]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/AliExternalTrackParam.cxx
AddTrial method added, changed trials to unsigned int
[u/mrichter/AliRoot.git] / STEER / AliExternalTrackParam.cxx
CommitLineData
51ad6848 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
49d13e89 20// Implementation of the external track parameterisation class. //
51ad6848 21// //
49d13e89 22// This parameterisation is used to exchange tracks between the detectors. //
23// A set of functions returning the position and the momentum of tracks //
24// in the global coordinate system as well as the track impact parameters //
25// are implemented.
26// Origin: I.Belikov, CERN, Jouri.Belikov@cern.ch //
51ad6848 27///////////////////////////////////////////////////////////////////////////////
86be8934 28#include <cassert>
29
30#include <TVectorD.h>
4b189f98 31#include <TMatrixDSym.h>
d46683db 32#include <TPolyMarker3D.h>
33#include <TVector3.h>
cfdb62d4 34#include <TMatrixD.h>
d46683db 35
51ad6848 36#include "AliExternalTrackParam.h"
58e536c5 37#include "AliVVertex.h"
6c94f330 38#include "AliLog.h"
51ad6848 39
40ClassImp(AliExternalTrackParam)
41
ed5f2849 42Double32_t AliExternalTrackParam::fgMostProbablePt=kMostProbablePt;
f2cef1b5 43Bool_t AliExternalTrackParam::fgUseLogTermMS = kFALSE;;
51ad6848 44//_____________________________________________________________________________
90e48c0c 45AliExternalTrackParam::AliExternalTrackParam() :
4f6e22bd 46 AliVTrack(),
90e48c0c 47 fX(0),
c9ec41e8 48 fAlpha(0)
51ad6848 49{
90e48c0c 50 //
51 // default constructor
52 //
c9ec41e8 53 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
54 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 55}
56
6c94f330 57//_____________________________________________________________________________
58AliExternalTrackParam::AliExternalTrackParam(const AliExternalTrackParam &track):
4f6e22bd 59 AliVTrack(track),
6c94f330 60 fX(track.fX),
61 fAlpha(track.fAlpha)
62{
63 //
64 // copy constructor
65 //
66 for (Int_t i = 0; i < 5; i++) fP[i] = track.fP[i];
67 for (Int_t i = 0; i < 15; i++) fC[i] = track.fC[i];
86be8934 68 CheckCovariance();
6c94f330 69}
70
def9660e 71//_____________________________________________________________________________
72AliExternalTrackParam& AliExternalTrackParam::operator=(const AliExternalTrackParam &trkPar)
73{
74 //
75 // assignment operator
76 //
77
78 if (this!=&trkPar) {
4f6e22bd 79 AliVTrack::operator=(trkPar);
def9660e 80 fX = trkPar.fX;
81 fAlpha = trkPar.fAlpha;
82
83 for (Int_t i = 0; i < 5; i++) fP[i] = trkPar.fP[i];
84 for (Int_t i = 0; i < 15; i++) fC[i] = trkPar.fC[i];
86be8934 85 CheckCovariance();
def9660e 86 }
87
88 return *this;
89}
90
51ad6848 91//_____________________________________________________________________________
92AliExternalTrackParam::AliExternalTrackParam(Double_t x, Double_t alpha,
93 const Double_t param[5],
90e48c0c 94 const Double_t covar[15]) :
4f6e22bd 95 AliVTrack(),
90e48c0c 96 fX(x),
c9ec41e8 97 fAlpha(alpha)
51ad6848 98{
90e48c0c 99 //
100 // create external track parameters from given arguments
101 //
c9ec41e8 102 for (Int_t i = 0; i < 5; i++) fP[i] = param[i];
103 for (Int_t i = 0; i < 15; i++) fC[i] = covar[i];
86be8934 104 CheckCovariance();
51ad6848 105}
106
4f6e22bd 107//_____________________________________________________________________________
108AliExternalTrackParam::AliExternalTrackParam(const AliVTrack *vTrack) :
109 AliVTrack(),
110 fX(0.),
111 fAlpha(0.)
112{
113 //
610e3088 114 // Constructor from virtual track,
115 // This is not a copy contructor !
4f6e22bd 116 //
610e3088 117
118 if (vTrack->InheritsFrom("AliExternalTrackParam")) {
119 AliError("This is not a copy constructor. Use AliExternalTrackParam(const AliExternalTrackParam &) !");
120 AliWarning("Calling the default constructor...");
121 AliExternalTrackParam();
122 return;
123 }
124
892be05f 125 Double_t xyz[3],pxpypz[3],cv[21];
126 vTrack->GetXYZ(xyz);
127 pxpypz[0]=vTrack->Px();
128 pxpypz[1]=vTrack->Py();
129 pxpypz[2]=vTrack->Pz();
4f6e22bd 130 vTrack->GetCovarianceXYZPxPyPz(cv);
131 Short_t sign = (Short_t)vTrack->Charge();
132
133 Set(xyz,pxpypz,cv,sign);
134}
135
90e48c0c 136//_____________________________________________________________________________
da4e3deb 137AliExternalTrackParam::AliExternalTrackParam(Double_t xyz[3],Double_t pxpypz[3],
138 Double_t cv[21],Short_t sign) :
4f6e22bd 139 AliVTrack(),
da4e3deb 140 fX(0.),
141 fAlpha(0.)
4f6e22bd 142{
143 //
144 // constructor from the global parameters
145 //
146
147 Set(xyz,pxpypz,cv,sign);
148}
149
150//_____________________________________________________________________________
151void AliExternalTrackParam::Set(Double_t xyz[3],Double_t pxpypz[3],
152 Double_t cv[21],Short_t sign)
da4e3deb 153{
154 //
155 // create external track parameters from the global parameters
156 // x,y,z,px,py,pz and their 6x6 covariance matrix
157 // A.Dainese 10.10.08
158
aff56ff7 159 // Calculate alpha: the rotation angle of the corresponding local system.
160 //
161 // For global radial position inside the beam pipe, alpha is the
162 // azimuthal angle of the momentum projected on (x,y).
163 //
c99948ce 164 // For global radial position outside the ITS, alpha is the
aff56ff7 165 // azimuthal angle of the centre of the TPC sector in which the point
166 // xyz lies
167 //
4349f5a4 168 const double kSafe = 1e-5;
aff56ff7 169 Double_t radPos2 = xyz[0]*xyz[0]+xyz[1]*xyz[1];
c99948ce 170 Double_t radMax = 45.; // approximately ITS outer radius
4349f5a4 171 if (radPos2 < radMax*radMax) { // inside the ITS
aff56ff7 172 fAlpha = TMath::ATan2(pxpypz[1],pxpypz[0]);
c99948ce 173 } else { // outside the ITS
aff56ff7 174 Float_t phiPos = TMath::Pi()+TMath::ATan2(-xyz[1], -xyz[0]);
175 fAlpha =
176 TMath::DegToRad()*(20*((((Int_t)(phiPos*TMath::RadToDeg()))/20))+10);
177 }
4349f5a4 178 //
179 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
180 // protection: avoid alpha being too close to 0 or +-pi/2
181 if (TMath::Abs(sn)<kSafe) {
182 fAlpha = kSafe;
183 cs=TMath::Cos(fAlpha);
184 sn=TMath::Sin(fAlpha);
185 }
186 else if (cs<kSafe) {
187 fAlpha -= TMath::Sign(kSafe, fAlpha);
188 cs=TMath::Cos(fAlpha);
189 sn=TMath::Sin(fAlpha);
190 }
da4e3deb 191 // Get the vertex of origin and the momentum
192 TVector3 ver(xyz[0],xyz[1],xyz[2]);
193 TVector3 mom(pxpypz[0],pxpypz[1],pxpypz[2]);
4349f5a4 194 //
195 // avoid momenta along axis
196 if (TMath::Abs(mom[0])<kSafe) mom[0] = TMath::Sign(kSafe*TMath::Abs(mom[1]), mom[0]);
197 if (TMath::Abs(mom[1])<kSafe) mom[1] = TMath::Sign(kSafe*TMath::Abs(mom[0]), mom[1]);
da4e3deb 198
199 // Rotate to the local coordinate system
200 ver.RotateZ(-fAlpha);
201 mom.RotateZ(-fAlpha);
202
203 // x of the reference plane
204 fX = ver.X();
205
206 Double_t charge = (Double_t)sign;
207
208 fP[0] = ver.Y();
209 fP[1] = ver.Z();
210 fP[2] = TMath::Sin(mom.Phi());
211 fP[3] = mom.Pz()/mom.Pt();
212 fP[4] = TMath::Sign(1/mom.Pt(),charge);
213
214 // Covariance matrix (formulas to be simplified)
215
752303df 216 if (TMath::Abs( 1-fP[2]) < kSafe) fP[2] = 1.- kSafe; //Protection
217 else if (TMath::Abs(-1-fP[2]) < kSafe) fP[2] =-1.+ kSafe; //Protection
218
da4e3deb 219 Double_t pt=1./TMath::Abs(fP[4]);
da4e3deb 220 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
221
222 Double_t m00=-sn;// m10=cs;
223 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
224 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
225 Double_t m35=pt, m45=-pt*pt*fP[3];
226
227 m43*=GetSign();
228 m44*=GetSign();
229 m45*=GetSign();
230
231 Double_t cv34 = TMath::Sqrt(cv[3 ]*cv[3 ]+cv[4 ]*cv[4 ]);
232 Double_t a1=cv[13]-cv[9]*(m23*m44+m43*m24)/m23/m43;
233 Double_t a2=m23*m24-m23*(m23*m44+m43*m24)/m43;
234 Double_t a3=m43*m44-m43*(m23*m44+m43*m24)/m23;
235 Double_t a4=cv[14]-2.*cv[9]*m24*m44/m23/m43;
236 Double_t a5=m24*m24-2.*m24*m44*m23/m43;
237 Double_t a6=m44*m44-2.*m24*m44*m43/m23;
238
239 fC[0 ] = cv[0 ]+cv[2 ];
240 fC[1 ] = TMath::Sign(cv34,cv[3 ]/m00);
241 fC[2 ] = cv[5 ];
242 fC[3 ] = (cv[10]/m44-cv[6]/m43)/(m24/m44-m23/m43)/m00;
243 fC[10] = (cv[6]/m00-fC[3 ]*m23)/m43;
244 fC[6 ] = (cv[15]/m00-fC[10]*m45)/m35;
245 fC[4 ] = (cv[12]-cv[8]*m44/m43)/(m24-m23*m44/m43);
246 fC[11] = (cv[8]-fC[4]*m23)/m43;
247 fC[7 ] = cv[17]/m35-fC[11]*m45/m35;
248 fC[5 ] = TMath::Abs((a4-a6*a1/a3)/(a5-a6*a2/a3));
249 fC[14] = TMath::Abs(a1/a3-a2*fC[5]/a3);
250 fC[12] = (cv[9]-fC[5]*m23*m23-fC[14]*m43*m43)/m23/m43;
251 Double_t b1=cv[18]-fC[12]*m23*m45-fC[14]*m43*m45;
252 Double_t b2=m23*m35;
253 Double_t b3=m43*m35;
254 Double_t b4=cv[19]-fC[12]*m24*m45-fC[14]*m44*m45;
255 Double_t b5=m24*m35;
256 Double_t b6=m44*m35;
257 fC[8 ] = (b4-b6*b1/b3)/(b5-b6*b2/b3);
258 fC[13] = b1/b3-b2*fC[8]/b3;
259 fC[9 ] = TMath::Abs((cv[20]-fC[14]*(m45*m45)-fC[13]*2.*m35*m45)/(m35*m35));
4f6e22bd 260
86be8934 261 CheckCovariance();
262
4f6e22bd 263 return;
da4e3deb 264}
265
51ad6848 266//_____________________________________________________________________________
c9ec41e8 267void AliExternalTrackParam::Reset() {
1530f89c 268 //
269 // Resets all the parameters to 0
270 //
c9ec41e8 271 fX=fAlpha=0.;
272 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
273 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 274}
275
3775b0ca 276//_____________________________________________________________________________
277void AliExternalTrackParam::AddCovariance(const Double_t c[15]) {
278 //
279 // Add "something" to the track covarince matrix.
