]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/STEER/AliLHCData.h
Initial implementation of the DCAL Geometry (work done by Mengliang WANG for his...
[u/mrichter/AliRoot.git] / STEER / STEER / AliLHCData.h
CommitLineData
a65a7e70 1#ifndef ALILHCDATA_H
2#define ALILHCDATA_H
3
4/********************************************************************************
5* *
6* AliLHCData: summary of the LHC related information from LHC DIP. *
7* Created from the TMap provided by the AliLHCReader with optional beginning *
8* *
9* The data are (wrapped in the AliLHCDipValT): *
10* made of TimeStamp (double) and array of values *
11* *
12* Multiple entries for each type of data are possible. To obtaine number of *
13* records (with distinct timestamp) for give type od records use: *
14* int GetNBunchConfigMeasured(int beam) (with beam=0,1) etc. *
15* *
16* To get i-th entry, use brec= AliLHCDipValI* GetBunchConfigMeasured(bm,i); *
17* Note: exact type of templated AliLHCDipValT pointer depends on the record *
18* type, concult getters to know it. *
19* *
20* Then, once the pointer is obtained, details can be accessed: *
21* int nBunches = brec->GetSize(); *
22* for (int i=0;i<nBunches;i++) printf("Bunch#%d: %d\n",i,(*brec)[i]); *
23* *
24* ATTENTION: Bunch RFBucked is NEGATIVE for bunches interacting at IR2 *
25* *
26* *
27* *
28* Author: ruben.shahoyan@cern.ch *
29* *
30********************************************************************************/
31
32#include "AliLHCDipValT.h"
33#include "TObject.h"
34class TObjArray;
35//class AliLHCDipValT;
36
37class AliDCSArray;
38class TString;
39class TMap;
40class AliLHCReader;
41class TGraph;
42
43class AliLHCData : public TObject
44{
45 public:
46 enum {kStart,kNStor};
47 enum BeamID_t {kBeam1,kBeam2};
48 enum Proj_t {kX,kY};
49 enum Side_t {kLeft,kRight};
50 enum Collim_t {kTCTVB4L2, kTCTVB4R2, kTCLIA4R2, kNCollimators};
51 enum ColJaw_t {kGapDn,kGapUp,kLeftDn,kLeftUp,kRightDn,kRightUp,kNJaws};
52 enum {kMaxBSlots = 3564, kOffsBeam1=346, kOffsBeam2 = 3019};
53 enum {kMarginSOR = 60*60*24*30, // use margin of 30 days for SOR, when looking for the 1st record
54 kMarginEOR = 60*15}; // use margin of 15 min for EOR, when looking for the last record
55 //
56 enum {kIntTot,kIntTotAv,kIntBunchAv,
57 kLumAcqMode,kLumTot,kLumTotErr,kLumBunch,kLumBunchErr,kLumCrossAng,kLumCrossAngErr,
58 kBunchConf,kFillNum,kBunchLgtNB,kBunchLgt,kBunchLgtFillB,
59 kRCInjSch,kRCBeta,kRCCrossAng,kRCVang,
60 kBeamSzAcqMode,kBeamSzSigH,kBeamSzSigV,kBeamSzEmittH,kBeamSzEmittV,kBeamSzSigHErr,kBeamSzSigVErr,
61 kCollPos,kLumiAlice,kBckgAlice
62 ,kNRecordTypes};
63 //
64 //le
65 public:
66 //
67 AliLHCData() : fTMin(0),fTMax(1e10),fFillNumber(0),fData(0),fkFile2Process(0),fkMap2Process(0) {Clear();}
68 AliLHCData(const TMap* dcsMap, double tmin=0, double tmax=1.e10);
