]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/AliMagWrapCheb.h
New base class AliPIDResponse
[u/mrichter/AliRoot.git] / STEER / AliMagWrapCheb.h
CommitLineData
da7cd221 1
2// Author: ruben.shahoyan@cern.ch 20/03/2007
3
4///////////////////////////////////////////////////////////////////////////////////
5// //
6// Wrapper for the set of mag.field parameterizations by Chebyshev polinomials //
7// To obtain the field in cartesian coordinates/components use //
db83d72f 8// Field(double* xyz, double* bxyz); //
da7cd221 9// For cylindrical coordinates/components: //
db83d72f 10// FieldCyl(double* rphiz, double* brphiz) //
da7cd221 11// //
12// The solenoid part is parameterized in the volume R<500, -550<Z<550 cm //
13// //
14// The region R<423 cm, -343.3<Z<481.3 for 30kA and -343.3<Z<481.3 for 12kA //
15// is parameterized using measured data while outside the Tosca calculation //
16// is used (matched to data on the boundary of the measurements) //
17// //
18// Two options are possible: //
19// 1) _BRING_TO_BOUNDARY_ is defined in the AliCheb3D: //
20// If the querried point is outside of the validity region then the field //
21// at the closest point on the fitted surface is returned. //
22// 2) _BRING_TO_BOUNDARY_ is not defined in the AliCheb3D: //
23// If the querried point is outside of the validity region the return //
24// value for the field components are set to 0. //
25// //
26// To obtain the field integral in the TPC region from given point to nearest //
27// cathod plane (+- 250 cm) use: //
db83d72f 28// GetTPCInt(double* xyz, double* bxyz); for Cartesian frame //
da7cd221 29// or //
db83d72f 30// GetTPCIntCyl(Double_t *rphiz, Double_t *b); for Cylindrical frame //
da7cd221 31// //
32// //
33// The units are kiloGauss and cm. //
34// //
35///////////////////////////////////////////////////////////////////////////////////
36
a1dde210 37#ifndef ALIMAGWRAPCHEB_H
38#define ALIMAGWRAPCHEB_H
a1dde210 39
da7cd221 40#include <TMath.h>
41#include <TNamed.h>
42#include "AliCheb3D.h"
a1dde210 43
da7cd221 44class TSystem;
45class TArrayF;
46class TArrayI;
a1dde210 47
da7cd221 48class AliMagWrapCheb: public TNamed
a1dde210 49{
da7cd221 50 public:
a1dde210 51 AliMagWrapCheb();
da7cd221 52 AliMagWrapCheb(const AliMagWrapCheb& src);
53 ~AliMagWrapCheb() {Clear();}
54 //
55 void CopyFrom(const AliMagWrapCheb& src);
56 AliMagWrapCheb& operator=(const AliMagWrapCheb& rhs);
57 virtual void Clear(const Option_t * = "");
58 //
59 Int_t GetNParamsSol() const {return fNParamsSol;}
1d18ebe0 60 Int_t GetNSegZSol() const {return fNZSegSol;}
61 Float_t* GetSegZSol() const {return fSegZSol;}
da7cd221 62 //
1d18ebe0 63 Int_t GetNParamsTPCInt() const {return fNParamsTPC;}
64 Int_t GetNSegZTPCInt() const {return fNZSegTPC;}
da7cd221 65 //
47c3d315 66 Int_t GetNParamsTPCRatInt() const {return fNParamsTPCRat;}
67 Int_t GetNSegZTPCRatInt() const {return fNZSegTPCRat;}
68 //
da7cd221 69 Int_t GetNParamsDip() const {return fNParamsDip;}
70 Int_t GetNSegZDip() const {return fNZSegDip;}
71 //
9251fceb 72 Float_t GetMaxZ() const {return GetMaxZSol();}
73 Float_t GetMinZ() const {return fParamsDip ? GetMinZDip() : GetMinZSol();}
