density
281 Int_t fKinkIndexes[3]; // array of indexes of posible kink candidates
282 Int_t fV0Indexes[3]; // array of indexes of posible kink candidates
23904d16 283
ae982df3 284 // TRD related track information
79e94bf8 285 Float_t fTRDchi2; // chi2 in the TRD
286 Int_t fTRDncls; // number of clusters assigned in the TRD
c4d11b15 287 Int_t fTRDncls0; // number of clusters assigned in the TRD before first material cross
288 UInt_t fTRDindex[130]; //! indices of the assigned TRD clusters
79e94bf8 289 Float_t fTRDsignal; // detector's PID signal
eab5961e 290 Float_t fTRDsignals[kNPlane]; // TRD signals from all six planes
291 Int_t fTRDTimBin[kNPlane]; // Time bin of Max cluster from all six planes
304864ab 292 Float_t fTRDr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
6e5b1b04 293 Int_t fTRDLabel; // label according TRD
7c97ee80 294 Float_t fTRDQuality; //trd quality factor for TOF
23d49657 295 Float_t fTRDBudget; //trd material budget
3fd96ae3 296 AliKalmanTrack * fTRDtrack; //! OWNER: pointer to the TRD track -- currently for debug purpose
23904d16 297
ae982df3 298 // TOF related track information
c630aafd 299 Float_t fTOFchi2; // chi2 in the TOF
bb2ceb1f 300 UInt_t fTOFindex; // index of the assigned TOF cluster
c630aafd 301 Float_t fTOFsignal; // detector's PID signal
304864ab 302 Float_t fTOFr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
51ad6848 303 Int_t fTOFLabel[3]; // TOF label
c84a5e9e 304 Float_t fTOFInfo[10]; //! TOF informations
23904d16 305
4a78b8c5 306 // PHOS related track information
51ad6848 307 Float_t fPHOSpos[3]; // position localised by PHOS in global coordinate system
4a78b8c5 308 Float_t fPHOSsignal; // energy measured by PHOS
304864ab 309 Float_t fPHOSr[AliPID::kSPECIESN]; // PID information from PHOS
704be597 310
311 // EMCAL related track information
312 Float_t fEMCALpos[3]; //position localised by EMCAL in global coordinate system
313 Float_t fEMCALsignal; // energy measured by EMCAL
304864ab 314 Float_t fEMCALr[AliPID::kSPECIESN]; // PID information from EMCAL
ae982df3 315
4a78b8c5 316 // HMPID related track information
1e5d06c3 317 Float_t fRICHchi2; // chi2 in the RICH
318 Int_t fRICHncls; // number of photon clusters
319 UInt_t fRICHindex; // index of the assigned MIP cluster
320 Float_t fRICHsignal; // RICH PID signal
304864ab 321 Float_t fRICHr[AliPID::kSPECIES];// "detector response probabilities" (for the PID)
1e5d06c3 322 Float_t fRICHtheta; // theta of the track extrapolated to the RICH
323 Float_t fRICHphi; // phi of the track extrapolated to the RICH
324 Float_t fRICHdx; // x of the track impact minus x of the MIP
325 Float_t fRICHdy; // y of the track impact minus y of the MIP
98937d93 326
327 AliTrackPointArray *fPoints; // Array which contains the track space points in the global frame
328
c9ec41e8 329 ClassDef(AliESDtrack,20) //ESDtrack
ae982df3 330};
331
332#endif
333