69 AliLHCData(const Char_t* dcsFile, double tmin=0, double tmax=1.e10);
70 virtual ~AliLHCData() {}
71 //
72 Bool_t FillData(const TMap* dcsMap, double tmin=0, double tmax=1.e20);
73 Bool_t FillData(const Char_t* dcsFile, double tmin=0, double tmax=1.e20);
74 Double_t GetTMin() const {return fTMin;}
75 Double_t GetTMax() const {return fTMax;}
76 Int_t GetFillNumber() const {return fFillNumber;}
77 void SetFillNumber(Int_t fill) {fFillNumber = fill;}
78 void SetTMin(Double_t t) {fTMin = t<0?0:(t>1e10?1e10:t);}
79 void SetTMax(Double_t t) {fTMax = t<0?0:(t>1e10?1e10:t);}
80 //
81 virtual void Print(const Option_t *opt="") const;
82 TGraph* ExportGraph(Int_t *coord, Int_t elID=0) const;
83 //
84 Int_t GetNBunchConfigMeasured(int bm) const {return GoodPairID(bm)?fBunchConfMeas[bm][kNStor]:-1;}
85 Int_t GetNBunchConfigDeclared(int bm) const {return GoodPairID(bm)?fBunchConfDecl[bm][kNStor]:-1;}
86 Int_t GetNBunchLengths(int bm) const {return GoodPairID(bm)?fBunchLengths[bm][kNStor]:-1;}
87 Int_t GetNTotalIntensity(int bm) const {return GoodPairID(bm)?fIntensTotal[bm][kNStor]:-1;}
88 Int_t GetNTotalIntensityAv(int bm) const {return GoodPairID(bm)?fIntensTotalAv[bm][kNStor]:-1;}
89 Int_t GetNIntensityPerBunch(int bm) const {return GoodPairID(bm)?fIntensPerBunch[bm][kNStor]:-1;}
90 Int_t GetNEmittanceH(int bm) const {return GoodPairID(bm)?fEmittanceH[bm][kNStor]:-1;}
91 Int_t GetNEmittanceV(int bm) const {return GoodPairID(bm)?fEmittanceV[bm][kNStor]:-1;}
92 Int_t GetNBeamSigmaH(int bm) const {return GoodPairID(bm)?fBeamSigmaH[bm][kNStor]:-1;}
93 Int_t GetNBeamSigmaV(int bm) const {return GoodPairID(bm)?fBeamSigmaV[bm][kNStor]:-1;}
94 //
95 Int_t GetNLuminosityTotal(int lr) const {return GoodPairID(lr)?fLuminTotal[lr][kNStor]:-1;}
96 Int_t GetNLuminosityPerBunch(int lr) const {return GoodPairID(lr)?fLuminPerBC[lr][kNStor]:-1;}
97 Int_t GetNLuminosityAcqMode(int lr) const {return GoodPairID(lr)?fLuminAcqMode[lr][kNStor]:-1;}
98 Int_t GetNCrossingAngle(int lr) const {return GoodPairID(lr)?fCrossAngle[lr][kNStor]:-1;}
99 //
100 Int_t GetNInjectionScheme() const {return fRCInjScheme[kNStor];}
101 Int_t GetNRCBetaStar() const {return fRCBeta[kNStor];}
102 Int_t GetNRCAngleH() const {return fRCAngH[kNStor];}
103 Int_t GetNRCAngleV() const {return fRCAngV[kNStor];}
104 //
105 Int_t GetNLumiAlice() const {return fLumiAlice[kNStor];}
106 Int_t GetNBckgAlice() const {return fBckgAlice[kNStor];}
107 //
108 Int_t GetNCollimatorJawPos(int coll,int jaw) const;
109 //
110 AliLHCDipValI* GetBunchConfigMeasured(int bm, int i=0) const;
111 AliLHCDipValF* GetBunchLengths(int bm, int i=0) const;
112 AliLHCDipValI* GetBunchConfigDeclared(int bm, int i=0) const;
113 AliLHCDipValF* GetTotalIntensity(int bm, int i=0) const;
114 AliLHCDipValF* GetTotalIntensityAv(int bm, int i=0) const;
115 AliLHCDipValF* GetIntensityPerBunch(int bm, int i=0) const;
