]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/STEERBase/AliExternalTrackParam.cxx
Using the new root does not allow changing the location of the tmp directory before...
[u/mrichter/AliRoot.git] / STEER / STEERBase / AliExternalTrackParam.cxx
CommitLineData
51ad6848 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
49d13e89 20// Implementation of the external track parameterisation class. //
51ad6848 21// //
49d13e89 22// This parameterisation is used to exchange tracks between the detectors. //
23// A set of functions returning the position and the momentum of tracks //
24// in the global coordinate system as well as the track impact parameters //
25// are implemented.
26// Origin: I.Belikov, CERN, Jouri.Belikov@cern.ch //
51ad6848 27///////////////////////////////////////////////////////////////////////////////
86be8934 28#include <cassert>
29
30#include <TVectorD.h>
4b189f98 31#include <TMatrixDSym.h>
d46683db 32#include <TPolyMarker3D.h>
33#include <TVector3.h>
cfdb62d4 34#include <TMatrixD.h>
d46683db 35
51ad6848 36#include "AliExternalTrackParam.h"
58e536c5 37#include "AliVVertex.h"
6c94f330 38#include "AliLog.h"
51ad6848 39
40ClassImp(AliExternalTrackParam)
41
ed5f2849 42Double32_t AliExternalTrackParam::fgMostProbablePt=kMostProbablePt;
f2cef1b5 43Bool_t AliExternalTrackParam::fgUseLogTermMS = kFALSE;;
51ad6848 44//_____________________________________________________________________________
90e48c0c 45AliExternalTrackParam::AliExternalTrackParam() :
4f6e22bd 46 AliVTrack(),
90e48c0c 47 fX(0),
c9ec41e8 48 fAlpha(0)
51ad6848 49{
90e48c0c 50 //
51 // default constructor
52 //
c9ec41e8 53 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
54 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 55}
56
6c94f330 57//_____________________________________________________________________________
58AliExternalTrackParam::AliExternalTrackParam(const AliExternalTrackParam &track):
4f6e22bd 59 AliVTrack(track),
6c94f330 60 fX(track.fX),
61 fAlpha(track.fAlpha)
62{
63 //
64 // copy constructor
65 //
66 for (Int_t i = 0; i < 5; i++) fP[i] = track.fP[i];
67 for (Int_t i = 0; i < 15; i++) fC[i] = track.fC[i];
86be8934 68 CheckCovariance();
6c94f330 69}
70
def9660e 71//_____________________________________________________________________________
72AliExternalTrackParam& AliExternalTrackParam::operator=(const AliExternalTrackParam &trkPar)
73{
74 //
75 // assignment operator
76 //
77
78 if (this!=&trkPar) {
4f6e22bd 79 AliVTrack::operator=(trkPar);
def9660e 80 fX = trkPar.fX;
81 fAlpha = trkPar.fAlpha;
82
83 for (Int_t i = 0; i < 5; i++) fP[i] = trkPar.fP[i];
84 for (Int_t i = 0; i < 15; i++) fC[i] = trkPar.fC[i];
86be8934 85 CheckCovariance();
def9660e 86 }
87
88 return *this;
89}
90
51ad6848 91//_____________________________________________________________________________
92AliExternalTrackParam::AliExternalTrackParam(Double_t x, Double_t alpha,
93 const Double_t param[5],
90e48c0c 94 const Double_t covar[15]) :
4f6e22bd 95 AliVTrack(),
90e48c0c 96 fX(x),
c9ec41e8 97 fAlpha(alpha)
51ad6848 98{
90e48c0c 99 //
100 // create external track parameters from given arguments
101 //
c9ec41e8 102 for (Int_t i = 0; i < 5; i++) fP[i] = param[i];
103 for (Int_t i = 0; i < 15; i++) fC[i] = covar[i];
86be8934 104 CheckCovariance();
51ad6848 105}
106
4ec1ca0f 107//_____________________________________________________________________________
108void AliExternalTrackParam::CopyFromVTrack(const AliVTrack *vTrack)
109{
110 //
111 // Recreate TrackParams from VTrack
112 // This is not a copy contructor !
113 //
114 if (!vTrack) {
115 AliError("Source VTrack is NULL");
116 return;
117 }
118 if (this==vTrack) {
119 AliError("Copy of itself is requested");
120 return;
121 }
122 //
123 if (vTrack->InheritsFrom(AliExternalTrackParam::Class())) {
124 AliDebug(1,"Source itself is AliExternalTrackParam, using assignment operator");
125 *this = *(AliExternalTrackParam*)vTrack;
126 return;
127 }
128 //
129 AliVTrack::operator=( *vTrack );
130 //
131 Double_t xyz[3],pxpypz[3],cv[21];
132 vTrack->GetXYZ(xyz);
133 pxpypz[0]=vTrack->Px();
134 pxpypz[1]=vTrack->Py();
135 pxpypz[2]=vTrack->Pz();
136 vTrack->GetCovarianceXYZPxPyPz(cv);
137 Short_t sign = (Short_t)vTrack->Charge();
138 Set(xyz,pxpypz,cv,sign);
139}
140
4f6e22bd 141//_____________________________________________________________________________
142AliExternalTrackParam::AliExternalTrackParam(const AliVTrack *vTrack) :
143 AliVTrack(),
144 fX(0.),
145 fAlpha(0.)