280 // May be needed to account for unknown mis-calibration/mis-alignment
281 //
282 fC[0] +=c[0];
283 fC[1] +=c[1]; fC[2] +=c[2];
284 fC[3] +=c[3]; fC[4] +=c[4]; fC[5] +=c[5];
285 fC[6] +=c[6]; fC[7] +=c[7]; fC[8] +=c[8]; fC[9] +=c[9];
286 fC[10]+=c[10]; fC[11]+=c[11]; fC[12]+=c[12]; fC[13]+=c[13]; fC[14]+=c[14];
86be8934 287 CheckCovariance();
3775b0ca 288}
289
290
c9ec41e8 291Double_t AliExternalTrackParam::GetP() const {
292 //---------------------------------------------------------------------
293 // This function returns the track momentum
294 // Results for (nearly) straight tracks are meaningless !
295 //---------------------------------------------------------------------
06fb4a2f 296 if (TMath::Abs(fP[4])<=kAlmost0) return kVeryBig;
c9ec41e8 297 return TMath::Sqrt(1.+ fP[3]*fP[3])/TMath::Abs(fP[4]);
51ad6848 298}
299
1d99986f 300Double_t AliExternalTrackParam::Get1P() const {
301 //---------------------------------------------------------------------
302 // This function returns the 1/(track momentum)
303 //---------------------------------------------------------------------
304 return TMath::Abs(fP[4])/TMath::Sqrt(1.+ fP[3]*fP[3]);
305}
306
c9ec41e8 307//_______________________________________________________________________
c7bafca9 308Double_t AliExternalTrackParam::GetD(Double_t x,Double_t y,Double_t b) const {
c9ec41e8 309 //------------------------------------------------------------------
310 // This function calculates the transverse impact parameter
311 // with respect to a point with global coordinates (x,y)
312 // in the magnetic field "b" (kG)
313 //------------------------------------------------------------------
5773defd 314 if (TMath::Abs(b) < kAlmost0Field) return GetLinearD(x,y);
1530f89c 315 Double_t rp4=GetC(b);
c9ec41e8 316
317 Double_t xt=fX, yt=fP[0];
318
319 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
320 Double_t a = x*cs + y*sn;
321 y = -x*sn + y*cs; x=a;
322 xt-=x; yt-=y;
323
bfd20868 324 sn=rp4*xt - fP[2]; cs=rp4*yt + TMath::Sqrt((1.- fP[2])*(1.+fP[2]));
325 a=2*(xt*fP[2] - yt*TMath::Sqrt((1.-fP[2])*(1.+fP[2])))-rp4*(xt*xt + yt*yt);
1530f89c 326 return -a/(1 + TMath::Sqrt(sn*sn + cs*cs));
327}
328
329//_______________________________________________________________________
330void AliExternalTrackParam::
331GetDZ(Double_t x, Double_t y, Double_t z, Double_t b, Float_t dz[2]) const {
332 //------------------------------------------------------------------
333 // This function calculates the transverse and longitudinal impact parameters
334 // with respect to a point with global coordinates (x,y)
335 // in the magnetic field "b" (kG)
336 //------------------------------------------------------------------
bfd20868 337 Double_t f1 = fP[2], r1 = TMath::Sqrt((1.-f1)*(1.+f1));
1530f89c 338 Double_t xt=fX, yt=fP[0];
339 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
340 Double_t a = x*cs + y*sn;
341 y = -x*sn + y*cs; x=a;
342 xt-=x; yt-=y;
343
344 Double_t rp4=GetC(b);
345 if ((TMath::Abs(b) < kAlmost0Field) || (TMath::Abs(rp4) < kAlmost0)) {
346 dz[0] = -(xt*f1 - yt*r1);
347 dz[1] = fP[1] + (dz[0]*f1 - xt)/r1*fP[3] - z;
348 return;
349 }
350
351 sn=rp4*xt - f1; cs=rp4*yt + r1;
352 a=2*(xt*f1 - yt*r1)-rp4*(xt*xt + yt*yt);
353 Double_t rr=TMath::Sqrt(sn*sn + cs*cs);
354 dz[0] = -a/(1 + rr);
bfd20868 355 Double_t f2 = -sn/rr, r2 = TMath::Sqrt((1.-f2)*(1.+f2));
1530f89c 356 dz[1] = fP[1] + fP[3]/rp4*TMath::ASin(f2*r1 - f1*r2) - z;
51ad6848 357}
358
49d13e89 359//_______________________________________________________________________
360Double_t AliExternalTrackParam::GetLinearD(Double_t xv,Double_t yv) const {
361 //------------------------------------------------------------------
362 // This function calculates the transverse impact parameter
363 // with respect to a point with global coordinates (xv,yv)
364 // neglecting the track curvature.
365 //------------------------------------------------------------------
366 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
367 Double_t x= xv*cs + yv*sn;
368 Double_t y=-xv*sn + yv*cs;
369
bfd20868 370 Double_t d = (fX-x)*fP[2] - (fP[0]-y)*TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
49d13e89 371
1530f89c 372 return -d;
49d13e89 373}
374
b8e07ed6 375Bool_t AliExternalTrackParam::CorrectForMeanMaterialdEdx
376(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
377 Double_t dEdx,
378 Bool_t anglecorr) {
116b445b 379 //------------------------------------------------------------------
380 // This function corrects the track parameters for the crossed material.
381 // "xOverX0" - X/X0, the thickness in units of the radiation length.
382 // "xTimesRho" - is the product length*density (g/cm^2).
383 // "mass" - the mass of this particle (GeV/c^2).
b8e07ed6 384 // "dEdx" - mean enery loss (GeV/(g/cm^2)
385 // "anglecorr" - switch for the angular correction
116b445b 386 //------------------------------------------------------------------
387 Double_t &fP2=fP[2];
388 Double_t &fP3=fP[3];
389 Double_t &fP4=fP[4];
390
391 Double_t &fC22=fC[5];
392 Double_t &fC33=fC[9];
393 Double_t &fC43=fC[13];
394 Double_t &fC44=fC[14];
395
7dded1d5 396 //Apply angle correction, if requested
397 if(anglecorr) {
bfd20868 398 Double_t angle=TMath::Sqrt((1.+ fP3*fP3)/((1-fP2)*(1.+fP2)));
7dded1d5 399 xOverX0 *=angle;
400 xTimesRho *=angle;
401 }
402
116b445b 403 Double_t p=GetP();
404 Double_t p2=p*p;
405 Double_t beta2=p2/(p2 + mass*mass);
116b445b 406
9f2bec63 407 //Calculating the multiple scattering corrections******************
408 Double_t cC22 = 0.;
409 Double_t cC33 = 0.;
410 Double_t cC43 = 0.;
411 Double_t cC44 = 0.;
116b445b 412 if (xOverX0 != 0) {
f2cef1b5 413 //Double_t theta2=1.0259e-6*14*14/28/(beta2*p2)*TMath::Abs(d)*9.36*2.33;
414 Double_t theta2=0.0136*0.0136/(beta2*p2)*TMath::Abs(xOverX0);
415 if (GetUseLogTermMS()) {
416 double lt = 1+0.038*TMath::Log(TMath::Abs(xOverX0));
417 if (lt>0) theta2 *= lt*lt;
418 }
419 if(theta2>TMath::Pi()*TMath::Pi()) return kFALSE;
420 cC22 = theta2*((1.-fP2)*(1.+fP2))*(1. + fP3*fP3);
421 cC33 = theta2*(1. + fP3*fP3)*(1. + fP3*fP3);
422 cC43 = theta2*fP3*fP4*(1. + fP3*fP3);
423 cC44 = theta2*fP3*fP4*fP3*fP4;
116b445b 424 }
425
9f2bec63 426 //Calculating the energy loss corrections************************
427 Double_t cP4=1.;
116b445b 428 if ((xTimesRho != 0.) && (beta2 < 1.)) {
b8e07ed6 429 Double_t dE=dEdx*xTimesRho;
116b445b 430 Double_t e=TMath::Sqrt(p2 + mass*mass);
431 if ( TMath::Abs(dE) > 0.3*e ) return kFALSE; //30% energy loss is too much!
c9038cae 432 //cP4 = (1.- e/p2*dE);
76ece3d8 433 if ( (1.+ dE/p2*(dE + 2*e)) < 0. ) return kFALSE;
c9038cae 434 cP4 = 1./TMath::Sqrt(1.+ dE/p2*(dE + 2*e)); //A precise formula by Ruben !
9f2bec63 435 if (TMath::Abs(fP4*cP4)>100.) return kFALSE; //Do not track below 10 MeV/c
4b2fa3ce 436
116b445b 437
438 // Approximate energy loss fluctuation (M.Ivanov)
439 const Double_t knst=0.07; // To be tuned.
440 Double_t sigmadE=knst*TMath::Sqrt(TMath::Abs(dE));
9f2bec63 441 cC44 += ((sigmadE*e/p2*fP4)*(sigmadE*e/p2*fP4));
116b445b 442
443 }
444
9f2bec63 445 //Applying the corrections*****************************
446 fC22 += cC22;
447 fC33 += cC33;
448 fC43 += cC43;
449 fC44 += cC44;
450 fP4 *= cP4;
451
86be8934 452 CheckCovariance();
453
116b445b 454 return kTRUE;
455}
456
b8e07ed6 457Bool_t AliExternalTrackParam::CorrectForMeanMaterial
458(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
459 Bool_t anglecorr,
460 Double_t (*Bethe)(Double_t)) {
461 //------------------------------------------------------------------
462 // This function corrects the track parameters for the crossed material.
463 // "xOverX0" - X/X0, the thickness in units of the radiation length.
464 // "xTimesRho" - is the product length*density (g/cm^2).
465 // "mass" - the mass of this particle (GeV/c^2).
466 // "anglecorr" - switch for the angular correction
467 // "Bethe" - function calculating the energy loss (GeV/(g/cm^2))
468 //------------------------------------------------------------------
469
470 Double_t bg=GetP()/mass;
471 Double_t dEdx=Bethe(bg);
472
473 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
474}
475
476Bool_t AliExternalTrackParam::CorrectForMeanMaterialZA
477(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
478 Double_t zOverA,
479 Double_t density,
480 Double_t exEnergy,
481 Double_t jp1,
482 Double_t jp2,
483 Bool_t anglecorr) {
484 //------------------------------------------------------------------
485 // This function corrects the track parameters for the crossed material
486 // using the full Geant-like Bethe-Bloch formula parameterization
487 // "xOverX0" - X/X0, the thickness in units of the radiation length.
488 // "xTimesRho" - is the product length*density (g/cm^2).
489 // "mass" - the mass of this particle (GeV/c^2).
490 // "density" - mean density (g/cm^3)
491 // "zOverA" - mean Z/A
492 // "exEnergy" - mean exitation energy (GeV)
493 // "jp1" - density effect first junction point
494 // "jp2" - density effect second junction point
495 // "anglecorr" - switch for the angular correction
496 //
497 // The default values of the parameters are for silicon
498 //
499 //------------------------------------------------------------------
500
501 Double_t bg=GetP()/mass;
502 Double_t dEdx=BetheBlochGeant(bg,density,jp1,jp2,exEnergy,zOverA);
503
504 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
505}
506
507
116b445b 508
ee5dba5e 509Bool_t AliExternalTrackParam::CorrectForMaterial
510(Double_t d, Double_t x0, Double_t mass, Double_t (*Bethe)(Double_t)) {
c7bafca9 511 //------------------------------------------------------------------
116b445b 512 // Deprecated function !
513 // Better use CorrectForMeanMaterial instead of it.