116 AliLHCDipValF* GetEmittanceH(int bm, int i=0) const;
117 AliLHCDipValF* GetEmittanceV(int bm, int i=0) const;
118 AliLHCDipValF* GetBeamSigmaH(int bm, int i=0) const;
119 AliLHCDipValF* GetBeamSigmaV(int bm, int i=0) const;
120 AliLHCDipValF* GetLuminosityTotal(int lr, int i=0) const;
121 AliLHCDipValF* GetLuminosityPerBunch(int lr, int i=0) const;
122 AliLHCDipValI* GetLuminosityAcqMode(int lr, int i=0) const;
123 AliLHCDipValF* GetCrossAngle(int lr, int i=0) const;
124 AliLHCDipValC* GetInjectionScheme(int i=0) const;
125 AliLHCDipValF* GetRCBetaStar(int i=0) const;
126 AliLHCDipValF* GetRCAngleH(int i=0) const;
127 AliLHCDipValF* GetRCAngleV(int i=0) const;
128 AliLHCDipValF* GetCollimJawPos(int coll, int jaw, int i=0) const;
129 //
130 AliLHCDipValF* GetLumiAliceRecord(int i=0) const;
131 AliLHCDipValF* GetBckgAliceRecord(int i=0) const;
132 //
133 Float_t GetLumiAlice(Double_t tstamp) const;
134 Float_t GetBckgAlice(Double_t tstamp) const;
135 //
136 Float_t GetLumiInstAlice(Double_t tstamp) const;
137 Float_t GetBckgInstAlice(Double_t tstamp) const;
138 //
139 void FlagInteractingBunches(const Int_t beam1[2],const Int_t beam2[2]);
140 TObject* FindRecValidFor(int start,int nrec, double tstamp) const;
141 Int_t FindEntryValidFor(int start,int nrec, double tstamp) const;
142 AliLHCDipValI* GetBunchConfigMeasured(int beam,double tstamp) const;
143 AliLHCDipValI* GetBunchConfigDeclared(int beam,double tstamp) const;
144 Int_t GetNInteractingBunchesMeasured(int i=0) const;
145 Int_t GetNInteractingBunchesDeclared(int i=0) const;
146 Int_t IsPilotPresent(int i=0) const;
147 //
148 // return array with beginning [0] and number of records for corresponding info (in the fData)
149 const Int_t* GetOffsBunchConfigMeasured(int bm) const {return GoodPairID(bm)?fBunchConfMeas[bm]:0;}
150 const Int_t* GetOffsBunchConfigDeclared(int bm) const {return GoodPairID(bm)?fBunchConfDecl[bm]:0;}
151 const Int_t* GetOffsBunchLengths(int bm) const {return GoodPairID(bm)?fBunchLengths[bm]:0;}
152 const Int_t* GetOffsTotalIntensity(int bm) const {return GoodPairID(bm)?fIntensTotal[bm]:0;}
153 const Int_t* GetOffsTotalIntensityAv(int bm) const {return GoodPairID(bm)?fIntensTotalAv[bm]:0;}
154 const Int_t* GetOffsIntensityPerBunch(int bm) const {return GoodPairID(bm)?fIntensPerBunch[bm]:0;}
155 const Int_t* GetOffsEmittanceH(int bm) const {return GoodPairID(bm)?fEmittanceH[bm]:0;}
156 const Int_t* GetOffsEmittanceV(int bm) const {return GoodPairID(bm)?fEmittanceV[bm]:0;}
157 const Int_t* GetOffsBeamSigmaH(int bm) const {return GoodPairID(bm)?fBeamSigmaH[bm]:0;}
158 const Int_t* GetOffsBeamSigmaV(int bm) const {return GoodPairID(bm)?fBeamSigmaV[bm]:0;}
159 //
160 const Int_t* GetOffsLuminosityTotal(int lr) const {return GoodPairID(lr)?fLuminTotal[lr]:0;}
161 const Int_t* GetOffsLuminosityPerBunch(int lr) const {return GoodPairID(lr)?fLuminPerBC[lr]:0;}