146{
147 //
610e3088 148 // Constructor from virtual track,
149 // This is not a copy contructor !
4f6e22bd 150 //
610e3088 151
152 if (vTrack->InheritsFrom("AliExternalTrackParam")) {
153 AliError("This is not a copy constructor. Use AliExternalTrackParam(const AliExternalTrackParam &) !");
154 AliWarning("Calling the default constructor...");
155 AliExternalTrackParam();
156 return;
157 }
158
892be05f 159 Double_t xyz[3],pxpypz[3],cv[21];
160 vTrack->GetXYZ(xyz);
161 pxpypz[0]=vTrack->Px();
162 pxpypz[1]=vTrack->Py();
163 pxpypz[2]=vTrack->Pz();
4f6e22bd 164 vTrack->GetCovarianceXYZPxPyPz(cv);
165 Short_t sign = (Short_t)vTrack->Charge();
166
167 Set(xyz,pxpypz,cv,sign);
168}
169
90e48c0c 170//_____________________________________________________________________________
da4e3deb 171AliExternalTrackParam::AliExternalTrackParam(Double_t xyz[3],Double_t pxpypz[3],
172 Double_t cv[21],Short_t sign) :
4f6e22bd 173 AliVTrack(),
da4e3deb 174 fX(0.),
175 fAlpha(0.)
4f6e22bd 176{
177 //
178 // constructor from the global parameters
179 //
180
181 Set(xyz,pxpypz,cv,sign);
182}
183
184//_____________________________________________________________________________
185void AliExternalTrackParam::Set(Double_t xyz[3],Double_t pxpypz[3],
186 Double_t cv[21],Short_t sign)
da4e3deb 187{
188 //
189 // create external track parameters from the global parameters
190 // x,y,z,px,py,pz and their 6x6 covariance matrix
191 // A.Dainese 10.10.08
192
aff56ff7 193 // Calculate alpha: the rotation angle of the corresponding local system.
194 //
195 // For global radial position inside the beam pipe, alpha is the
196 // azimuthal angle of the momentum projected on (x,y).
197 //
c99948ce 198 // For global radial position outside the ITS, alpha is the
aff56ff7 199 // azimuthal angle of the centre of the TPC sector in which the point
200 // xyz lies
201 //
4349f5a4 202 const double kSafe = 1e-5;
aff56ff7 203 Double_t radPos2 = xyz[0]*xyz[0]+xyz[1]*xyz[1];
c99948ce 204 Double_t radMax = 45.; // approximately ITS outer radius
4349f5a4 205 if (radPos2 < radMax*radMax) { // inside the ITS
aff56ff7 206 fAlpha = TMath::ATan2(pxpypz[1],pxpypz[0]);
c99948ce 207 } else { // outside the ITS
aff56ff7 208 Float_t phiPos = TMath::Pi()+TMath::ATan2(-xyz[1], -xyz[0]);
209 fAlpha =
210 TMath::DegToRad()*(20*((((Int_t)(phiPos*TMath::RadToDeg()))/20))+10);
211 }
4349f5a4 212 //
213 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
214 // protection: avoid alpha being too close to 0 or +-pi/2
215 if (TMath::Abs(sn)<kSafe) {
216 fAlpha = kSafe;
217 cs=TMath::Cos(fAlpha);
218 sn=TMath::Sin(fAlpha);
219 }
220 else if (cs<kSafe) {
221 fAlpha -= TMath::Sign(kSafe, fAlpha);
222 cs=TMath::Cos(fAlpha);
223 sn=TMath::Sin(fAlpha);
224 }
da4e3deb 225 // Get the vertex of origin and the momentum
226 TVector3 ver(xyz[0],xyz[1],xyz[2]);
227 TVector3 mom(pxpypz[0],pxpypz[1],pxpypz[2]);
4349f5a4 228 //
229 // avoid momenta along axis
230 if (TMath::Abs(mom[0])<kSafe) mom[0] = TMath::Sign(kSafe*TMath::Abs(mom[1]), mom[0]);
231 if (TMath::Abs(mom[1])<kSafe) mom[1] = TMath::Sign(kSafe*TMath::Abs(mom[0]), mom[1]);
da4e3deb 232
233 // Rotate to the local coordinate system
234 ver.RotateZ(-fAlpha);
235 mom.RotateZ(-fAlpha);
236
237 // x of the reference plane
238 fX = ver.X();
239