514 //
c7bafca9 515 // This function corrects the track parameters for the crossed material
516 // "d" - the thickness (fraction of the radiation length)
517 // "x0" - the radiation length (g/cm^2)
518 // "mass" - the mass of this particle (GeV/c^2)
519 //------------------------------------------------------------------
c7bafca9 520
b8e07ed6 521 return CorrectForMeanMaterial(d,x0*d,mass,kTRUE,Bethe);
c7bafca9 522
c7bafca9 523}
524
9c56b409 525Double_t AliExternalTrackParam::BetheBlochAleph(Double_t bg,
526 Double_t kp1,
527 Double_t kp2,
528 Double_t kp3,
529 Double_t kp4,
530 Double_t kp5) {
531 //
532 // This is the empirical ALEPH parameterization of the Bethe-Bloch formula.
533 // It is normalized to 1 at the minimum.
534 //
535 // bg - beta*gamma
536 //
537 // The default values for the kp* parameters are for ALICE TPC.
538 // The returned value is in MIP units
539 //
540
541 Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
542
543 Double_t aa = TMath::Power(beta,kp4);
544 Double_t bb = TMath::Power(1./bg,kp5);
545
546 bb=TMath::Log(kp3+bb);
547
548 return (kp2-aa-bb)*kp1/aa;
549}
550
551Double_t AliExternalTrackParam::BetheBlochGeant(Double_t bg,
552 Double_t kp0,
553 Double_t kp1,
554 Double_t kp2,
555 Double_t kp3,
556 Double_t kp4) {
557 //
558 // This is the parameterization of the Bethe-Bloch formula inspired by Geant.
559 //
560 // bg - beta*gamma
561 // kp0 - density [g/cm^3]
562 // kp1 - density effect first junction point
563 // kp2 - density effect second junction point
564 // kp3 - mean excitation energy [GeV]
565 // kp4 - mean Z/A
566 //
567 // The default values for the kp* parameters are for silicon.
568 // The returned value is in [GeV/(g/cm^2)].
569 //
570
571 const Double_t mK = 0.307075e-3; // [GeV*cm^2/g]
572 const Double_t me = 0.511e-3; // [GeV/c^2]
573 const Double_t rho = kp0;
574 const Double_t x0 = kp1*2.303;
575 const Double_t x1 = kp2*2.303;
576 const Double_t mI = kp3;
577 const Double_t mZA = kp4;
578 const Double_t bg2 = bg*bg;
579 const Double_t maxT= 2*me*bg2; // neglecting the electron mass
580
581 //*** Density effect
582 Double_t d2=0.;
583 const Double_t x=TMath::Log(bg);
584 const Double_t lhwI=TMath::Log(28.816*1e-9*TMath::Sqrt(rho*mZA)/mI);
585 if (x > x1) {
586 d2 = lhwI + x - 0.5;
587 } else if (x > x0) {
588 const Double_t r=(x1-x)/(x1-x0);
589 d2 = lhwI + x - 0.5 + (0.5 - lhwI - x0)*r*r*r;
590 }
591
592 return mK*mZA*(1+bg2)/bg2*
593 (0.5*TMath::Log(2*me*bg2*maxT/(mI*mI)) - bg2/(1+bg2) - d2);
594}
595
d46683db 596Double_t AliExternalTrackParam::BetheBlochSolid(Double_t bg) {
ee5dba5e 597 //------------------------------------------------------------------
d46683db 598 // This is an approximation of the Bethe-Bloch formula,
599 // reasonable for solid materials.
600 // All the parameters are, in fact, for Si.
9b655cba 601 // The returned value is in [GeV/(g/cm^2)]
ee5dba5e 602 //------------------------------------------------------------------
a821848c 603
9c56b409 604 return BetheBlochGeant(bg);
d46683db 605}
ee5dba5e 606
d46683db 607Double_t AliExternalTrackParam::BetheBlochGas(Double_t bg) {
608 //------------------------------------------------------------------
609 // This is an approximation of the Bethe-Bloch formula,
610 // reasonable for gas materials.
611 // All the parameters are, in fact, for Ne.
9b655cba 612 // The returned value is in [GeV/(g/cm^2)]
d46683db 613 //------------------------------------------------------------------
614
615 const Double_t rho = 0.9e-3;
616 const Double_t x0 = 2.;
617 const Double_t x1 = 4.;
618 const Double_t mI = 140.e-9;
619 const Double_t mZA = 0.49555;
620
9c56b409 621 return BetheBlochGeant(bg,rho,x0,x1,mI,mZA);
ee5dba5e 622}
623
49d13e89 624Bool_t AliExternalTrackParam::Rotate(Double_t alpha) {
625 //------------------------------------------------------------------
626 // Transform this track to the local coord. system rotated
627 // by angle "alpha" (rad) with respect to the global coord. system.
628 //------------------------------------------------------------------
dfcef74c 629 if (TMath::Abs(fP[2]) >= kAlmost1) {
630 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
631 return kFALSE;
632 }
633
49d13e89 634 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
635 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
636
637 Double_t &fP0=fP[0];
638 Double_t &fP2=fP[2];
639 Double_t &fC00=fC[0];
640 Double_t &fC10=fC[1];
641 Double_t &fC20=fC[3];
642 Double_t &fC21=fC[4];
643 Double_t &fC22=fC[5];
644 Double_t &fC30=fC[6];
645 Double_t &fC32=fC[8];
646 Double_t &fC40=fC[10];
647 Double_t &fC42=fC[12];
648
649 Double_t x=fX;
650 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
bfd20868 651 Double_t sf=fP2, cf=TMath::Sqrt((1.- fP2)*(1.+fP2)); // Improve precision
49d13e89 652
dfcef74c 653 Double_t tmp=sf*ca - cf*sa;
7248cf51 654 if (TMath::Abs(tmp) >= kAlmost1) {
655 if (TMath::Abs(tmp) > 1.+ Double_t(FLT_EPSILON))
656 AliWarning(Form("Rotation failed ! %.10e",tmp));
0b69bbb2 657 return kFALSE;
658 }
dfcef74c 659
49d13e89 660 fAlpha = alpha;
661 fX = x*ca + fP0*sa;
662 fP0= -x*sa + fP0*ca;
dfcef74c 663 fP2= tmp;
49d13e89 664
06fb4a2f 665 if (TMath::Abs(cf)<kAlmost0) {
666 AliError(Form("Too small cosine value %f",cf));
667 cf = kAlmost0;
668 }
669
49d13e89 670 Double_t rr=(ca+sf/cf*sa);
671
672 fC00 *= (ca*ca);
673 fC10 *= ca;
674 fC20 *= ca*rr;
675 fC21 *= rr;
676 fC22 *= rr*rr;
677 fC30 *= ca;
678 fC32 *= rr;
679 fC40 *= ca;
680 fC42 *= rr;
681
86be8934 682 CheckCovariance();
683
49d13e89 684 return kTRUE;
685}
686
687Bool_t AliExternalTrackParam::PropagateTo(Double_t xk, Double_t b) {
688 //----------------------------------------------------------------
689 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
690 //----------------------------------------------------------------
49d13e89 691 Double_t dx=xk-fX;
e421f556 692 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
18ebc5ef 693
1530f89c 694 Double_t crv=GetC(b);
5773defd 695 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
696
2de63fc5 697 Double_t x2r = crv*dx;
698 Double_t f1=fP[2], f2=f1 + x2r;
bbefa4c4 699 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 700 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
4349f5a4 701 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
49d13e89 702
703 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
704 Double_t
705 &fC00=fC[0],
706 &fC10=fC[1], &fC11=fC[2],
707 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
708 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
709 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
710
bfd20868 711 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
4349f5a4 712 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
713 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
49d13e89 714
715 fX=xk;
2de63fc5 716 double dy2dx = (f1+f2)/(r1+r2);
717 fP0 += dx*dy2dx;
718 if (TMath::Abs(x2r)<0.05) {
719 fP1 += dx*(r2 + f2*dy2dx)*fP3; // Many thanks to P.Hristov !
720 fP2 += x2r;
721 }
722 else {
723 // for small dx/R the linear apporximation of the arc by the segment is OK,
724 // but at large dx/R the error is very large and leads to incorrect Z propagation
725 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
726 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
727 // Similarly, the rotation angle in linear in dx only for dx<<R
728 double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
729 double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
730 fP1 += rot/crv*fP3;
731 fP2 = TMath::Sin(rot + TMath::ASin(fP2));
732 }
49d13e89 733
734 //f = F - 1
735
736 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
737 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
738 Double_t f12= dx*fP3*f1/(r1*r1*r1);
739 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
740 Double_t f13= dx/r1;
741 Double_t f24= dx; f24*=cc;
742
743 //b = C*ft
744 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
745 Double_t b02=f24*fC40;
746 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
747 Double_t b12=f24*fC41;
748 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
749 Double_t b22=f24*fC42;
750 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
751 Double_t b42=f24*fC44;
752 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
753 Double_t b32=f24*fC43;
754
755 //a = f*b = f*C*ft
756 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
757 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
758 Double_t a22=f24*b42;
759
760 //F*C*Ft = C + (b + bt + a)
761 fC00 += b00 + b00 + a00;
762 fC10 += b10 + b01 + a01;
763 fC20 += b20 + b02 + a02;
764 fC30 += b30;
765 fC40 += b40;
766 fC11 += b11 + b11 + a11;
767 fC21 += b21 + b12 + a12;
768 fC31 += b31;
769 fC41 += b41;
770 fC22 += b22 + b22 + a22;
771 fC32 += b32;
772 fC42 += b42;
773
86be8934 774 CheckCovariance();
775
49d13e89 776 return kTRUE;
777}
778
9f2bec63 779Bool_t
780AliExternalTrackParam::Propagate(Double_t alpha, Double_t x, Double_t b) {
781 //------------------------------------------------------------------
782 // Transform this track to the local coord. system rotated
783 // by angle "alpha" (rad) with respect to the global coord. system,
784 // and propagate this track to the plane X=xk (cm) in the field "b" (kG)
785 //------------------------------------------------------------------
786
787 //Save the parameters
788 Double_t as=fAlpha;
789 Double_t xs=fX;
790 Double_t ps[5], cs[15];
791 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
792 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
793
794 if (Rotate(alpha))
795 if (PropagateTo(x,b)) return kTRUE;
796
797 //Restore the parameters, if the operation failed
798 fAlpha=as;
799 fX=xs;
800 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
801 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
802 return kFALSE;
803}
804
266a0f9b 805Bool_t AliExternalTrackParam::PropagateBxByBz
806(Double_t alpha, Double_t x, Double_t b[3]) {
807 //------------------------------------------------------------------
808 // Transform this track to the local coord. system rotated
809 // by angle "alpha" (rad) with respect to the global coord. system,
810 // and propagate this track to the plane X=xk (cm),
811 // taking into account all three components of the B field, "b[3]" (kG)
812 //------------------------------------------------------------------
813
814 //Save the parameters
815 Double_t as=fAlpha;
816 Double_t xs=fX;
817 Double_t ps[5], cs[15];
818 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
819 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
820
821 if (Rotate(alpha))
822 if (PropagateToBxByBz(x,b)) return kTRUE;
823
824 //Restore the parameters, if the operation failed
825 fAlpha=as;
826 fX=xs;
827 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
828 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
829 return kFALSE;
830}
831
9f2bec63 832
052daaff 833void AliExternalTrackParam::Propagate(Double_t len, Double_t x[3],
834Double_t p[3], Double_t bz) const {
835 //+++++++++++++++++++++++++++++++++++++++++
836 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
837 // Extrapolate track along simple helix in magnetic field
838 // Arguments: len -distance alogn helix, [cm]
839 // bz - mag field, [kGaus]
840 // Returns: x and p contain extrapolated positon and momentum
841 // The momentum returned for straight-line tracks is meaningless !