162 const Int_t* GetOffsLuminosityAcqMode(int lr) const {return GoodPairID(lr)?fLuminAcqMode[lr]:0;}
163 const Int_t* GetOffsCrossingAngle(int lr) const {return GoodPairID(lr)?fCrossAngle[lr]:0;}
164 //
165 const Int_t* GetOffsInjectionScheme() const {return fRCInjScheme;}
166 const Int_t* GetOffsRCBetaStar() const {return fRCBeta;}
167 const Int_t* GetOffsRCAngleH() const {return fRCAngH;}
168 const Int_t* GetOffsRCAngleV() const {return fRCAngV;}
169 const Int_t* GetOffsLumiAlice() const {return fLumiAlice;}
170 const Int_t* GetOffsBckgAlice() const {return fBckgAlice;}
171 //
172 const Int_t* GetOffsCollimatorJawPos(int coll,int jaw) const;
173 //
174 const TObjArray& GetData() const {return fData;}
175 //
176 // analysis methods
177 Int_t GetMeanIntensity(int beamID, Double_t &colliding, Double_t &noncolliding, const TObjArray* bcmasks=0) const;
178 static Int_t GetBCId(int bucket, int beamID) {return (TMath::Abs(bucket)/10 + (beamID==0 ? kOffsBeam1:kOffsBeam2))%kMaxBSlots;}
179 //
180 // for retrofitting, these methods has to be public
181 void FillLumiAlice(Int_t nrec, Int_t* time, Double_t* val);
182 void FillBckgAlice(Int_t nrec, Int_t* time, Double_t* val);
183
184
185 protected:
186 //
187 Bool_t FillData(double tmin=0, double tmax=1.e20);
188 virtual void Clear(const Option_t *opt="");
189 void PrintAux(Bool_t full,const Int_t refs[2],const Option_t *opt="") const;
190 TObjArray* GetDCSEntry(const char* key,int &entry,int &last,double tmin,double tmax) const;
191 Int_t FillScalarRecord( int refs[2], const char* rec, const char* recErr=0, Double_t maxAbsVal=1.e30);
192 Int_t FillBunchConfig( int refs[2], const char* rec);
193 Int_t FillStringRecord( int refs[2], const char* rec);
194 Int_t FillAcqMode( int refs[2], const char* rec);
195 Int_t FillBunchInfo( int refs[2], const char* rec,int ibm, Bool_t inRealSlots, Double_t maxAbsVal=1.e30);
196 Int_t FillBCLuminosities(int refs[2], const char* rec, const char* recErr, Int_t useBeam, Double_t maxAbsVal=1.e30);
197 //
198 Int_t ExtractInt(AliDCSArray* dcsArray,Int_t el) const;
199 Double_t ExtractDouble(AliDCSArray* dcsArray,Int_t el) const;
200 TString& ExtractString(AliDCSArray* dcsArray) const;
201 AliLHCData(const AliLHCData& src) : TObject(src),fTMin(0),fTMax(0),fFillNumber(0),fData(0),fkFile2Process(0),fkMap2Process(0) { /*dummy*/ }
202 AliLHCData& operator=(const AliLHCData& ) { /*dummy*/ return *this;}
203 Int_t TimeDifference(double v1,double v2,double tol=0.9) const;
204 Bool_t IzZero(double val, double tol=1e-16) const {return TMath::Abs(val)<tol;}
205 Bool_t GoodPairID(int beam) const;
206 //
207 protected:
208 //
209 Double_t fTMin; // selection timeMin
210 Double_t fTMax; // selection timeMax
211 Int_t fFillNumber; // fill number : kFillNum
212 //
213 //---------------- Last index gives: 0 - beginning of the records in fData, 1 - number of records