da7cd221 74 //
75 Float_t GetMinZSol() const {return fMinZSol;}
76 Float_t GetMaxZSol() const {return fMaxZSol;}
77 Float_t GetMaxRSol() const {return fMaxRSol;}
78 //
79 Float_t GetMinZDip() const {return fMinZDip;}
80 Float_t GetMaxZDip() const {return fMaxZDip;}
81 //
1d18ebe0 82 Float_t GetMinZTPCInt() const {return fMinZTPC;}
83 Float_t GetMaxZTPCInt() const {return fMaxZTPC;}
84 Float_t GetMaxRTPCInt() const {return fMaxRTPC;}
da7cd221 85 //
47c3d315 86 Float_t GetMinZTPCRatInt() const {return fMinZTPCRat;}
87 Float_t GetMaxZTPCRatInt() const {return fMaxZTPCRat;}
88 Float_t GetMaxRTPCRatInt() const {return fMaxRTPCRat;}
89 //
da7cd221 90 AliCheb3D* GetParamSol(Int_t ipar) const {return (AliCheb3D*)fParamsSol->UncheckedAt(ipar);}
47c3d315 91 AliCheb3D* GetParamTPCRatInt(Int_t ipar) const {return (AliCheb3D*)fParamsTPCRat->UncheckedAt(ipar);}
1d18ebe0 92 AliCheb3D* GetParamTPCInt(Int_t ipar) const {return (AliCheb3D*)fParamsTPC->UncheckedAt(ipar);}
da7cd221 93 AliCheb3D* GetParamDip(Int_t ipar) const {return (AliCheb3D*)fParamsDip->UncheckedAt(ipar);}
94 //
95 virtual void Print(Option_t * = "") const;
96 //
db83d72f 97 virtual void Field(const Double_t *xyz, Double_t *b) const;
98 Double_t GetBz(const Double_t *xyz) const;
da7cd221 99 //
47c3d315 100 void FieldCyl(const Double_t *rphiz, Double_t *b) const;
db83d72f 101 void GetTPCInt(const Double_t *xyz, Double_t *b) const;
102 void GetTPCIntCyl(const Double_t *rphiz, Double_t *b) const;
47c3d315 103 void GetTPCRatInt(const Double_t *xyz, Double_t *b) const;
104 void GetTPCRatIntCyl(const Double_t *rphiz, Double_t *b) const;
da7cd221 105 //
1d18ebe0 106 Int_t FindSolSegment(const Double_t *xyz) const;
107 Int_t FindTPCSegment(const Double_t *xyz) const;
47c3d315 108 Int_t FindTPCRatSegment(const Double_t *xyz) const;
db83d72f 109 Int_t FindDipSegment(const Double_t *xyz) const;
110 static void CylToCartCylB(const Double_t *rphiz, const Double_t *brphiz,Double_t *bxyz);
111 static void CylToCartCartB(const Double_t *xyz, const Double_t *brphiz,Double_t *bxyz);
112 static void CartToCylCartB(const Double_t *xyz, const Double_t *bxyz, Double_t *brphiz);
113 static void CartToCylCylB(const Double_t *rphiz, const Double_t *bxyz, Double_t *brphiz);
114 static void CartToCyl(const Double_t *xyz, Double_t *rphiz);
115 static void CylToCart(const Double_t *rphiz,Double_t *xyz);
da7cd221 116 //
117#ifdef _INC_CREATION_ALICHEB3D_ // see AliCheb3D.h for explanation
118 void LoadData(const char* inpfile);
119 //
120 AliMagWrapCheb(const char* inputFile);
db83d72f 121 void SaveData(const char* outfile) const;
1d18ebe0 122 Int_t SegmentDimension(Float_t** seg,const TObjArray* par,int npar, int dim,
123 Float_t xmn,Float_t xmx,Float_t ymn,Float_t ymx,Float_t zmn,Float_t zmx);
da7cd221 124 //
125 void AddParamSol(const AliCheb3D* param);
126 void AddParamTPCInt(const AliCheb3D* param);
47c3d315 127 void AddParamTPCRatInt(const AliCheb3D* param);
da7cd221 128 void AddParamDip(const AliCheb3D* param);
1d18ebe0 129 void BuildTable(Int_t npar,TObjArray *parArr, Int_t &nZSeg, Int_t &nYSeg, Int_t &nXSeg,