842 //+++++++++++++++++++++++++++++++++++++++++
843 GetXYZ(x);
844
2258e165 845 if (OneOverPt() < kAlmost0 || TMath::Abs(bz) < kAlmost0Field || GetC(bz) < kAlmost0){ //straight-line tracks
052daaff 846 Double_t unit[3]; GetDirection(unit);
847 x[0]+=unit[0]*len;
848 x[1]+=unit[1]*len;
849 x[2]+=unit[2]*len;
850
851 p[0]=unit[0]/kAlmost0;
852 p[1]=unit[1]/kAlmost0;
853 p[2]=unit[2]/kAlmost0;
854 } else {
855 GetPxPyPz(p);
856 Double_t pp=GetP();
857 Double_t a = -kB2C*bz*GetSign();
858 Double_t rho = a/pp;
859 x[0] += p[0]*TMath::Sin(rho*len)/a - p[1]*(1-TMath::Cos(rho*len))/a;
860 x[1] += p[1]*TMath::Sin(rho*len)/a + p[0]*(1-TMath::Cos(rho*len))/a;
861 x[2] += p[2]*len/pp;
862
863 Double_t p0=p[0];
864 p[0] = p0 *TMath::Cos(rho*len) - p[1]*TMath::Sin(rho*len);
865 p[1] = p[1]*TMath::Cos(rho*len) + p0 *TMath::Sin(rho*len);
866 }
867}
868
869Bool_t AliExternalTrackParam::Intersect(Double_t pnt[3], Double_t norm[3],
870Double_t bz) const {
871 //+++++++++++++++++++++++++++++++++++++++++
872 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
873 // Finds point of intersection (if exists) of the helix with the plane.
874 // Stores result in fX and fP.
875 // Arguments: planePoint,planeNorm - the plane defined by any plane's point
876 // and vector, normal to the plane
877 // Returns: kTrue if helix intersects the plane, kFALSE otherwise.
878 //+++++++++++++++++++++++++++++++++++++++++
879 Double_t x0[3]; GetXYZ(x0); //get track position in MARS
880
881 //estimates initial helix length up to plane
882 Double_t s=
883 (pnt[0]-x0[0])*norm[0] + (pnt[1]-x0[1])*norm[1] + (pnt[2]-x0[2])*norm[2];
884 Double_t dist=99999,distPrev=dist;
885 Double_t x[3],p[3];
886 while(TMath::Abs(dist)>0.00001){
887 //calculates helix at the distance s from x0 ALONG the helix
888 Propagate(s,x,p,bz);
889
890 //distance between current helix position and plane
891 dist=(x[0]-pnt[0])*norm[0]+(x[1]-pnt[1])*norm[1]+(x[2]-pnt[2])*norm[2];
892
893 if(TMath::Abs(dist) >= TMath::Abs(distPrev)) {return kFALSE;}
894 distPrev=dist;
895 s-=dist;
896 }
897 //on exit pnt is intersection point,norm is track vector at that point,
898 //all in MARS
899 for (Int_t i=0; i<3; i++) {pnt[i]=x[i]; norm[i]=p[i];}
900 return kTRUE;
901}
902
49d13e89 903Double_t
904AliExternalTrackParam::GetPredictedChi2(Double_t p[2],Double_t cov[3]) const {
905 //----------------------------------------------------------------
906 // Estimate the chi2 of the space point "p" with the cov. matrix "cov"
907 //----------------------------------------------------------------
908 Double_t sdd = fC[0] + cov[0];
909 Double_t sdz = fC[1] + cov[1];
910 Double_t szz = fC[2] + cov[2];
911 Double_t det = sdd*szz - sdz*sdz;
912
913 if (TMath::Abs(det) < kAlmost0) return kVeryBig;
914
915 Double_t d = fP[0] - p[0];
916 Double_t z = fP[1] - p[1];
917
918 return (d*szz*d - 2*d*sdz*z + z*sdd*z)/det;
919}
920
4b189f98 921Double_t AliExternalTrackParam::
922GetPredictedChi2(Double_t p[3],Double_t covyz[3],Double_t covxyz[3]) const {
923 //----------------------------------------------------------------
924 // Estimate the chi2 of the 3D space point "p" and
1e023a36 925 // the full covariance matrix "covyz" and "covxyz"
4b189f98 926 //
927 // Cov(x,x) ... : covxyz[0]
928 // Cov(y,x) ... : covxyz[1] covyz[0]
929 // Cov(z,x) ... : covxyz[2] covyz[1] covyz[2]
930 //----------------------------------------------------------------
931
932 Double_t res[3] = {
933 GetX() - p[0],
934 GetY() - p[1],
935 GetZ() - p[2]
936 };
937
938 Double_t f=GetSnp();
939 if (TMath::Abs(f) >= kAlmost1) return kVeryBig;
bfd20868 940 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
4b189f98 941 Double_t a=f/r, b=GetTgl()/r;
942
943 Double_t s2=333.*333.; //something reasonably big (cm^2)
944
945 TMatrixDSym v(3);
946 v(0,0)= s2; v(0,1)= a*s2; v(0,2)= b*s2;;
947 v(1,0)=a*s2; v(1,1)=a*a*s2 + GetSigmaY2(); v(1,2)=a*b*s2 + GetSigmaZY();
948 v(2,0)=b*s2; v(2,1)=a*b*s2 + GetSigmaZY(); v(2,2)=b*b*s2 + GetSigmaZ2();
949
950 v(0,0)+=covxyz[0]; v(0,1)+=covxyz[1]; v(0,2)+=covxyz[2];
951 v(1,0)+=covxyz[1]; v(1,1)+=covyz[0]; v(1,2)+=covyz[1];
952 v(2,0)+=covxyz[2]; v(2,1)+=covyz[1]; v(2,2)+=covyz[2];
953
954 v.Invert();
955 if (!v.IsValid()) return kVeryBig;
956
957 Double_t chi2=0.;
958 for (Int_t i = 0; i < 3; i++)
959 for (Int_t j = 0; j < 3; j++) chi2 += res[i]*res[j]*v(i,j);
960
961 return chi2;
acdfbc78 962}
963
964Double_t AliExternalTrackParam::
965GetPredictedChi2(const AliExternalTrackParam *t) const {
966 //----------------------------------------------------------------
967 // Estimate the chi2 (5 dof) of this track with respect to the track
968 // given by the argument.
969 // The two tracks must be in the same reference system
970 // and estimated at the same reference plane.
971 //----------------------------------------------------------------
972
973 if (TMath::Abs(1. - t->GetAlpha()/GetAlpha()) > FLT_EPSILON) {
974 AliError("The reference systems of the tracks differ !");
975 return kVeryBig;
976 }
977 if (TMath::Abs(1. - t->GetX()/GetX()) > FLT_EPSILON) {
978 AliError("The reference of the tracks planes differ !");
979 return kVeryBig;
980 }
981
982 TMatrixDSym c(5);
983 c(0,0)=GetSigmaY2();
984 c(1,0)=GetSigmaZY(); c(1,1)=GetSigmaZ2();
985 c(2,0)=GetSigmaSnpY(); c(2,1)=GetSigmaSnpZ(); c(2,2)=GetSigmaSnp2();
986 c(3,0)=GetSigmaTglY(); c(3,1)=GetSigmaTglZ(); c(3,2)=GetSigmaTglSnp(); c(3,3)=GetSigmaTgl2();
987 c(4,0)=GetSigma1PtY(); c(4,1)=GetSigma1PtZ(); c(4,2)=GetSigma1PtSnp(); c(4,3)=GetSigma1PtTgl(); c(4,4)=GetSigma1Pt2();
988
989 c(0,0)+=t->GetSigmaY2();
990 c(1,0)+=t->GetSigmaZY(); c(1,1)+=t->GetSigmaZ2();
991 c(2,0)+=t->GetSigmaSnpY();c(2,1)+=t->GetSigmaSnpZ();c(2,2)+=t->GetSigmaSnp2();
992 c(3,0)+=t->GetSigmaTglY();c(3,1)+=t->GetSigmaTglZ();c(3,2)+=t->GetSigmaTglSnp();c(3,3)+=t->GetSigmaTgl2();
993 c(4,0)+=t->GetSigma1PtY();c(4,1)+=t->GetSigma1PtZ();c(4,2)+=t->GetSigma1PtSnp();c(4,3)+=t->GetSigma1PtTgl();c(4,4)+=t->GetSigma1Pt2();
994 c(0,1)=c(1,0);
995 c(0,2)=c(2,0); c(1,2)=c(2,1);
996 c(0,3)=c(3,0); c(1,3)=c(3,1); c(2,3)=c(3,2);
997 c(0,4)=c(4,0); c(1,4)=c(4,1); c(2,4)=c(4,2); c(3,4)=c(4,3);
998
999 c.Invert();
1000 if (!c.IsValid()) return kVeryBig;
1001
1002
1003 Double_t res[5] = {
1004 GetY() - t->GetY(),
1005 GetZ() - t->GetZ(),
1006 GetSnp() - t->GetSnp(),
1007 GetTgl() - t->GetTgl(),
1008 GetSigned1Pt() - t->GetSigned1Pt()
1009 };
4b189f98 1010
acdfbc78 1011 Double_t chi2=0.;
1012 for (Int_t i = 0; i < 5; i++)
1013 for (Int_t j = 0; j < 5; j++) chi2 += res[i]*res[j]*c(i,j);
4b189f98 1014
acdfbc78 1015 return chi2;
4b189f98 1016}
1017
1e023a36 1018Bool_t AliExternalTrackParam::
1019PropagateTo(Double_t p[3],Double_t covyz[3],Double_t covxyz[3],Double_t bz) {
1020 //----------------------------------------------------------------
1021 // Propagate this track to the plane
1022 // the 3D space point "p" (with the covariance matrix "covyz" and "covxyz")
1023 // belongs to.
1024 // The magnetic field is "bz" (kG)
1025 //
1026 // The track curvature and the change of the covariance matrix
1027 // of the track parameters are negleted !
1028 // (So the "step" should be small compared with 1/curvature)
1029 //----------------------------------------------------------------
1030
1031 Double_t f=GetSnp();
1032 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
bfd20868 1033 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
1e023a36 1034 Double_t a=f/r, b=GetTgl()/r;
1035
1036 Double_t s2=333.*333.; //something reasonably big (cm^2)
1037
1038 TMatrixDSym tV(3);
1039 tV(0,0)= s2; tV(0,1)= a*s2; tV(0,2)= b*s2;
1040 tV(1,0)=a*s2; tV(1,1)=a*a*s2; tV(1,2)=a*b*s2;
1041 tV(2,0)=b*s2; tV(2,1)=a*b*s2; tV(2,2)=b*b*s2;
1042
1043 TMatrixDSym pV(3);
1044 pV(0,0)=covxyz[0]; pV(0,1)=covxyz[1]; pV(0,2)=covxyz[2];
1045 pV(1,0)=covxyz[1]; pV(1,1)=covyz[0]; pV(1,2)=covyz[1];
1046 pV(2,0)=covxyz[2]; pV(2,1)=covyz[1]; pV(2,2)=covyz[2];
1047
1048 TMatrixDSym tpV(tV);
1049 tpV+=pV;
1050 tpV.Invert();
1051 if (!tpV.IsValid()) return kFALSE;
1052
1053 TMatrixDSym pW(3),tW(3);
1054 for (Int_t i=0; i<3; i++)
1055 for (Int_t j=0; j<3; j++) {
1056 pW(i,j)=tW(i,j)=0.;
1057 for (Int_t k=0; k<3; k++) {
1058 pW(i,j) += tV(i,k)*tpV(k,j);
1059 tW(i,j) += pV(i,k)*tpV(k,j);
1060 }
1061 }
1062
1063 Double_t t[3] = {GetX(), GetY(), GetZ()};
1064
1065 Double_t x=0.;
1066 for (Int_t i=0; i<3; i++) x += (tW(0,i)*t[i] + pW(0,i)*p[i]);
1067 Double_t crv=GetC(bz);
1068 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1069 f += crv*(x-fX);
1070 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
1071 fX=x;
1072
1073 fP[0]=0.;
1074 for (Int_t i=0; i<3; i++) fP[0] += (tW(1,i)*t[i] + pW(1,i)*p[i]);
1075 fP[1]=0.;
1076 for (Int_t i=0; i<3; i++) fP[1] += (tW(2,i)*t[i] + pW(2,i)*p[i]);
1077
1078 return kTRUE;
1079}
1080
e23a38cb 1081Double_t *AliExternalTrackParam::GetResiduals(
1082Double_t *p,Double_t *cov,Bool_t updated) const {
1083 //------------------------------------------------------------------
1084 // Returns the track residuals with the space point "p" having
1085 // the covariance matrix "cov".