240 Double_t charge = (Double_t)sign;
241
242 fP[0] = ver.Y();
243 fP[1] = ver.Z();
244 fP[2] = TMath::Sin(mom.Phi());
245 fP[3] = mom.Pz()/mom.Pt();
246 fP[4] = TMath::Sign(1/mom.Pt(),charge);
247
248 // Covariance matrix (formulas to be simplified)
249
752303df 250 if (TMath::Abs( 1-fP[2]) < kSafe) fP[2] = 1.- kSafe; //Protection
251 else if (TMath::Abs(-1-fP[2]) < kSafe) fP[2] =-1.+ kSafe; //Protection
252
da4e3deb 253 Double_t pt=1./TMath::Abs(fP[4]);
da4e3deb 254 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
255
256 Double_t m00=-sn;// m10=cs;
257 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
258 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
259 Double_t m35=pt, m45=-pt*pt*fP[3];
260
261 m43*=GetSign();
262 m44*=GetSign();
263 m45*=GetSign();
264
265 Double_t cv34 = TMath::Sqrt(cv[3 ]*cv[3 ]+cv[4 ]*cv[4 ]);
266 Double_t a1=cv[13]-cv[9]*(m23*m44+m43*m24)/m23/m43;
267 Double_t a2=m23*m24-m23*(m23*m44+m43*m24)/m43;
268 Double_t a3=m43*m44-m43*(m23*m44+m43*m24)/m23;
269 Double_t a4=cv[14]-2.*cv[9]*m24*m44/m23/m43;
270 Double_t a5=m24*m24-2.*m24*m44*m23/m43;
271 Double_t a6=m44*m44-2.*m24*m44*m43/m23;
272
273 fC[0 ] = cv[0 ]+cv[2 ];
274 fC[1 ] = TMath::Sign(cv34,cv[3 ]/m00);
275 fC[2 ] = cv[5 ];
276 fC[3 ] = (cv[10]/m44-cv[6]/m43)/(m24/m44-m23/m43)/m00;
277 fC[10] = (cv[6]/m00-fC[3 ]*m23)/m43;
278 fC[6 ] = (cv[15]/m00-fC[10]*m45)/m35;
279 fC[4 ] = (cv[12]-cv[8]*m44/m43)/(m24-m23*m44/m43);
280 fC[11] = (cv[8]-fC[4]*m23)/m43;
281 fC[7 ] = cv[17]/m35-fC[11]*m45/m35;
282 fC[5 ] = TMath::Abs((a4-a6*a1/a3)/(a5-a6*a2/a3));
283 fC[14] = TMath::Abs(a1/a3-a2*fC[5]/a3);
284 fC[12] = (cv[9]-fC[5]*m23*m23-fC[14]*m43*m43)/m23/m43;
285 Double_t b1=cv[18]-fC[12]*m23*m45-fC[14]*m43*m45;
286 Double_t b2=m23*m35;
287 Double_t b3=m43*m35;
288 Double_t b4=cv[19]-fC[12]*m24*m45-fC[14]*m44*m45;
289 Double_t b5=m24*m35;
290 Double_t b6=m44*m35;
291 fC[8 ] = (b4-b6*b1/b3)/(b5-b6*b2/b3);
292 fC[13] = b1/b3-b2*fC[8]/b3;
293 fC[9 ] = TMath::Abs((cv[20]-fC[14]*(m45*m45)-fC[13]*2.*m35*m45)/(m35*m35));
4f6e22bd 294
86be8934 295 CheckCovariance();
296
4f6e22bd 297 return;
da4e3deb 298}
299
51ad6848 300//_____________________________________________________________________________
c9ec41e8 301void AliExternalTrackParam::Reset() {
1530f89c 302 //
303 // Resets all the parameters to 0
304 //
c9ec41e8 305 fX=fAlpha=0.;
306 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
307 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 308}
309
3775b0ca 310//_____________________________________________________________________________
311void AliExternalTrackParam::AddCovariance(const Double_t c[15]) {
312 //
313 // Add "something" to the track covarince matrix.
314 // May be needed to account for unknown mis-calibration/mis-alignment
315 //
316 fC[0] +=c[0];
317 fC[1] +=c[1]; fC[2] +=c[2];
318 fC[3] +=c[3]; fC[4] +=c[4]; fC[5] +=c[5];
319 fC[6] +=c[6]; fC[7] +=c[7]; fC[8] +=c[8]; fC[9] +=c[9];
320 fC[10]+=c[10]; fC[11]+=c[11]; fC[12]+=c[12]; fC[13]+=c[13]; fC[14]+=c[14];
86be8934 321 CheckCovariance();
3775b0ca 322}
323
324
c9ec41e8 325Double_t AliExternalTrackParam::GetP() const {
326 //---------------------------------------------------------------------
327 // This function returns the track momentum
328 // Results for (nearly) straight tracks are meaningless !