130 Float_t &minZ,Float_t &maxZ,Float_t **segZ,Float_t **segY,Float_t **segX,
131 Int_t **begSegY,Int_t **nSegY,Int_t **begSegX,Int_t **nSegX,Int_t **segID);
da7cd221 132 void BuildTableSol();
1d18ebe0 133 void BuildTableDip();
da7cd221 134 void BuildTableTPCInt();
47c3d315 135 void BuildTableTPCRatInt();
da7cd221 136 void ResetTPCInt();
47c3d315 137 void ResetTPCRatInt();
da7cd221 138 //
139 //
140#endif
a1dde210 141 //
142 protected:
db83d72f 143 void FieldCylSol(const Double_t *rphiz, Double_t *b) const;
144 Double_t FieldCylSolBz(const Double_t *rphiz) const;
da7cd221 145 //
146 protected:
147 //
1d18ebe0 148 Int_t fNParamsSol; // Total number of parameterization pieces for solenoid
149 Int_t fNZSegSol; // number of distinct Z segments in Solenoid
150 Int_t fNPSegSol; // number of distinct P segments in Solenoid
151 Int_t fNRSegSol; // number of distinct R segments in Solenoid
152 Float_t* fSegZSol; //[fNZSegSol] coordinates of distinct Z segments in Solenoid
153 Float_t* fSegPSol; //[fNPSegSol] coordinated of P segments for each Zsegment in Solenoid
154 Float_t* fSegRSol; //[fNRSegSol] coordinated of R segments for each Psegment in Solenoid
155 Int_t* fBegSegPSol; //[fNPSegSol] beginning of P segments array for each Z segment
156 Int_t* fNSegPSol; //[fNZSegSol] number of P segments for each Z segment
157 Int_t* fBegSegRSol; //[fNPSegSol] beginning of R segments array for each P segment
158 Int_t* fNSegRSol; //[fNPSegSol] number of R segments for each P segment
159 Int_t* fSegIDSol; //[fNRSegSol] ID of the solenoid parameterization for given RPZ segment
160 Float_t fMinZSol; // Min Z of Solenoid parameterization
161 Float_t fMaxZSol; // Max Z of Solenoid parameterization
162 TObjArray* fParamsSol; // Parameterization pieces for Solenoid field
163 Float_t fMaxRSol; // max raduis for Solenoid field
164 //
165 Int_t fNParamsTPC; // Total number of parameterization pieces for TPCint
166 Int_t fNZSegTPC; // number of distinct Z segments in TPCint
167 Int_t fNPSegTPC; // number of distinct P segments in TPCint
168 Int_t fNRSegTPC; // number of distinct R segments in TPCint
169 Float_t* fSegZTPC; //[fNZSegTPC] coordinates of distinct Z segments in TPCint
170 Float_t* fSegPTPC; //[fNPSegTPC] coordinated of P segments for each Zsegment in TPCint
171 Float_t* fSegRTPC; //[fNRSegTPC] coordinated of R segments for each Psegment in TPCint
172 Int_t* fBegSegPTPC; //[fNPSegTPC] beginning of P segments array for each Z segment
173 Int_t* fNSegPTPC; //[fNZSegTPC] number of P segments for each Z segment
174 Int_t* fBegSegRTPC; //[fNPSegTPC] beginning of R segments array for each P segment
175 Int_t* fNSegRTPC; //[fNPSegTPC] number of R segments for each P segment
176 Int_t* fSegIDTPC; //[fNRSegTPC] ID of the TPCint parameterization for given RPZ segment
177 Float_t fMinZTPC; // Min Z of TPCint parameterization
178 Float_t fMaxZTPC; // Max Z of TPCint parameterization
179 TObjArray* fParamsTPC; // Parameterization pieces for TPCint field
180 Float_t fMaxRTPC; // max raduis for Solenoid field integral in TPC
da7cd221 181 //
47c3d315 182 Int_t fNParamsTPCRat; // Total number of parameterization pieces for tr.field to Bz integrals in TPC region