1086 // If "updated" is kTRUE, the track parameters expected to be updated,
1087 // otherwise they must be predicted.
1088 //------------------------------------------------------------------
1089 static Double_t res[2];
1090
1091 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1092 if (updated) {
1093 r00-=fC[0]; r01-=fC[1]; r11-=fC[2];
1094 } else {
1095 r00+=fC[0]; r01+=fC[1]; r11+=fC[2];
1096 }
1097 Double_t det=r00*r11 - r01*r01;
1098
1099 if (TMath::Abs(det) < kAlmost0) return 0;
1100
1101 Double_t tmp=r00; r00=r11/det; r11=tmp/det;
f0fbf964 1102
1103 if (r00 < 0.) return 0;
1104 if (r11 < 0.) return 0;
1105
e23a38cb 1106 Double_t dy = fP[0] - p[0];
1107 Double_t dz = fP[1] - p[1];
1108
1109 res[0]=dy*TMath::Sqrt(r00);
1110 res[1]=dz*TMath::Sqrt(r11);
1111
1112 return res;
1113}
1114
49d13e89 1115Bool_t AliExternalTrackParam::Update(Double_t p[2], Double_t cov[3]) {
1116 //------------------------------------------------------------------
1117 // Update the track parameters with the space point "p" having
1118 // the covariance matrix "cov"
1119 //------------------------------------------------------------------
1120 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
1121 Double_t
1122 &fC00=fC[0],
1123 &fC10=fC[1], &fC11=fC[2],
1124 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1125 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1126 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1127
1128 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1129 r00+=fC00; r01+=fC10; r11+=fC11;
1130 Double_t det=r00*r11 - r01*r01;
1131
1132 if (TMath::Abs(det) < kAlmost0) return kFALSE;
1133
1134
1135 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
1136
1137 Double_t k00=fC00*r00+fC10*r01, k01=fC00*r01+fC10*r11;
1138 Double_t k10=fC10*r00+fC11*r01, k11=fC10*r01+fC11*r11;
1139 Double_t k20=fC20*r00+fC21*r01, k21=fC20*r01+fC21*r11;
1140 Double_t k30=fC30*r00+fC31*r01, k31=fC30*r01+fC31*r11;
1141 Double_t k40=fC40*r00+fC41*r01, k41=fC40*r01+fC41*r11;
1142
1143 Double_t dy=p[0] - fP0, dz=p[1] - fP1;
1144 Double_t sf=fP2 + k20*dy + k21*dz;
1145 if (TMath::Abs(sf) > kAlmost1) return kFALSE;
1146
1147 fP0 += k00*dy + k01*dz;
1148 fP1 += k10*dy + k11*dz;
1149 fP2 = sf;
1150 fP3 += k30*dy + k31*dz;
1151 fP4 += k40*dy + k41*dz;
1152
1153 Double_t c01=fC10, c02=fC20, c03=fC30, c04=fC40;
1154 Double_t c12=fC21, c13=fC31, c14=fC41;
1155
1156 fC00-=k00*fC00+k01*fC10; fC10-=k00*c01+k01*fC11;
1157 fC20-=k00*c02+k01*c12; fC30-=k00*c03+k01*c13;
1158 fC40-=k00*c04+k01*c14;
1159
1160 fC11-=k10*c01+k11*fC11;
1161 fC21-=k10*c02+k11*c12; fC31-=k10*c03+k11*c13;
1162 fC41-=k10*c04+k11*c14;
1163
1164 fC22-=k20*c02+k21*c12; fC32-=k20*c03+k21*c13;
1165 fC42-=k20*c04+k21*c14;
1166
1167 fC33-=k30*c03+k31*c13;
1168 fC43-=k30*c04+k31*c14;
1169
1170 fC44-=k40*c04+k41*c14;
1171
86be8934 1172 CheckCovariance();
1173
49d13e89 1174 return kTRUE;
1175}
1176
c7bafca9 1177void
1178AliExternalTrackParam::GetHelixParameters(Double_t hlx[6], Double_t b) const {
1179 //--------------------------------------------------------------------
1180 // External track parameters -> helix parameters
1181 // "b" - magnetic field (kG)
1182 //--------------------------------------------------------------------
1183 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1184
1530f89c 1185 hlx[0]=fP[0]; hlx[1]=fP[1]; hlx[2]=fP[2]; hlx[3]=fP[3];
c7bafca9 1186
1187 hlx[5]=fX*cs - hlx[0]*sn; // x0
1188 hlx[0]=fX*sn + hlx[0]*cs; // y0
1189//hlx[1]= // z0
1190 hlx[2]=TMath::ASin(hlx[2]) + fAlpha; // phi0
1191//hlx[3]= // tgl
1530f89c 1192 hlx[4]=GetC(b); // C
c7bafca9 1193}
1194
1195
1196static void Evaluate(const Double_t *h, Double_t t,
1197 Double_t r[3], //radius vector
1198 Double_t g[3], //first defivatives
1199 Double_t gg[3]) //second derivatives
1200{
1201 //--------------------------------------------------------------------
1202 // Calculate position of a point on a track and some derivatives
1203 //--------------------------------------------------------------------
1204 Double_t phase=h[4]*t+h[2];
1205 Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase);
1206
ba4550c4 1207 r[0] = h[5];
1208 r[1] = h[0];
1209 if (TMath::Abs(h[4])>kAlmost0) {
1210 r[0] += (sn - h[6])/h[4];
1211 r[1] -= (cs - h[7])/h[4];
1212 }
c7bafca9 1213 r[2] = h[1] + h[3]*t;
1214
1215 g[0] = cs; g[1]=sn; g[2]=h[3];
1216
1217 gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.;
1218}
1219
1220Double_t AliExternalTrackParam::GetDCA(const AliExternalTrackParam *p,
1221Double_t b, Double_t &xthis, Double_t &xp) const {
1222 //------------------------------------------------------------
1223 // Returns the (weighed !) distance of closest approach between
1224 // this track and the track "p".
1225 // Other returned values:
1226 // xthis, xt - coordinates of tracks' reference planes at the DCA
1227 //-----------------------------------------------------------
1228 Double_t dy2=GetSigmaY2() + p->GetSigmaY2();
1229 Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2();
1230 Double_t dx2=dy2;
1231
c7bafca9 1232 Double_t p1[8]; GetHelixParameters(p1,b);
1233 p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]);
1234 Double_t p2[8]; p->GetHelixParameters(p2,b);
1235 p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]);
1236
1237
1238 Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.;
1239 Evaluate(p1,t1,r1,g1,gg1);
1240 Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.;
1241 Evaluate(p2,t2,r2,g2,gg2);
1242
1243 Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2];
1244 Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1245
1246 Int_t max=27;
1247 while (max--) {
1248 Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2);
1249 Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2);
1250 Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 +
1251 (g1[1]*g1[1] - dy*gg1[1])/dy2 +
1252 (g1[2]*g1[2] - dz*gg1[2])/dz2;
1253 Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 +
1254 (g2[1]*g2[1] + dy*gg2[1])/dy2 +
1255 (g2[2]*g2[2] + dz*gg2[2])/dz2;
1256 Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2);
1257
1258 Double_t det=h11*h22-h12*h12;
1259
1260 Double_t dt1,dt2;
1261 if (TMath::Abs(det)<1.e-33) {
1262 //(quasi)singular Hessian
1263 dt1=-gt1; dt2=-gt2;
1264 } else {
1265 dt1=-(gt1*h22 - gt2*h12)/det;
1266 dt2=-(h11*gt2 - h12*gt1)/det;
1267 }
1268
1269 if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;}
1270
1271 //check delta(phase1) ?
1272 //check delta(phase2) ?
1273
1274 if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4)
1275 if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) {
1276 if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2)
358f16ae 1277 AliDebug(1," stopped at not a stationary point !");
c7bafca9 1278 Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det);
1279 if (lmb < 0.)
358f16ae 1280 AliDebug(1," stopped at not a minimum !");
c7bafca9 1281 break;
1282 }
1283
1284 Double_t dd=dm;
1285 for (Int_t div=1 ; ; div*=2) {
1286 Evaluate(p1,t1+dt1,r1,g1,gg1);
1287 Evaluate(p2,t2+dt2,r2,g2,gg2);
1288 dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2];
1289 dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1290 if (dd<dm) break;
1291 dt1*=0.5; dt2*=0.5;
1292 if (div>512) {
358f16ae 1293 AliDebug(1," overshoot !"); break;
c7bafca9 1294 }
1295 }
1296 dm=dd;
1297
1298 t1+=dt1;
1299 t2+=dt2;
1300
1301 }
1302
358f16ae 1303 if (max<=0) AliDebug(1," too many iterations !");
c7bafca9 1304
1305 Double_t cs=TMath::Cos(GetAlpha());
1306 Double_t sn=TMath::Sin(GetAlpha());
1307 xthis=r1[0]*cs + r1[1]*sn;
1308
1309 cs=TMath::Cos(p->GetAlpha());
1310 sn=TMath::Sin(p->GetAlpha());
1311 xp=r2[0]*cs + r2[1]*sn;
1312
1313 return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2));
1314}
1315
1316Double_t AliExternalTrackParam::
1317PropagateToDCA(AliExternalTrackParam *p, Double_t b) {
1318 //--------------------------------------------------------------
1319 // Propagates this track and the argument track to the position of the
1320 // distance of closest approach.
1321 // Returns the (weighed !) distance of closest approach.
1322 //--------------------------------------------------------------
1323 Double_t xthis,xp;
1324 Double_t dca=GetDCA(p,b,xthis,xp);
1325
1326 if (!PropagateTo(xthis,b)) {
1327 //AliWarning(" propagation failed !");
1328 return 1e+33;
1329 }
1330
1331 if (!p->PropagateTo(xp,b)) {
1332 //AliWarning(" propagation failed !";
1333 return 1e+33;
1334 }
1335
1336 return dca;
1337}
1338
1339
58e536c5 1340Bool_t AliExternalTrackParam::PropagateToDCA(const AliVVertex *vtx,
e99a34df 1341Double_t b, Double_t maxd, Double_t dz[2], Double_t covar[3]) {
f76701bf 1342 //
e99a34df 1343 // Propagate this track to the DCA to vertex "vtx",
f76701bf 1344 // if the (rough) transverse impact parameter is not bigger then "maxd".
1345 // Magnetic field is "b" (kG).
1346 //
1347 // a) The track gets extapolated to the DCA to the vertex.
1348 // b) The impact parameters and their covariance matrix are calculated.
1349 //
1350 // In the case of success, the returned value is kTRUE
1351 // (otherwise, it's kFALSE)
1352 //
1353 Double_t alpha=GetAlpha();
1354 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1355 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
58e536c5 1356 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1357 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
f76701bf 1358 x-=xv; y-=yv;
1359
1360 //Estimate the impact parameter neglecting the track curvature
bfd20868 1361 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
f76701bf 1362 if (d > maxd) return kFALSE;
1363
1364 //Propagate to the DCA
2258e165 1365 Double_t crv=GetC(b);
e99a34df 1366 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1367
bfd20868 1368 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1369 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
e99a34df 1370 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1371 else cs=1.;
f76701bf 1372
1373 x = xv*cs + yv*sn;
1374 yv=-xv*sn + yv*cs; xv=x;
1375
1376 if (!Propagate(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
266a0f9b 1377
1378 if (dz==0) return kTRUE;
1379 dz[0] = GetParameter()[0] - yv;
1380 dz[1] = GetParameter()[1] - zv;
1381
1382 if (covar==0) return kTRUE;
1383 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
1384
1385 //***** Improvements by A.Dainese
1386 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1387 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1388 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1389 covar[1] = GetCovariance()[1]; // between (x,y) and z
1390 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1391 //*****
1392
1393 return kTRUE;
1394}
1395
1396Bool_t AliExternalTrackParam::PropagateToDCABxByBz(const AliVVertex *vtx,
1397Double_t b[3], Double_t maxd, Double_t dz[2], Double_t covar[3]) {
1398 //
1399 // Propagate this track to the DCA to vertex "vtx",
1400 // if the (rough) transverse impact parameter is not bigger then "maxd".