329 //---------------------------------------------------------------------
06fb4a2f 330 if (TMath::Abs(fP[4])<=kAlmost0) return kVeryBig;
c9ec41e8 331 return TMath::Sqrt(1.+ fP[3]*fP[3])/TMath::Abs(fP[4]);
51ad6848 332}
333
1d99986f 334Double_t AliExternalTrackParam::Get1P() const {
335 //---------------------------------------------------------------------
336 // This function returns the 1/(track momentum)
337 //---------------------------------------------------------------------
338 return TMath::Abs(fP[4])/TMath::Sqrt(1.+ fP[3]*fP[3]);
339}
340
c9ec41e8 341//_______________________________________________________________________
c7bafca9 342Double_t AliExternalTrackParam::GetD(Double_t x,Double_t y,Double_t b) const {
c9ec41e8 343 //------------------------------------------------------------------
344 // This function calculates the transverse impact parameter
345 // with respect to a point with global coordinates (x,y)
346 // in the magnetic field "b" (kG)
347 //------------------------------------------------------------------
5773defd 348 if (TMath::Abs(b) < kAlmost0Field) return GetLinearD(x,y);
1530f89c 349 Double_t rp4=GetC(b);
c9ec41e8 350
351 Double_t xt=fX, yt=fP[0];
352
353 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
354 Double_t a = x*cs + y*sn;
355 y = -x*sn + y*cs; x=a;
356 xt-=x; yt-=y;
357
bfd20868 358 sn=rp4*xt - fP[2]; cs=rp4*yt + TMath::Sqrt((1.- fP[2])*(1.+fP[2]));
359 a=2*(xt*fP[2] - yt*TMath::Sqrt((1.-fP[2])*(1.+fP[2])))-rp4*(xt*xt + yt*yt);
1530f89c 360 return -a/(1 + TMath::Sqrt(sn*sn + cs*cs));
361}
362
363//_______________________________________________________________________
364void AliExternalTrackParam::
365GetDZ(Double_t x, Double_t y, Double_t z, Double_t b, Float_t dz[2]) const {
366 //------------------------------------------------------------------
367 // This function calculates the transverse and longitudinal impact parameters
368 // with respect to a point with global coordinates (x,y)
369 // in the magnetic field "b" (kG)
370 //------------------------------------------------------------------
bfd20868 371 Double_t f1 = fP[2], r1 = TMath::Sqrt((1.-f1)*(1.+f1));
1530f89c 372 Double_t xt=fX, yt=fP[0];
373 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
374 Double_t a = x*cs + y*sn;
375 y = -x*sn + y*cs; x=a;
376 xt-=x; yt-=y;
377
378 Double_t rp4=GetC(b);
379 if ((TMath::Abs(b) < kAlmost0Field) || (TMath::Abs(rp4) < kAlmost0)) {
380 dz[0] = -(xt*f1 - yt*r1);
381 dz[1] = fP[1] + (dz[0]*f1 - xt)/r1*fP[3] - z;
382 return;
383 }
384
385 sn=rp4*xt - f1; cs=rp4*yt + r1;
386 a=2*(xt*f1 - yt*r1)-rp4*(xt*xt + yt*yt);
387 Double_t rr=TMath::Sqrt(sn*sn + cs*cs);
388 dz[0] = -a/(1 + rr);
bfd20868 389 Double_t f2 = -sn/rr, r2 = TMath::Sqrt((1.-f2)*(1.+f2));
1530f89c 390 dz[1] = fP[1] + fP[3]/rp4*TMath::ASin(f2*r1 - f1*r2) - z;
51ad6848 391}
392
49d13e89 393//_______________________________________________________________________
394Double_t AliExternalTrackParam::GetLinearD(Double_t xv,Double_t yv) const {
395 //------------------------------------------------------------------
396 // This function calculates the transverse impact parameter
397 // with respect to a point with global coordinates (xv,yv)
398 // neglecting the track curvature.
399 //------------------------------------------------------------------
400 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
401 Double_t x= xv*cs + yv*sn;
402 Double_t y=-xv*sn + yv*cs;
403
bfd20868 404 Double_t d = (fX-x)*fP[2] - (fP[0]-y)*TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
49d13e89 405
1530f89c 406 return -d;
49d13e89 407}
408
b8e07ed6 409Bool_t AliExternalTrackParam::CorrectForMeanMaterialdEdx
410(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
411 Double_t dEdx,
412 Bool_t anglecorr) {
116b445b 413 //------------------------------------------------------------------
414 // This function corrects the track parameters for the crossed material.
415 // "xOverX0" - X/X0, the thickness in units of the radiation length.
2b99ff83 416 // "xTimesRho" - is the product length*density (g/cm^2).
417 // It should be passed as negative when propagating tracks
418 // from the intreaction point to the outside of the central barrel.
116b445b 419 // "mass" - the mass of this particle (GeV/c^2).
b8e07ed6 420 // "dEdx" - mean enery loss (GeV/(g/cm^2)
421 // "anglecorr" - switch for the angular correction
116b445b 422 //------------------------------------------------------------------
423 Double_t &fP2=fP[2];
424 Double_t &fP3=fP[3];
425 Double_t &fP4=fP[4];
426
427 Double_t &fC22=fC[5];
428 Double_t &fC33=fC[9];
429 Double_t &fC43=fC[13];
430 Double_t &fC44=fC[14];
431
7dded1d5 432 //Apply angle correction, if requested
433 if(anglecorr) {
bfd20868 434 Double_t angle=TMath::Sqrt((1.+ fP3*fP3)/((1-fP2)*(1.+fP2)));
7dded1d5 435 xOverX0 *=angle;
436 xTimesRho *=angle;
437 }
438
116b445b 439 Double_t p=GetP();
440 Double_t p2=p*p;
441 Double_t beta2=p2/(p2 + mass*mass);
116b445b 442
9f2bec63 443 //Calculating the multiple scattering corrections******************
444 Double_t cC22 = 0.;
445 Double_t cC33 = 0.;
446 Double_t cC43 = 0.;
447 Double_t cC44 = 0.;
116b445b 448 if (xOverX0 != 0) {
f2cef1b5 449 //Double_t theta2=1.0259e-6*14*14/28/(beta2*p2)*TMath::Abs(d)*9.36*2.33;
450 Double_t theta2=0.0136*0.0136/(beta2*p2)*TMath::Abs(xOverX0);
451 if (GetUseLogTermMS()) {
452 double lt = 1+0.038*TMath::Log(TMath::Abs(xOverX0));
453 if (lt>0) theta2 *= lt*lt;
454 }
455 if(theta2>TMath::Pi()*TMath::Pi()) return kFALSE;
456 cC22 = theta2*((1.-fP2)*(1.+fP2))*(1. + fP3*fP3);
457 cC33 = theta2*(1. + fP3*fP3)*(1. + fP3*fP3);
458 cC43 = theta2*fP3*fP4*(1. + fP3*fP3);
459 cC44 = theta2*fP3*fP4*fP3*fP4;
116b445b 460 }
461
9f2bec63 462 //Calculating the energy loss corrections************************
463 Double_t cP4=1.;
116b445b 464 if ((xTimesRho != 0.) && (beta2 < 1.)) {
b8e07ed6 465 Double_t dE=dEdx*xTimesRho;
116b445b 466 Double_t e=TMath::Sqrt(p2 + mass*mass);
467 if ( TMath::Abs(dE) > 0.3*e ) return kFALSE; //30% energy loss is too much!