183 Int_t fNZSegTPCRat; // number of distinct Z segments in TpcRatInt
184 Int_t fNPSegTPCRat; // number of distinct P segments in TpcRatInt
185 Int_t fNRSegTPCRat; // number of distinct R segments in TpcRatInt
186 Float_t* fSegZTPCRat; //[fNZSegTPCRat] coordinates of distinct Z segments in TpcRatInt
187 Float_t* fSegPTPCRat; //[fNPSegTPCRat] coordinated of P segments for each Zsegment in TpcRatInt
188 Float_t* fSegRTPCRat; //[fNRSegTPCRat] coordinated of R segments for each Psegment in TpcRatInt
189 Int_t* fBegSegPTPCRat; //[fNPSegTPCRat] beginning of P segments array for each Z segment
190 Int_t* fNSegPTPCRat; //[fNZSegTPCRat] number of P segments for each Z segment
191 Int_t* fBegSegRTPCRat; //[fNPSegTPCRat] beginning of R segments array for each P segment
192 Int_t* fNSegRTPCRat; //[fNPSegTPCRat] number of R segments for each P segment
193 Int_t* fSegIDTPCRat; //[fNRSegTPCRat] ID of the TpcRatInt parameterization for given RPZ segment
194 Float_t fMinZTPCRat; // Min Z of TpcRatInt parameterization
195 Float_t fMaxZTPCRat; // Max Z of TpcRatInt parameterization
196 TObjArray* fParamsTPCRat; // Parameterization pieces for TpcRatInt field
197 Float_t fMaxRTPCRat; // max raduis for Solenoid field ratios integral in TPC
198 //
da7cd221 199 Int_t fNParamsDip; // Total number of parameterization pieces for dipole
200 Int_t fNZSegDip; // number of distinct Z segments in Dipole
201 Int_t fNYSegDip; // number of distinct Y segments in Dipole
202 Int_t fNXSegDip; // number of distinct X segments in Dipole
da7cd221 203 Float_t* fSegZDip; //[fNZSegDip] coordinates of distinct Z segments in Dipole
204 Float_t* fSegYDip; //[fNYSegDip] coordinated of Y segments for each Zsegment in Dipole
205 Float_t* fSegXDip; //[fNXSegDip] coordinated of X segments for each Ysegment in Dipole
da7cd221 206 Int_t* fBegSegYDip; //[fNZSegDip] beginning of Y segments array for each Z segment
207 Int_t* fNSegYDip; //[fNZSegDip] number of Y segments for each Z segment
208 Int_t* fBegSegXDip; //[fNYSegDip] beginning of X segments array for each Y segment
209 Int_t* fNSegXDip; //[fNYSegDip] number of X segments for each Y segment
210 Int_t* fSegIDDip; //[fNXSegDip] ID of the dipole parameterization for given XYZ segment
da7cd221 211 Float_t fMinZDip; // Min Z of Dipole parameterization
212 Float_t fMaxZDip; // Max Z of Dipole parameterization
da7cd221 213 TObjArray* fParamsDip; // Parameterization pieces for Dipole field
da7cd221 214 //
47c3d315 215 ClassDef(AliMagWrapCheb,7) // Wrapper class for the set of Chebishev parameterizations of Alice mag.field
da7cd221 216 //
217 };
218
219
da7cd221 220//__________________________________________________________________________________________
221inline void AliMagWrapCheb::FieldCyl(const Double_t *rphiz, Double_t *b) const
222{
223 // compute field in Cylindircal coordinates
224 // if (rphiz[2]<GetMinZSol() || rphiz[2]>GetMaxZSol() || rphiz[0]>GetMaxRSol()) {for (int i=3;i--;) b[i]=0; return;}
1d18ebe0 225 b[0] = b[1] = b[2] = 0;
da7cd221 226 FieldCylSol(rphiz,b);
227}
228