1401 //
1402 // This function takes into account all three components of the magnetic
1403 // field given by the b[3] arument (kG)
1404 //
1405 // a) The track gets extapolated to the DCA to the vertex.
1406 // b) The impact parameters and their covariance matrix are calculated.
1407 //
1408 // In the case of success, the returned value is kTRUE
1409 // (otherwise, it's kFALSE)
1410 //
1411 Double_t alpha=GetAlpha();
1412 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1413 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
1414 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1415 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
1416 x-=xv; y-=yv;
1417
1418 //Estimate the impact parameter neglecting the track curvature
bfd20868 1419 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
266a0f9b 1420 if (d > maxd) return kFALSE;
1421
1422 //Propagate to the DCA
8567bf39 1423 Double_t crv=GetC(b[2]);
1424 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
266a0f9b 1425
bfd20868 1426 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1427 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
266a0f9b 1428 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1429 else cs=1.;
1430
1431 x = xv*cs + yv*sn;
1432 yv=-xv*sn + yv*cs; xv=x;
1433
1434 if (!PropagateBxByBz(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
e99a34df 1435
1436 if (dz==0) return kTRUE;
1437 dz[0] = GetParameter()[0] - yv;
1438 dz[1] = GetParameter()[1] - zv;
1439
1440 if (covar==0) return kTRUE;
58e536c5 1441 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
e99a34df 1442
1443 //***** Improvements by A.Dainese
1444 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1445 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1446 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1447 covar[1] = GetCovariance()[1]; // between (x,y) and z
1448 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1449 //*****
1450
29fbcc93 1451 return kTRUE;
f76701bf 1452}
1453
b1149664 1454void AliExternalTrackParam::GetDirection(Double_t d[3]) const {
1455 //----------------------------------------------------------------
1456 // This function returns a unit vector along the track direction
1457 // in the global coordinate system.
1458 //----------------------------------------------------------------
1459 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1460 Double_t snp=fP[2];
bfd20868 1461 Double_t csp =TMath::Sqrt((1.-snp)*(1.+snp));
b1149664 1462 Double_t norm=TMath::Sqrt(1.+ fP[3]*fP[3]);
1463 d[0]=(csp*cs - snp*sn)/norm;
1464 d[1]=(snp*cs + csp*sn)/norm;
1465 d[2]=fP[3]/norm;
1466}
1467
c683ddc2 1468Bool_t AliExternalTrackParam::GetPxPyPz(Double_t p[3]) const {
c9ec41e8 1469 //---------------------------------------------------------------------
1470 // This function returns the global track momentum components
1471 // Results for (nearly) straight tracks are meaningless !
1472 //---------------------------------------------------------------------
1473 p[0]=fP[4]; p[1]=fP[2]; p[2]=fP[3];
1474 return Local2GlobalMomentum(p,fAlpha);
1475}
a5e407e9 1476
def9660e 1477Double_t AliExternalTrackParam::Px() const {
957fb479 1478 //---------------------------------------------------------------------
1479 // Returns x-component of momentum
1480 // Result for (nearly) straight tracks is meaningless !
1481 //---------------------------------------------------------------------
def9660e 1482
957fb479 1483 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1484 GetPxPyPz(p);
1485
1486 return p[0];
1487}
1488
1489Double_t AliExternalTrackParam::Py() const {
957fb479 1490 //---------------------------------------------------------------------
1491 // Returns y-component of momentum
1492 // Result for (nearly) straight tracks is meaningless !
1493 //---------------------------------------------------------------------
def9660e 1494
957fb479 1495 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1496 GetPxPyPz(p);
1497
1498 return p[1];
1499}
1500
c683ddc2 1501Double_t AliExternalTrackParam::Xv() const {
1502 //---------------------------------------------------------------------
1503 // Returns x-component of first track point
1504 //---------------------------------------------------------------------
1505
1506 Double_t r[3]={0.,0.,0.};
1507 GetXYZ(r);
1508
1509 return r[0];
1510}
1511
1512Double_t AliExternalTrackParam::Yv() const {
1513 //---------------------------------------------------------------------
1514 // Returns y-component of first track point
1515 //---------------------------------------------------------------------
1516
1517 Double_t r[3]={0.,0.,0.};
1518 GetXYZ(r);
1519
1520 return r[1];
1521}
1522
def9660e 1523Double_t AliExternalTrackParam::Theta() const {
1524 // return theta angle of momentum
1525
7cdd0c20 1526 return 0.5*TMath::Pi() - TMath::ATan(fP[3]);
def9660e 1527}
1528
1529Double_t AliExternalTrackParam::Phi() const {
957fb479 1530 //---------------------------------------------------------------------
1531 // Returns the azimuthal angle of momentum
1532 // 0 <= phi < 2*pi
1533 //---------------------------------------------------------------------
def9660e 1534
957fb479 1535 Double_t phi=TMath::ASin(fP[2]) + fAlpha;
1536 if (phi<0.) phi+=2.*TMath::Pi();
1537 else if (phi>=2.*TMath::Pi()) phi-=2.*TMath::Pi();
1538
1539 return phi;
def9660e 1540}
1541
1542Double_t AliExternalTrackParam::M() const {
1543 // return particle mass
1544
1545 // No mass information available so far.
1546 // Redifine in derived class!
1547
1548 return -999.;
1549}
1550
1551Double_t AliExternalTrackParam::E() const {
1552 // return particle energy
1553
1554 // No PID information available so far.
1555 // Redifine in derived class!
1556
1557 return -999.;
1558}
1559
1560Double_t AliExternalTrackParam::Eta() const {
1561 // return pseudorapidity
1562
1563 return -TMath::Log(TMath::Tan(0.5 * Theta()));
1564}
1565
1566Double_t AliExternalTrackParam::Y() const {
1567 // return rapidity
1568
1569 // No PID information available so far.
1570 // Redifine in derived class!
1571
1572 return -999.;
1573}
1574
c9ec41e8 1575Bool_t AliExternalTrackParam::GetXYZ(Double_t *r) const {
1576 //---------------------------------------------------------------------
1577 // This function returns the global track position
1578 //---------------------------------------------------------------------
1579 r[0]=fX; r[1]=fP[0]; r[2]=fP[1];
1580 return Local2GlobalPosition(r,fAlpha);
51ad6848 1581}
1582
c9ec41e8 1583Bool_t AliExternalTrackParam::GetCovarianceXYZPxPyPz(Double_t cv[21]) const {
1584 //---------------------------------------------------------------------
1585 // This function returns the global covariance matrix of the track params
1586 //
1587 // Cov(x,x) ... : cv[0]
1588 // Cov(y,x) ... : cv[1] cv[2]
1589 // Cov(z,x) ... : cv[3] cv[4] cv[5]
1590 // Cov(px,x)... : cv[6] cv[7] cv[8] cv[9]
1591 // Cov(py,x)... : cv[10] cv[11] cv[12] cv[13] cv[14]
1592 // Cov(pz,x)... : cv[15] cv[16] cv[17] cv[18] cv[19] cv[20]
a5e407e9 1593 //
c9ec41e8 1594 // Results for (nearly) straight tracks are meaningless !
1595 //---------------------------------------------------------------------
e421f556 1596 if (TMath::Abs(fP[4])<=kAlmost0) {
c9ec41e8 1597 for (Int_t i=0; i<21; i++) cv[i]=0.;
1598 return kFALSE;
a5e407e9 1599 }
49d13e89 1600 if (TMath::Abs(fP[2]) > kAlmost1) {
c9ec41e8 1601 for (Int_t i=0; i<21; i++) cv[i]=0.;
1602 return kFALSE;
1603 }
1604 Double_t pt=1./TMath::Abs(fP[4]);
1605 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
92934324 1606 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
c9ec41e8 1607
1608 Double_t m00=-sn, m10=cs;
1609 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
1610 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
1611 Double_t m35=pt, m45=-pt*pt*fP[3];
1612
854d5d49 1613 m43*=GetSign();
1614 m44*=GetSign();
1615 m45*=GetSign();
1616
c9ec41e8 1617 cv[0 ] = fC[0]*m00*m00;
1618 cv[1 ] = fC[0]*m00*m10;
1619 cv[2 ] = fC[0]*m10*m10;
1620 cv[3 ] = fC[1]*m00;
1621 cv[4 ] = fC[1]*m10;
1622 cv[5 ] = fC[2];
1623 cv[6 ] = m00*(fC[3]*m23 + fC[10]*m43);
1624 cv[7 ] = m10*(fC[3]*m23 + fC[10]*m43);
1625 cv[8 ] = fC[4]*m23 + fC[11]*m43;
1626 cv[9 ] = m23*(fC[5]*m23 + fC[12]*m43) + m43*(fC[12]*m23 + fC[14]*m43);
1627 cv[10] = m00*(fC[3]*m24 + fC[10]*m44);
1628 cv[11] = m10*(fC[3]*m24 + fC[10]*m44);
1629 cv[12] = fC[4]*m24 + fC[11]*m44;
1630 cv[13] = m23*(fC[5]*m24 + fC[12]*m44) + m43*(fC[12]*m24 + fC[14]*m44);
1631 cv[14] = m24*(fC[5]*m24 + fC[12]*m44) + m44*(fC[12]*m24 + fC[14]*m44);
1632 cv[15] = m00*(fC[6]*m35 + fC[10]*m45);
1633 cv[16] = m10*(fC[6]*m35 + fC[10]*m45);
1634 cv[17] = fC[7]*m35 + fC[11]*m45;
1635 cv[18] = m23*(fC[8]*m35 + fC[12]*m45) + m43*(fC[13]*m35 + fC[14]*m45);
1636 cv[19] = m24*(fC[8]*m35 + fC[12]*m45) + m44*(fC[13]*m35 + fC[14]*m45);
1637 cv[20] = m35*(fC[9]*m35 + fC[13]*m45) + m45*(fC[13]*m35 + fC[14]*m45);
51ad6848 1638
c9ec41e8 1639 return kTRUE;
51ad6848 1640}
1641
51ad6848 1642
c9ec41e8 1643Bool_t
1644AliExternalTrackParam::GetPxPyPzAt(Double_t x, Double_t b, Double_t *p) const {
1645 //---------------------------------------------------------------------
1646 // This function returns the global track momentum extrapolated to
1647 // the radial position "x" (cm) in the magnetic field "b" (kG)
1648 //---------------------------------------------------------------------
c9ec41e8 1649 p[0]=fP[4];
1530f89c 1650 p[1]=fP[2]+(x-fX)*GetC(b);
c9ec41e8 1651 p[2]=fP[3];
1652 return Local2GlobalMomentum(p,fAlpha);
51ad6848 1653}
1654
7cf7bb6c 1655Bool_t
1656AliExternalTrackParam::GetYAt(Double_t x, Double_t b, Double_t &y) const {
1657 //---------------------------------------------------------------------
1658 // This function returns the local Y-coordinate of the intersection
1659 // point between this track and the reference plane "x" (cm).