c9038cae 468 //cP4 = (1.- e/p2*dE);
76ece3d8 469 if ( (1.+ dE/p2*(dE + 2*e)) < 0. ) return kFALSE;
c9038cae 470 cP4 = 1./TMath::Sqrt(1.+ dE/p2*(dE + 2*e)); //A precise formula by Ruben !
9f2bec63 471 if (TMath::Abs(fP4*cP4)>100.) return kFALSE; //Do not track below 10 MeV/c
4b2fa3ce 472
116b445b 473
474 // Approximate energy loss fluctuation (M.Ivanov)
475 const Double_t knst=0.07; // To be tuned.
476 Double_t sigmadE=knst*TMath::Sqrt(TMath::Abs(dE));
9f2bec63 477 cC44 += ((sigmadE*e/p2*fP4)*(sigmadE*e/p2*fP4));
116b445b 478
479 }
480
9f2bec63 481 //Applying the corrections*****************************
482 fC22 += cC22;
483 fC33 += cC33;
484 fC43 += cC43;
485 fC44 += cC44;
486 fP4 *= cP4;
487
86be8934 488 CheckCovariance();
489
116b445b 490 return kTRUE;
491}
492
b8e07ed6 493Bool_t AliExternalTrackParam::CorrectForMeanMaterial
494(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
495 Bool_t anglecorr,
496 Double_t (*Bethe)(Double_t)) {
497 //------------------------------------------------------------------
498 // This function corrects the track parameters for the crossed material.
499 // "xOverX0" - X/X0, the thickness in units of the radiation length.
500 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 501 // It should be passed as negative when propagating tracks
502 // from the intreaction point to the outside of the central barrel.
b8e07ed6 503 // "mass" - the mass of this particle (GeV/c^2).
504 // "anglecorr" - switch for the angular correction
505 // "Bethe" - function calculating the energy loss (GeV/(g/cm^2))
506 //------------------------------------------------------------------
507
508 Double_t bg=GetP()/mass;
509 Double_t dEdx=Bethe(bg);
510
511 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
512}
513
514Bool_t AliExternalTrackParam::CorrectForMeanMaterialZA
515(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
516 Double_t zOverA,
517 Double_t density,
518 Double_t exEnergy,
519 Double_t jp1,
520 Double_t jp2,
521 Bool_t anglecorr) {
522 //------------------------------------------------------------------
523 // This function corrects the track parameters for the crossed material
524 // using the full Geant-like Bethe-Bloch formula parameterization
525 // "xOverX0" - X/X0, the thickness in units of the radiation length.
526 // "xTimesRho" - is the product length*density (g/cm^2).
2b99ff83 527 // It should be passed as negative when propagating tracks
528 // from the intreaction point to the outside of the central barrel.
b8e07ed6 529 // "mass" - the mass of this particle (GeV/c^2).
530 // "density" - mean density (g/cm^3)
531 // "zOverA" - mean Z/A
532 // "exEnergy" - mean exitation energy (GeV)
533 // "jp1" - density effect first junction point
534 // "jp2" - density effect second junction point
535 // "anglecorr" - switch for the angular correction
536 //
537 // The default values of the parameters are for silicon
538 //
539 //------------------------------------------------------------------
540
541 Double_t bg=GetP()/mass;
542 Double_t dEdx=BetheBlochGeant(bg,density,jp1,jp2,exEnergy,zOverA);
543
544 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
545}
546
547
116b445b 548
ee5dba5e 549Bool_t AliExternalTrackParam::CorrectForMaterial
550(Double_t d, Double_t x0, Double_t mass, Double_t (*Bethe)(Double_t)) {
c7bafca9 551 //------------------------------------------------------------------
116b445b 552 // Deprecated function !
553 // Better use CorrectForMeanMaterial instead of it.