214 //
215 // infrormation from RunControl
216 Int_t fRCInjScheme[2]; // active injection scheme : String |kRCInjScheme
217 Int_t fRCBeta[2]; // target beta : Float |kRCBeta
218 Int_t fRCAngH[2]; // horisontal angle : Float |kRCCrossAng
219 Int_t fRCAngV[2]; // vertical angle : Float |kRCVang
220 Int_t fBunchConfDecl[2][2]; // declared beam configuration : Float |kBunchConf
221 //
222 // measured information
223 Int_t fBunchConfMeas[2][2]; // measured beam configuration : Int |kBunchLgtFillB
224 Int_t fBunchLengths[2][2]; // measured beam lenghts : Float |kBunchLgt
225 Int_t fIntensTotal[2][2]; // total beam intensities : Float |kIntTot
226 Int_t fIntensTotalAv[2][2]; // total beam intensities from bunch averages : Float |kIntTotAv
227 Int_t fIntensPerBunch[2][2]; // bunch-by-bunch intensities : Float |kIntBunchAv
228 //
229 Int_t fCrossAngle[2][2]; // crossing angle at IP2 and its error : Float |kLimCrossAng, kLumCrossAngErr
230 Int_t fEmittanceH[2][2]; // beam H emittances : Float |kBeamSzEmittH
231 Int_t fEmittanceV[2][2]; // beam V emittances : Float |kBeamSzEmittV
232 Int_t fBeamSigmaH[2][2]; // beam H sigma and error : Float |kBeamSzSigH,kBeamSzSigHErr
233 Int_t fBeamSigmaV[2][2]; // beam V sigma and error : Float |kBeamSzSigV,kBeamSzSigVErr
234 //
235 Int_t fLuminTotal[2][2]; // total luminosity at IP2 and its error : Float |kLumTot, kLumTotErr
236 Int_t fLuminPerBC[2][2]; // luminosity at IP2 for each BC and its error : Float |kLumBunch,kLumBunchErr
237 Int_t fLuminAcqMode[2][2]; // luminosity acquisition mode : Int |kLumAcqMode
238 //
239 // here we will store the luminosity and the background measured by Alice. We store the value integrated from the start of fill.
240 // the inst. value can be obtained as its derivative
241 Int_t fLumiAlice[2]; // luminosity measured by Alice : Float |kLumiAlice
242 Int_t fBckgAlice[2]; // background measured by Alice : Float |kLumiAlice
243 //
244 Int_t fCollimators[kNCollimators][kNJaws][2];// collimator jaws positions : Float |kCollPos
245 //
246 TObjArray fData; // single storage for various records
247 //
248 static const Char_t *fgkDCSNames[]; // beam related DCS names to extract
249 static const Char_t *fgkDCSColNames[]; // collimators to extract
250 static const Char_t *fgkDCSColJaws[]; // names of collimator pieces
251 //
252 private:
253 // non-persistent objects used at the filling time
254 const Char_t* fkFile2Process; //! name of DCS file
255 const TMap* fkMap2Process; //! DCS map to process
256
257 ClassDef(AliLHCData,3)
258};
259
260
261//_____________________________________________________________________________
262inline Int_t AliLHCData::GetNCollimatorJawPos(int coll,int jaw) const {// get n records
263 return (coll>=0&&coll<kNCollimators&&jaw>=0&&jaw<kNJaws)? fCollimators[coll][jaw][kNStor]:0;
264}
265