1660 // Magnetic field "b" (kG)
1661 //---------------------------------------------------------------------
1662 Double_t dx=x-fX;
1663 if(TMath::Abs(dx)<=kAlmost0) {y=fP[0]; return kTRUE;}
1664
1530f89c 1665 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
7cf7bb6c 1666
1667 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1668 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1669
60e55aee 1670 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
7cf7bb6c 1671 y = fP[0] + dx*(f1+f2)/(r1+r2);
1672 return kTRUE;
1673}
1674
6c94f330 1675Bool_t
1676AliExternalTrackParam::GetZAt(Double_t x, Double_t b, Double_t &z) const {
1677 //---------------------------------------------------------------------
1678 // This function returns the local Z-coordinate of the intersection
1679 // point between this track and the reference plane "x" (cm).
1680 // Magnetic field "b" (kG)
1681 //---------------------------------------------------------------------
1682 Double_t dx=x-fX;
1683 if(TMath::Abs(dx)<=kAlmost0) {z=fP[1]; return kTRUE;}
1684
2258e165 1685 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
6c94f330 1686
1687 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1688 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1689
60e55aee 1690 Double_t r1=sqrt((1.-f1)*(1.+f1)), r2=sqrt((1.-f2)*(1.+f2));
6c94f330 1691 z = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3]; // Many thanks to P.Hristov !
1692 return kTRUE;
1693}
1694
c9ec41e8 1695Bool_t
1696AliExternalTrackParam::GetXYZAt(Double_t x, Double_t b, Double_t *r) const {
1697 //---------------------------------------------------------------------
1698 // This function returns the global track position extrapolated to
1699 // the radial position "x" (cm) in the magnetic field "b" (kG)
1700 //---------------------------------------------------------------------
c9ec41e8 1701 Double_t dx=x-fX;
e421f556 1702 if(TMath::Abs(dx)<=kAlmost0) return GetXYZ(r);
1703
1530f89c 1704 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
c9ec41e8 1705
e421f556 1706 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 1707 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
c9ec41e8 1708
60e55aee 1709 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
c9ec41e8 1710 r[0] = x;
1711 r[1] = fP[0] + dx*(f1+f2)/(r1+r2);
f90a11c9 1712 r[2] = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3];//Thanks to Andrea & Peter
1713
c9ec41e8 1714 return Local2GlobalPosition(r,fAlpha);
51ad6848 1715}
1716
51ad6848 1717//_____________________________________________________________________________
1718void AliExternalTrackParam::Print(Option_t* /*option*/) const
1719{
1720// print the parameters and the covariance matrix
1721
1722 printf("AliExternalTrackParam: x = %-12g alpha = %-12g\n", fX, fAlpha);
1723 printf(" parameters: %12g %12g %12g %12g %12g\n",
c9ec41e8 1724 fP[0], fP[1], fP[2], fP[3], fP[4]);
1725 printf(" covariance: %12g\n", fC[0]);
1726 printf(" %12g %12g\n", fC[1], fC[2]);
1727 printf(" %12g %12g %12g\n", fC[3], fC[4], fC[5]);
51ad6848 1728 printf(" %12g %12g %12g %12g\n",
c9ec41e8 1729 fC[6], fC[7], fC[8], fC[9]);
51ad6848 1730 printf(" %12g %12g %12g %12g %12g\n",
c9ec41e8 1731 fC[10], fC[11], fC[12], fC[13], fC[14]);
51ad6848 1732}
5b77d93c 1733
c194ba83 1734Double_t AliExternalTrackParam::GetSnpAt(Double_t x,Double_t b) const {
1735 //
1736 // Get sinus at given x
1737 //
1530f89c 1738 Double_t crv=GetC(b);
c194ba83 1739 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1740 Double_t dx = x-fX;
1741 Double_t res = fP[2]+dx*crv;
1742 return res;
1743}
bf00ebb8 1744
1745Bool_t AliExternalTrackParam::GetDistance(AliExternalTrackParam *param2, Double_t x, Double_t dist[3], Double_t bz){
1746 //------------------------------------------------------------------------
1747 // Get the distance between two tracks at the local position x
1748 // working in the local frame of this track.
1749 // Origin : Marian.Ivanov@cern.ch
1750 //-----------------------------------------------------------------------
1751 Double_t xyz[3];
1752 Double_t xyz2[3];
1753 xyz[0]=x;
1754 if (!GetYAt(x,bz,xyz[1])) return kFALSE;
1755 if (!GetZAt(x,bz,xyz[2])) return kFALSE;
1756 //
1757 //
1758 if (TMath::Abs(GetAlpha()-param2->GetAlpha())<kAlmost0){
1759 xyz2[0]=x;
1760 if (!param2->GetYAt(x,bz,xyz2[1])) return kFALSE;
1761 if (!param2->GetZAt(x,bz,xyz2[2])) return kFALSE;
1762 }else{
1763 //
1764 Double_t xyz1[3];
1765 Double_t dfi = param2->GetAlpha()-GetAlpha();
1766 Double_t ca = TMath::Cos(dfi), sa = TMath::Sin(dfi);
1767 xyz2[0] = xyz[0]*ca+xyz[1]*sa;
1768 xyz2[1] = -xyz[0]*sa+xyz[1]*ca;
1769 //
1770 xyz1[0]=xyz2[0];
1771 if (!param2->GetYAt(xyz2[0],bz,xyz1[1])) return kFALSE;
1772 if (!param2->GetZAt(xyz2[0],bz,xyz1[2])) return kFALSE;
1773 //
1774 xyz2[0] = xyz1[0]*ca-xyz1[1]*sa;
1775 xyz2[1] = +xyz1[0]*sa+xyz1[1]*ca;
1776 xyz2[2] = xyz1[2];
1777 }
1778 dist[0] = xyz[0]-xyz2[0];
1779 dist[1] = xyz[1]-xyz2[1];
1780 dist[2] = xyz[2]-xyz2[2];
1781
1782 return kTRUE;
1783}
0c19adf7 1784
1785
1786//
1787// Draw functionality.
1788// Origin: Marian Ivanov, Marian.Ivanov@cern.ch
1789//
1790
1791void AliExternalTrackParam::DrawTrack(Float_t magf, Float_t minR, Float_t maxR, Float_t stepR){
1792 //
1793 // Draw track line
1794 //
1795 if (minR>maxR) return ;
1796 if (stepR<=0) return ;
1797 Int_t npoints = TMath::Nint((maxR-minR)/stepR)+1;
1798 if (npoints<1) return;
1799 TPolyMarker3D *polymarker = new TPolyMarker3D(npoints);
1800 FillPolymarker(polymarker, magf,minR,maxR,stepR);
1801 polymarker->Draw();
1802}
1803
1804//
1805void AliExternalTrackParam::FillPolymarker(TPolyMarker3D *pol, Float_t magF, Float_t minR, Float_t maxR, Float_t stepR){
1806 //
1807 // Fill points in the polymarker
1808 //
1809 Int_t counter=0;
1810 for (Double_t r=minR; r<maxR; r+=stepR){
1811 Double_t point[3];
1812 GetXYZAt(r,magF,point);
1813 pol->SetPoint(counter,point[0],point[1], point[2]);
1814 printf("xyz\t%f\t%f\t%f\n",point[0], point[1],point[2]);
1815 counter++;
1816 }
1817}
0e8460af 1818
1819Int_t AliExternalTrackParam::GetIndex(Int_t i, Int_t j) const {
1820 //
1821 Int_t min = TMath::Min(i,j);
1822 Int_t max = TMath::Max(i,j);
1823
1824 return min+(max+1)*max/2;
1825}
8b6e3369 1826
1827
1828void AliExternalTrackParam::g3helx3(Double_t qfield,
1829 Double_t step,
1830 Double_t vect[7]) {
1831/******************************************************************
1832 * *
1833 * GEANT3 tracking routine in a constant field oriented *
1834 * along axis 3 *
1835 * Tracking is performed with a conventional *
1836 * helix step method *
1837 * *
1838 * Authors R.Brun, M.Hansroul ********* *
1839 * Rewritten V.Perevoztchikov *
1840 * *
1841 * Rewritten in C++ by I.Belikov *
1842 * *
1843 * qfield (kG) - particle charge times magnetic field *
1844 * step (cm) - step length along the helix *
1845 * vect[7](cm,GeV/c) - input/output x, y, z, px/p, py/p ,pz/p, p *
1846 * *
1847 ******************************************************************/
1848 const Int_t ix=0, iy=1, iz=2, ipx=3, ipy=4, ipz=5, ipp=6;
bfd20868 1849 const Double_t kOvSqSix=TMath::Sqrt(1./6.);
8b6e3369 1850
1851 Double_t cosx=vect[ipx], cosy=vect[ipy], cosz=vect[ipz];
1852
1853 Double_t rho = qfield*kB2C/vect[ipp];
1854 Double_t tet = rho*step;
1855
1856 Double_t tsint, sintt, sint, cos1t;
2de63fc5 1857 if (TMath::Abs(tet) > 0.03) {
8b6e3369 1858 sint = TMath::Sin(tet);
1859 sintt = sint/tet;
1860 tsint = (tet - sint)/tet;
1861 Double_t t=TMath::Sin(0.5*tet);
1862 cos1t = 2*t*t/tet;
1863 } else {
1864 tsint = tet*tet/6.;
bfd20868 1865 sintt = (1.-tet*kOvSqSix)*(1.+tet*kOvSqSix); // 1.- tsint;
8b6e3369 1866 sint = tet*sintt;
1867 cos1t = 0.5*tet;
1868 }
1869
1870 Double_t f1 = step*sintt;
1871 Double_t f2 = step*cos1t;
1872 Double_t f3 = step*tsint*cosz;
1873 Double_t f4 = -tet*cos1t;
1874 Double_t f5 = sint;
1875
1876 vect[ix] += f1*cosx - f2*cosy;
1877 vect[iy] += f1*cosy + f2*cosx;
1878 vect[iz] += f1*cosz + f3;
1879
1880 vect[ipx] += f4*cosx - f5*cosy;
1881 vect[ipy] += f4*cosy + f5*cosx;
1882
1883}
1884
1885Bool_t AliExternalTrackParam::PropagateToBxByBz(Double_t xk, const Double_t b[3]) {
1886 //----------------------------------------------------------------
1887 // Extrapolate this track to the plane X=xk in the field b[].
1888 //
1889 // X [cm] is in the "tracking coordinate system" of this track.
1890 // b[]={Bx,By,Bz} [kG] is in the Global coordidate system.