229//__________________________________________________________________________________________________
db83d72f 230inline void AliMagWrapCheb::CylToCartCylB(const Double_t *rphiz, const Double_t *brphiz,Double_t *bxyz)
da7cd221 231{
232 // convert field in cylindrical coordinates to cartesian system, point is in cyl.system
db83d72f 233 Double_t btr = TMath::Sqrt(brphiz[0]*brphiz[0]+brphiz[1]*brphiz[1]);
234 Double_t psiPLUSphi = TMath::ATan2(brphiz[1],brphiz[0]) + rphiz[1];
da7cd221 235 bxyz[0] = btr*TMath::Cos(psiPLUSphi);
236 bxyz[1] = btr*TMath::Sin(psiPLUSphi);
237 bxyz[2] = brphiz[2];
238 //
239}
240
241//__________________________________________________________________________________________________
db83d72f 242inline void AliMagWrapCheb::CylToCartCartB(const Double_t* xyz, const Double_t *brphiz, Double_t *bxyz)
da7cd221 243{
244 // convert field in cylindrical coordinates to cartesian system, point is in cart.system
db83d72f 245 Double_t btr = TMath::Sqrt(brphiz[0]*brphiz[0]+brphiz[1]*brphiz[1]);
246 Double_t phiPLUSpsi = TMath::ATan2(xyz[1],xyz[0]) + TMath::ATan2(brphiz[1],brphiz[0]);
da7cd221 247 bxyz[0] = btr*TMath::Cos(phiPLUSpsi);
248 bxyz[1] = btr*TMath::Sin(phiPLUSpsi);
249 bxyz[2] = brphiz[2];
250 //
251}
252
253//__________________________________________________________________________________________________
db83d72f 254inline void AliMagWrapCheb::CartToCylCartB(const Double_t *xyz, const Double_t *bxyz, Double_t *brphiz)
da7cd221 255{
256 // convert field in cylindrical coordinates to cartesian system, poin is in cart.system
db83d72f 257 Double_t btr = TMath::Sqrt(bxyz[0]*bxyz[0]+bxyz[1]*bxyz[1]);
258 Double_t psiMINphi = TMath::ATan2(bxyz[1],bxyz[0]) - TMath::ATan2(xyz[1],xyz[0]);
da7cd221 259 //
260 brphiz[0] = btr*TMath::Cos(psiMINphi);
261 brphiz[1] = btr*TMath::Sin(psiMINphi);
262 brphiz[2] = bxyz[2];
263 //
264}
265
266//__________________________________________________________________________________________________
db83d72f 267inline void AliMagWrapCheb::CartToCylCylB(const Double_t *rphiz, const Double_t *bxyz, Double_t *brphiz)
da7cd221 268{
269 // convert field in cylindrical coordinates to cartesian system, point is in cyl.system
db83d72f 270 Double_t btr = TMath::Sqrt(bxyz[0]*bxyz[0]+bxyz[1]*bxyz[1]);
271 Double_t psiMINphi = TMath::ATan2(bxyz[1],bxyz[0]) - rphiz[1];
da7cd221 272 brphiz[0] = btr*TMath::Cos(psiMINphi);
273 brphiz[1] = btr*TMath::Sin(psiMINphi);
274 brphiz[2] = bxyz[2];
275 //
276}
a1dde210 277
da7cd221 278//__________________________________________________________________________________________________
db83d72f 279inline void AliMagWrapCheb::CartToCyl(const Double_t *xyz, Double_t *rphiz)
da7cd221 280{
281 rphiz[0] = TMath::Sqrt(xyz[0]*xyz[0]+xyz[1]*xyz[1]);
282 rphiz[1] = TMath::ATan2(xyz[1],xyz[0]);
283 rphiz[2] = xyz[2];
284}
285
286//__________________________________________________________________________________________________
db83d72f 287inline void AliMagWrapCheb::CylToCart(const Double_t *rphiz, Double_t *xyz)
da7cd221 288{
289 xyz[0] = rphiz[0]*TMath::Cos(rphiz[1]);
290 xyz[1] = rphiz[0]*TMath::Sin(rphiz[1]);
291 xyz[2] = rphiz[2];
292}
293
a1dde210 294#endif