554 //
c7bafca9 555 // This function corrects the track parameters for the crossed material
556 // "d" - the thickness (fraction of the radiation length)
2b99ff83 557 // It should be passed as negative when propagating tracks
558 // from the intreaction point to the outside of the central barrel.
c7bafca9 559 // "x0" - the radiation length (g/cm^2)
560 // "mass" - the mass of this particle (GeV/c^2)
561 //------------------------------------------------------------------
c7bafca9 562
b8e07ed6 563 return CorrectForMeanMaterial(d,x0*d,mass,kTRUE,Bethe);
c7bafca9 564
c7bafca9 565}
566
9c56b409 567Double_t AliExternalTrackParam::BetheBlochAleph(Double_t bg,
568 Double_t kp1,
569 Double_t kp2,
570 Double_t kp3,
571 Double_t kp4,
572 Double_t kp5) {
573 //
574 // This is the empirical ALEPH parameterization of the Bethe-Bloch formula.
575 // It is normalized to 1 at the minimum.
576 //
577 // bg - beta*gamma
578 //
579 // The default values for the kp* parameters are for ALICE TPC.
580 // The returned value is in MIP units
581 //
582
583 Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
584
585 Double_t aa = TMath::Power(beta,kp4);
586 Double_t bb = TMath::Power(1./bg,kp5);
587
588 bb=TMath::Log(kp3+bb);
589
590 return (kp2-aa-bb)*kp1/aa;
591}
592
593Double_t AliExternalTrackParam::BetheBlochGeant(Double_t bg,
594 Double_t kp0,
595 Double_t kp1,
596 Double_t kp2,
597 Double_t kp3,
598 Double_t kp4) {
599 //
600 // This is the parameterization of the Bethe-Bloch formula inspired by Geant.
601 //
602 // bg - beta*gamma
603 // kp0 - density [g/cm^3]
604 // kp1 - density effect first junction point
605 // kp2 - density effect second junction point
606 // kp3 - mean excitation energy [GeV]
607 // kp4 - mean Z/A
608 //
609 // The default values for the kp* parameters are for silicon.
610 // The returned value is in [GeV/(g/cm^2)].
611 //
612
613 const Double_t mK = 0.307075e-3; // [GeV*cm^2/g]
614 const Double_t me = 0.511e-3; // [GeV/c^2]
615 const Double_t rho = kp0;
616 const Double_t x0 = kp1*2.303;
617 const Double_t x1 = kp2*2.303;
618 const Double_t mI = kp3;
619 const Double_t mZA = kp4;
620 const Double_t bg2 = bg*bg;
621 const Double_t maxT= 2*me*bg2; // neglecting the electron mass
622
623 //*** Density effect
624 Double_t d2=0.;
625 const Double_t x=TMath::Log(bg);
626 const Double_t lhwI=TMath::Log(28.816*1e-9*TMath::Sqrt(rho*mZA)/mI);
627 if (x > x1) {
628 d2 = lhwI + x - 0.5;
629 } else if (x > x0) {
630 const Double_t r=(x1-x)/(x1-x0);
631 d2 = lhwI + x - 0.5 + (0.5 - lhwI - x0)*r*r*r;
632 }
633
634 return mK*mZA*(1+bg2)/bg2*
635 (0.5*TMath::Log(2*me*bg2*maxT/(mI*mI)) - bg2/(1+bg2) - d2);
636}
637
d46683db 638Double_t AliExternalTrackParam::BetheBlochSolid(Double_t bg) {
ee5dba5e 639 //------------------------------------------------------------------
d46683db 640 // This is an approximation of the Bethe-Bloch formula,
641 // reasonable for solid materials.
642 // All the parameters are, in fact, for Si.
9b655cba 643 // The returned value is in [GeV/(g/cm^2)]
ee5dba5e 644 //------------------------------------------------------------------
a821848c 645
9c56b409 646 return BetheBlochGeant(bg);
d46683db 647}
ee5dba5e 648
d46683db 649Double_t AliExternalTrackParam::BetheBlochGas(Double_t bg) {
650 //------------------------------------------------------------------
651 // This is an approximation of the Bethe-Bloch formula,
652 // reasonable for gas materials.
653 // All the parameters are, in fact, for Ne.
9b655cba 654 // The returned value is in [GeV/(g/cm^2)]
d46683db 655 //------------------------------------------------------------------
656
657 const Double_t rho = 0.9e-3;
658 const Double_t x0 = 2.;
659 const Double_t x1 = 4.;
660 const Double_t mI = 140.e-9;
661 const Double_t mZA = 0.49555;
662
9c56b409 663 return BetheBlochGeant(bg,rho,x0,x1,mI,mZA);
ee5dba5e 664}
665
49d13e89 666Bool_t AliExternalTrackParam::Rotate(Double_t alpha) {
667 //------------------------------------------------------------------
668 // Transform this track to the local coord. system rotated
669 // by angle "alpha" (rad) with respect to the global coord. system.