1891 //----------------------------------------------------------------
1892
1893 Double_t dx=xk-fX;
1894 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
7e1b73dd 1895 if (TMath::Abs(fP[4])<=kAlmost0) return kFALSE;
ef3508c5 1896 // Do not propagate tracks outside the ALICE detector
1897 if (TMath::Abs(dx)>1e5 ||
1898 TMath::Abs(GetY())>1e5 ||
1899 TMath::Abs(GetZ())>1e5) {
1900 AliWarning(Form("Anomalous track, target X:%f",xk));
1901 Print();
1902 return kFALSE;
1903 }
8b6e3369 1904
1905 Double_t crv=GetC(b[2]);
1906 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
1907
2de63fc5 1908 Double_t x2r = crv*dx;
1909 Double_t f1=fP[2], f2=f1 + x2r;
8b6e3369 1910 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1911 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1912
1913
1914 // Estimate the covariance matrix
1915 Double_t &fP3=fP[3], &fP4=fP[4];
1916 Double_t
1917 &fC00=fC[0],
1918 &fC10=fC[1], &fC11=fC[2],
1919 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1920 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1921 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1922
bfd20868 1923 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
8b6e3369 1924
1925 //f = F - 1
1926 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
1927 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
1928 Double_t f12= dx*fP3*f1/(r1*r1*r1);
1929 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
1930 Double_t f13= dx/r1;
1931 Double_t f24= dx; f24*=cc;
1932
1933 //b = C*ft
1934 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
1935 Double_t b02=f24*fC40;
1936 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
1937 Double_t b12=f24*fC41;
1938 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
1939 Double_t b22=f24*fC42;
1940 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
1941 Double_t b42=f24*fC44;
1942 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
1943 Double_t b32=f24*fC43;
1944
1945 //a = f*b = f*C*ft
1946 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
1947 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
1948 Double_t a22=f24*b42;
1949
1950 //F*C*Ft = C + (b + bt + a)
1951 fC00 += b00 + b00 + a00;
1952 fC10 += b10 + b01 + a01;
1953 fC20 += b20 + b02 + a02;
1954 fC30 += b30;
1955 fC40 += b40;
1956 fC11 += b11 + b11 + a11;
1957 fC21 += b21 + b12 + a12;
1958 fC31 += b31;
1959 fC41 += b41;
1960 fC22 += b22 + b22 + a22;
1961 fC32 += b32;
1962 fC42 += b42;
1963
86be8934 1964 CheckCovariance();
8b6e3369 1965
1966 // Appoximate step length
2de63fc5 1967 double dy2dx = (f1+f2)/(r1+r2);
1968 Double_t step = (TMath::Abs(x2r)<0.05) ? dx*TMath::Abs(r2 + f2*dy2dx) // chord
1969 : 2.*TMath::ASin(0.5*dx*TMath::Sqrt(1.+dy2dx*dy2dx)*crv)/crv; // arc
8b6e3369 1970 step *= TMath::Sqrt(1.+ GetTgl()*GetTgl());
1971
8b6e3369 1972 // Get the track's (x,y,z) and (px,py,pz) in the Global System
1973 Double_t r[3]; GetXYZ(r);
1974 Double_t p[3]; GetPxPyPz(p);
1975 Double_t pp=GetP();
1976 p[0] /= pp;
1977 p[1] /= pp;
1978 p[2] /= pp;
1979
1980
1981 // Rotate to the system where Bx=By=0.
1982 Double_t bt=TMath::Sqrt(b[0]*b[0] + b[1]*b[1]);
1983 Double_t cosphi=1., sinphi=0.;
1984 if (bt > kAlmost0) {cosphi=b[0]/bt; sinphi=b[1]/bt;}
1985 Double_t bb=TMath::Sqrt(b[0]*b[0] + b[1]*b[1] + b[2]*b[2]);
1986 Double_t costet=1., sintet=0.;
1987 if (bb > kAlmost0) {costet=b[2]/bb; sintet=bt/bb;}
1988 Double_t vect[7];
1989
1990 vect[0] = costet*cosphi*r[0] + costet*sinphi*r[1] - sintet*r[2];
1991 vect[1] = -sinphi*r[0] + cosphi*r[1];
1992 vect[2] = sintet*cosphi*r[0] + sintet*sinphi*r[1] + costet*r[2];
1993
1994 vect[3] = costet*cosphi*p[0] + costet*sinphi*p[1] - sintet*p[2];
1995 vect[4] = -sinphi*p[0] + cosphi*p[1];
1996 vect[5] = sintet*cosphi*p[0] + sintet*sinphi*p[1] + costet*p[2];
1997
1998 vect[6] = pp;
1999
2000
2001 // Do the helix step
2002 g3helx3(GetSign()*bb,step,vect);
2003
2004
2005 // Rotate back to the Global System
2006 r[0] = cosphi*costet*vect[0] - sinphi*vect[1] + cosphi*sintet*vect[2];
2007 r[1] = sinphi*costet*vect[0] + cosphi*vect[1] + sinphi*sintet*vect[2];
2008 r[2] = -sintet*vect[0] + costet*vect[2];
2009
2010 p[0] = cosphi*costet*vect[3] - sinphi*vect[4] + cosphi*sintet*vect[5];
2011 p[1] = sinphi*costet*vect[3] + cosphi*vect[4] + sinphi*sintet*vect[5];
2012 p[2] = -sintet*vect[3] + costet*vect[5];
2013
2014
2015 // Rotate back to the Tracking System
2016 Double_t cosalp = TMath::Cos(fAlpha);
2017 Double_t sinalp =-TMath::Sin(fAlpha);
2018
2019 Double_t
2020 t = cosalp*r[0] - sinalp*r[1];
2021 r[1] = sinalp*r[0] + cosalp*r[1];
2022 r[0] = t;
2023
2024 t = cosalp*p[0] - sinalp*p[1];
2025 p[1] = sinalp*p[0] + cosalp*p[1];
2026 p[0] = t;
2027
2028
2029 // Do the final correcting step to the target plane (linear approximation)
2030 Double_t x=r[0], y=r[1], z=r[2];
2031 if (TMath::Abs(dx) > kAlmost0) {
2032 if (TMath::Abs(p[0]) < kAlmost0) return kFALSE;
2033 dx = xk - r[0];
2034 x += dx;
2035 y += p[1]/p[0]*dx;
2036 z += p[2]/p[0]*dx;
2037 }
2038
2039
2040 // Calculate the track parameters
2041 t=TMath::Sqrt(p[0]*p[0] + p[1]*p[1]);
2042 fX = x;
2043 fP[0] = y;
2044 fP[1] = z;
2045 fP[2] = p[1]/t;
2046 fP[3] = p[2]/t;
2047 fP[4] = GetSign()/(t*pp);
2048
2049 return kTRUE;
2050}
2051
cfdb62d4 2052Bool_t AliExternalTrackParam::Translate(Double_t *vTrasl,Double_t *covV){
2053 //
2054 //Translation: in the event mixing, the tracks can be shifted
2055 //of the difference among primary vertices (vTrasl) and
2056 //the covariance matrix is changed accordingly
2057 //(covV = covariance of the primary vertex).
2058 //Origin: "Romita, Rossella" <R.Romita@gsi.de>
2059 //
2060 TVector3 translation;
2061 // vTrasl coordinates in the local system
2062 translation.SetXYZ(vTrasl[0],vTrasl[1],vTrasl[2]);
2063 translation.RotateZ(-fAlpha);
2064 translation.GetXYZ(vTrasl);
2065
2066 //compute the new x,y,z of the track
5a87bb3d 2067 Double_t newX=fX-vTrasl[0];
2068 Double_t newY=fP[0]-vTrasl[1];
2069 Double_t newZ=fP[1]-vTrasl[2];
cfdb62d4 2070
2071 //define the new parameters
5a87bb3d 2072 Double_t newParam[5];
2073 newParam[0]=newY;
2074 newParam[1]=newZ;
2075 newParam[2]=fP[2];
2076 newParam[3]=fP[3];
2077 newParam[4]=fP[4];
cfdb62d4 2078
2079 // recompute the covariance matrix:
2080 // 1. covV in the local system
2081 Double_t cosRot=TMath::Cos(fAlpha), sinRot=TMath::Sin(fAlpha);
2082 TMatrixD qQi(3,3);
2083 qQi(0,0) = cosRot;
2084 qQi(0,1) = sinRot;
2085 qQi(0,2) = 0.;
2086 qQi(1,0) = -sinRot;
2087 qQi(1,1) = cosRot;
2088 qQi(1,2) = 0.;
2089 qQi(2,0) = 0.;
2090 qQi(2,1) = 0.;
2091 qQi(2,2) = 1.;
2092 TMatrixD uUi(3,3);
2093 uUi(0,0) = covV[0];
2094 uUi(0,0) = covV[0];
2095 uUi(1,0) = covV[1];
2096 uUi(0,1) = covV[1];
2097 uUi(2,0) = covV[3];
2098 uUi(0,2) = covV[3];
2099 uUi(1,1) = covV[2];
2100 uUi(2,2) = covV[5];
2101 uUi(1,2) = covV[4];
2102 if(uUi.Determinant() <= 0.) {return kFALSE;}
2103 TMatrixD uUiQi(uUi,TMatrixD::kMult,qQi);
2104 TMatrixD m(qQi,TMatrixD::kTransposeMult,uUiQi);
2105
2106 //2. compute the new covariance matrix of the track
2107 Double_t sigmaXX=m(0,0);
2108 Double_t sigmaXZ=m(2,0);
2109 Double_t sigmaXY=m(1,0);
2110 Double_t sigmaYY=GetSigmaY2()+m(1,1);
2111 Double_t sigmaYZ=fC[1]+m(1,2);
2112 Double_t sigmaZZ=fC[2]+m(2,2);
2113 Double_t covarianceYY=sigmaYY + (-1.)*((sigmaXY*sigmaXY)/sigmaXX);
2114 Double_t covarianceYZ=sigmaYZ-(sigmaXZ*sigmaXY/sigmaXX);
2115 Double_t covarianceZZ=sigmaZZ-((sigmaXZ*sigmaXZ)/sigmaXX);
2116
2117 Double_t newCov[15];
2118 newCov[0]=covarianceYY;
2119 newCov[1]=covarianceYZ;
2120 newCov[2]=covarianceZZ;
2121 for(Int_t i=3;i<15;i++){
2122 newCov[i]=fC[i];
2123 }
2124
2125 // set the new parameters
2126
5a87bb3d 2127 Set(newX,fAlpha,newParam,newCov);
cfdb62d4 2128
2129 return kTRUE;
2130 }
86be8934 2131
2132void AliExternalTrackParam::CheckCovariance() {
2133
2134 // This function forces the diagonal elements of the covariance matrix to be positive.
2135 // In case the diagonal element is bigger than the maximal allowed value, it is set to
2136 // the limit and the off-diagonal elements that correspond to it are set to zero.
2137
2138 fC[0] = TMath::Abs(fC[0]);
2139 if (fC[0]>kC0max) {
2140 fC[0] = kC0max;
2141 fC[1] = 0;
2142 fC[3] = 0;
2143 fC[6] = 0;
2144 fC[10] = 0;
2145 }
2146 fC[2] = TMath::Abs(fC[2]);
2147 if (fC[2]>kC2max) {
2148 fC[2] = kC2max;
2149 fC[1] = 0;
2150 fC[4] = 0;
2151 fC[7] = 0;
2152 fC[11] = 0;
2153 }
2154 fC[5] = TMath::Abs(fC[5]);
2155 if (fC[5]>kC5max) {
2156 fC[5] = kC5max;
2157 fC[3] = 0;
2158 fC[4] = 0;
2159 fC[8] = 0;
2160 fC[12] = 0;
2161 }
2162 fC[9] = TMath::Abs(fC[9]);
2163 if (fC[9]>kC9max) {
2164 fC[9] = kC9max;
2165 fC[6] = 0;
2166 fC[7] = 0;
2167 fC[8] = 0;
2168 fC[13] = 0;
2169 }
2170 fC[14] = TMath::Abs(fC[14]);
2171 if (fC[14]>kC14max) {
2172 fC[14] = kC14max;
2173 fC[10] = 0;
2174 fC[11] = 0;
2175 fC[12] = 0;
2176 fC[13] = 0;
2177 }
2178
2179 // The part below is used for tests and normally is commented out
2180// TMatrixDSym m(5);
2181// TVectorD eig(5);
2182
2183// m(0,0)=fC[0];
2184// m(1,0)=fC[1]; m(1,1)=fC[2];
2185// m(2,0)=fC[3]; m(2,1)=fC[4]; m(2,2)=fC[5];
2186// m(3,0)=fC[6]; m(3,1)=fC[7]; m(3,2)=fC[8]; m(3,3)=fC[9];
2187// m(4,0)=fC[10]; m(4,1)=fC[11]; m(4,2)=fC[12]; m(4,3)=fC[13]; m(4,4)=fC[14];
2188
2189// m(0,1)=m(1,0);
2190// m(0,2)=m(2,0); m(1,2)=m(2,1);
2191// m(0,3)=m(3,0); m(1,3)=m(3,1); m(2,3)=m(3,2);
2192// m(0,4)=m(4,0); m(1,4)=m(4,1); m(2,4)=m(4,2); m(3,4)=m(4,3);
2193// m.EigenVectors(eig);
2194
2195// // assert(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0);
2196// if (!(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0)) {
2197// AliWarning("Negative eigenvalues of the covariance matrix!");
2198// this->Print();
2199// eig.Print();
2200// }
2201}