266inline const Int_t* AliLHCData::GetOffsCollimatorJawPos(int coll,int jaw) const { // offset array
267 return (coll>=0&&coll<kNCollimators&&jaw>=0&&jaw<kNJaws)? fCollimators[coll][jaw]:0;
268}
269
270inline AliLHCDipValI* AliLHCData::GetBunchConfigMeasured(int bm, int i) const { // get record
271 return (GoodPairID(bm) && i>=0 && i<fBunchConfMeas[bm][kNStor]) ? (AliLHCDipValI*)fData[fBunchConfMeas[bm][kStart]+i]:0;
272}
273
274inline AliLHCDipValF* AliLHCData::GetBunchLengths(int bm, int i) const { // get record
275 return (GoodPairID(bm) && i>=0 && i<fBunchLengths[bm][kNStor]) ? (AliLHCDipValF*)fData[fBunchLengths[bm][kStart]+i]:0;
276}
277
278inline AliLHCDipValI* AliLHCData::GetBunchConfigDeclared(int bm, int i) const { // get record
279 return (GoodPairID(bm) && i>=0 && i<fBunchConfDecl[bm][kNStor]) ? (AliLHCDipValI*)fData[fBunchConfDecl[bm][kStart]+i]:0;
280}
281
282inline AliLHCDipValF* AliLHCData::GetTotalIntensity(int bm, int i) const { // get record
283 return (GoodPairID(bm) && i>=0 && i<fIntensTotal[bm][kNStor]) ? (AliLHCDipValF*)fData[fIntensTotal[bm][kStart]+i]:0;
284}
285
286inline AliLHCDipValF* AliLHCData::GetTotalIntensityAv(int bm, int i) const { // get record
287 return (GoodPairID(bm) && i>=0 && i<fIntensTotalAv[bm][kNStor]) ? (AliLHCDipValF*)fData[fIntensTotalAv[bm][kStart]+i]:0;
288}
289
290inline AliLHCDipValF* AliLHCData::GetIntensityPerBunch(int bm, int i) const { // get record
291 return (GoodPairID(bm) && i>=0 && i<fIntensPerBunch[bm][kNStor]) ? (AliLHCDipValF*)fData[fIntensPerBunch[bm][kStart]+i]:0;
292}
293
294inline AliLHCDipValF* AliLHCData::GetEmittanceH(int bm, int i) const { // get record
295 return (GoodPairID(bm) && i>=0 && i<fEmittanceH[bm][kNStor]) ? (AliLHCDipValF*)fData[fEmittanceH[bm][kStart]+i]:0;
296}
297
298inline AliLHCDipValF* AliLHCData::GetEmittanceV(int bm, int i) const { // get record
299 return (GoodPairID(bm) && i>=0 && i<fEmittanceV[bm][kNStor]) ? (AliLHCDipValF*)fData[fEmittanceV[bm][kStart]+i]:0;
300}
301
302inline AliLHCDipValF* AliLHCData::GetBeamSigmaH(int bm, int i) const { // get record
303 return (GoodPairID(bm) && i>=0 && i<fBeamSigmaH[bm][kNStor]) ? (AliLHCDipValF*)fData[fBeamSigmaH[bm][kStart]+i]:0;
304}
305
306inline AliLHCDipValF* AliLHCData::GetBeamSigmaV(int bm, int i) const { // get record
307 return (GoodPairID(bm) && i>=0 && i<fBeamSigmaV[bm][kNStor]) ? (AliLHCDipValF*)fData[fBeamSigmaV[bm][kStart]+i]:0;
308}
309
310inline AliLHCDipValF* AliLHCData::GetLuminosityTotal(int lr, int i) const { // get record
311 return (GoodPairID(lr) && i>=0 && i<fLuminTotal[lr][kNStor]) ? (AliLHCDipValF*)fData[fLuminTotal[lr][kStart]+i]:0;
312}
313
314inline AliLHCDipValF* AliLHCData::GetLuminosityPerBunch(int lr, int i) const { // get record
315 return (GoodPairID(lr) && i>=0 && i<fLuminPerBC[lr][kNStor]) ? (AliLHCDipValF*)fData[fLuminPerBC[lr][kStart]+i]:0;
316}