670 //------------------------------------------------------------------
dfcef74c 671 if (TMath::Abs(fP[2]) >= kAlmost1) {
672 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
673 return kFALSE;
674 }
675
49d13e89 676 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
677 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
678
679 Double_t &fP0=fP[0];
680 Double_t &fP2=fP[2];
681 Double_t &fC00=fC[0];
682 Double_t &fC10=fC[1];
683 Double_t &fC20=fC[3];
684 Double_t &fC21=fC[4];
685 Double_t &fC22=fC[5];
686 Double_t &fC30=fC[6];
687 Double_t &fC32=fC[8];
688 Double_t &fC40=fC[10];
689 Double_t &fC42=fC[12];
690
691 Double_t x=fX;
692 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
bfd20868 693 Double_t sf=fP2, cf=TMath::Sqrt((1.- fP2)*(1.+fP2)); // Improve precision
49d13e89 694
07dfd570 695 // RS: check if rotation does no invalidate track model (cos(local_phi)>=0, i.e. particle
696 // direction in local frame is along the X axis
697 if ((cf*ca+sf*sa)<0) {
1450dc8a 698 AliDebug(1,Form("Rotation failed: local cos(phi) would become %.2f",cf*ca+sf*sa));
07dfd570 699 return kFALSE;
700 }
701 //
dfcef74c 702 Double_t tmp=sf*ca - cf*sa;
7248cf51 703 if (TMath::Abs(tmp) >= kAlmost1) {
704 if (TMath::Abs(tmp) > 1.+ Double_t(FLT_EPSILON))
705 AliWarning(Form("Rotation failed ! %.10e",tmp));
0b69bbb2 706 return kFALSE;
707 }
dfcef74c 708
49d13e89 709 fAlpha = alpha;
710 fX = x*ca + fP0*sa;
711 fP0= -x*sa + fP0*ca;
dfcef74c 712 fP2= tmp;
49d13e89 713
06fb4a2f 714 if (TMath::Abs(cf)<kAlmost0) {
715 AliError(Form("Too small cosine value %f",cf));
716 cf = kAlmost0;
717 }
718
49d13e89 719 Double_t rr=(ca+sf/cf*sa);
720
721 fC00 *= (ca*ca);
722 fC10 *= ca;
723 fC20 *= ca*rr;
724 fC21 *= rr;
725 fC22 *= rr*rr;
726 fC30 *= ca;
727 fC32 *= rr;
728 fC40 *= ca;
729 fC42 *= rr;
730
86be8934 731 CheckCovariance();
732
49d13e89 733 return kTRUE;
734}
735
736Bool_t AliExternalTrackParam::PropagateTo(Double_t xk, Double_t b) {
737 //----------------------------------------------------------------
738 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
739 //----------------------------------------------------------------
49d13e89 740 Double_t dx=xk-fX;
e421f556 741 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
18ebc5ef 742
1530f89c 743 Double_t crv=GetC(b);
5773defd 744 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
745
2de63fc5 746 Double_t x2r = crv*dx;
747 Double_t f1=fP[2], f2=f1 + x2r;
bbefa4c4 748 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 749 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
4349f5a4 750 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
49d13e89 751
752 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
753 Double_t
754 &fC00=fC[0],
755 &fC10=fC[1], &fC11=fC[2],
756 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
757 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
758 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
759
bfd20868 760 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
4349f5a4 761 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
762 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
49d13e89 763
764 fX=xk;
2de63fc5 765 double dy2dx = (f1+f2)/(r1+r2);
766 fP0 += dx*dy2dx;
767 if (TMath::Abs(x2r)<0.05) {
768 fP1 += dx*(r2 + f2*dy2dx)*fP3; // Many thanks to P.Hristov !
769 fP2 += x2r;
770 }
771 else {
772 // for small dx/R the linear apporximation of the arc by the segment is OK,
773 // but at large dx/R the error is very large and leads to incorrect Z propagation
774 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
775 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
776 // Similarly, the rotation angle in linear in dx only for dx<<R
777 double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
778 double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
779 fP1 += rot/crv*fP3;
780 fP2 = TMath::Sin(rot + TMath::ASin(fP2));
781 }
49d13e89 782
783 //f = F - 1
784
785 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
786 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
787 Double_t f12= dx*fP3*f1/(r1*r1*r1);
788 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
789 Double_t f13= dx/r1;
790 Double_t f24= dx; f24*=cc;
791
792 //b = C*ft
793 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
794 Double_t b02=f24*fC40;
795 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
796 Double_t b12=f24*fC41;
797 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
798 Double_t b22=f24*fC42;
799 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
800 Double_t b42=f24*fC44;
801 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
802 Double_t b32=f24*fC43;
803
804 //a = f*b = f*C*ft
805 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
806 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
807 Double_t a22=f24*b42;
808
809 //F*C*Ft = C + (b + bt + a)
810 fC00 += b00 + b00 + a00;
811 fC10 += b10 + b01 + a01;
812 fC20 += b20 + b02 + a02;
813 fC30 += b30;
814 fC40 += b40;
815 fC11 += b11 + b11 + a11;