317
318inline AliLHCDipValI* AliLHCData::GetLuminosityAcqMode(int lr, int i) const { // get record
319 return (GoodPairID(lr) && i>=0 && i<fLuminAcqMode[lr][kNStor]) ? (AliLHCDipValI*)fData[fLuminAcqMode[lr][kStart]+i]:0;
320}
321
322inline AliLHCDipValF* AliLHCData::GetCrossAngle(int lr, int i) const { // get record
323 return (GoodPairID(lr) && i>=0 && i<fCrossAngle[lr][kNStor]) ? (AliLHCDipValF*)fData[fCrossAngle[lr][kStart]+i]:0;
324}
325
326inline AliLHCDipValC* AliLHCData::GetInjectionScheme(int i) const { // get record
327 return (i>=0 && i<fRCInjScheme[kNStor]) ? (AliLHCDipValC*)fData[fRCInjScheme[kStart]+i]:0;
328}
329
330inline AliLHCDipValF* AliLHCData::GetRCBetaStar(int i) const { // get record
331 return (i>=0 && i<fRCBeta[kNStor]) ? (AliLHCDipValF*)fData[fRCBeta[kStart]+i]:0;
332}
333
334inline AliLHCDipValF* AliLHCData::GetRCAngleH(int i) const { // get record
335 return (i>=0 && i<fRCAngH[kNStor]) ? (AliLHCDipValF*)fData[fRCAngH[kStart]+i]:0;
336}
337
338inline AliLHCDipValF* AliLHCData::GetRCAngleV(int i) const { // get record
339 return (i>=0 && i<fRCAngV[kNStor]) ? (AliLHCDipValF*)fData[fRCAngV[kStart]+i]:0;
340}
341
342inline AliLHCDipValF* AliLHCData::GetCollimJawPos(int coll, int jaw, int i) const { // get record
343 return (coll>=0 && coll<kNCollimators && jaw>=0 && jaw<kNJaws &&
344 i>=0 && i<fCollimators[coll][jaw][kNStor]) ? (AliLHCDipValF*)fData[fCollimators[coll][jaw][kStart]+i]:0;
345}
346
347inline AliLHCDipValF* AliLHCData::GetLumiAliceRecord(int i) const { // get record on integrated luminosity
348 return (i>=0 && i<fLumiAlice[kNStor]) ? (AliLHCDipValF*)fData[fLumiAlice[kStart]+i]:0;
349}
350
351inline AliLHCDipValF* AliLHCData::GetBckgAliceRecord(int i) const { // get record on integrated background
352 return (i>=0 && i<fBckgAlice[kNStor]) ? (AliLHCDipValF*)fData[fBckgAlice[kStart]+i]:0;
353}
354
355inline Float_t AliLHCData::GetLumiAlice(Double_t tStamp) const { // get closest in time value on integrated luminosity
356 int idx = FindEntryValidFor(fLumiAlice[kStart],fLumiAlice[kNStor],tStamp);
357 return idx<0 ? -1 : ((AliLHCDipValF*)fData[fLumiAlice[kStart]+idx])->GetValue();
358}
359
360inline Float_t AliLHCData::GetBckgAlice(Double_t tStamp) const { // get closest in time value on integrated bckg
361 int idx = FindEntryValidFor(fBckgAlice[kStart],fBckgAlice[kNStor],tStamp);
362 return idx<0 ? -1 : ((AliLHCDipValF*)fData[fBckgAlice[kStart]+idx])->GetValue();
363}
364
365inline Int_t AliLHCData::FindEntryValidFor(int start,int nrec, double tstamp) const
366{
367 // find index of record within this limits valid for given tstamp (i.e. the last one before or equal to tstamp)
368 int idx;
369 for (idx=0;idx<nrec;idx++) {
370 if (TimeDifference(tstamp,((AliLHCDipValI*)fData[start+idx])->GetTimeStamp())<=0) break;
371 }
372 return (idx<nrec) ? idx : nrec-1;
373}
374
375#endif