816 fC21 += b21 + b12 + a12;
817 fC31 += b31;
818 fC41 += b41;
819 fC22 += b22 + b22 + a22;
820 fC32 += b32;
821 fC42 += b42;
822
86be8934 823 CheckCovariance();
824
49d13e89 825 return kTRUE;
826}
827
9f2bec63 828Bool_t
829AliExternalTrackParam::Propagate(Double_t alpha, Double_t x, Double_t b) {
830 //------------------------------------------------------------------
831 // Transform this track to the local coord. system rotated
832 // by angle "alpha" (rad) with respect to the global coord. system,
833 // and propagate this track to the plane X=xk (cm) in the field "b" (kG)
834 //------------------------------------------------------------------
835
836 //Save the parameters
837 Double_t as=fAlpha;
838 Double_t xs=fX;
839 Double_t ps[5], cs[15];
840 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
841 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
842
843 if (Rotate(alpha))
844 if (PropagateTo(x,b)) return kTRUE;
845
846 //Restore the parameters, if the operation failed
847 fAlpha=as;
848 fX=xs;
849 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
850 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
851 return kFALSE;
852}
853
266a0f9b 854Bool_t AliExternalTrackParam::PropagateBxByBz
855(Double_t alpha, Double_t x, Double_t b[3]) {
856 //------------------------------------------------------------------
857 // Transform this track to the local coord. system rotated
858 // by angle "alpha" (rad) with respect to the global coord. system,
859 // and propagate this track to the plane X=xk (cm),
860 // taking into account all three components of the B field, "b[3]" (kG)
861 //------------------------------------------------------------------
862
863 //Save the parameters
864 Double_t as=fAlpha;
865 Double_t xs=fX;
866 Double_t ps[5], cs[15];
867 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
868 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
869
870 if (Rotate(alpha))
871 if (PropagateToBxByBz(x,b)) return kTRUE;
872
873 //Restore the parameters, if the operation failed
874 fAlpha=as;
875 fX=xs;
876 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
877 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
878 return kFALSE;
879}
880
9f2bec63 881
052daaff 882void AliExternalTrackParam::Propagate(Double_t len, Double_t x[3],
883Double_t p[3], Double_t bz) const {
884 //+++++++++++++++++++++++++++++++++++++++++
885 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
886 // Extrapolate track along simple helix in magnetic field
887 // Arguments: len -distance alogn helix, [cm]
888 // bz - mag field, [kGaus]
889 // Returns: x and p contain extrapolated positon and momentum
890 // The momentum returned for straight-line tracks is meaningless !
891 //+++++++++++++++++++++++++++++++++++++++++
892 GetXYZ(x);
893
2258e165 894 if (OneOverPt() < kAlmost0 || TMath::Abs(bz) < kAlmost0Field || GetC(bz) < kAlmost0){ //straight-line tracks
052daaff 895 Double_t unit[3]; GetDirection(unit);
896 x[0]+=unit[0]*len;
897 x[1]+=unit[1]*len;
898 x[2]+=unit[2]*len;
899
900 p[0]=unit[0]/kAlmost0;
901 p[1]=unit[1]/kAlmost0;
902 p[2]=unit[2]/kAlmost0;
903 } else {
904 GetPxPyPz(p);
905 Double_t pp=GetP();
906 Double_t a = -kB2C*bz*GetSign();
907 Double_t rho = a/pp;
908 x[0] += p[0]*TMath::Sin(rho*len)/a - p[1]*(1-TMath::Cos(rho*len))/a;
909 x[1] += p[1]*TMath::Sin(rho*len)/a + p[0]*(1-TMath::Cos(rho*len))/a;
910 x[2] += p[2]*len/pp;
911
912 Double_t p0=p[0];
913 p[0] = p0 *TMath::Cos(rho*len) - p[1]*TMath::Sin(rho*len);
914 p[1] = p[1]*TMath::Cos(rho*len) + p0 *TMath::Sin(rho*len);
915 }
916}
917
918Bool_t AliExternalTrackParam::Intersect(Double_t pnt[3], Double_t norm[3],
919Double_t bz) const {
920 //+++++++++++++++++++++++++++++++++++++++++
921 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
922 // Finds point of intersection (if exists) of the helix with the plane.
923 // Stores result in fX and fP.
924 // Arguments: planePoint,planeNorm - the plane defined by any plane's point
925 // and vector, normal to the plane
926 // Returns: kTrue if helix intersects the plane, kFALSE otherwise.
927 //+++++++++++++++++++++++++++++++++++++++++
928 Double_t x0[3]; GetXYZ(x0); //get track position in MARS
929
930 //estimates initial helix length up to plane
931 Double_t s=
932 (pnt[0]-x0[0])*norm[0] + (pnt[1]-x0[1])*norm[1] + (pnt[2]-x0[2])*norm[2];
933 Double_t dist=99999,distPrev=dist;
934 Double_t x[3],p[3];
935 while(TMath::Abs(dist)>0.00001){
936 //calculates helix at the distance s from x0 ALONG the helix
937 Propagate(s,x,p,bz);
938
939 //distance between current helix position and plane
940 dist=(x[0]-pnt[0])*norm[0]+(x[1]-pnt[1])*norm[1]+(x[2]-pnt[2])*norm[2];
941
942 if(TMath::Abs(dist) >= TMath::Abs(distPrev)) {return kFALSE;}
943 distPrev=dist;
944 s-=dist;
945 }
946 //on exit pnt is intersection point,norm is track vector at that point,
947 //all in MARS
948 for (Int_t i=0; i<3; i++) {pnt[i]=x[i]; norm[i]=p[i];}
949 return kTRUE;
950}
951
49d13e89 952Double_t
953AliExternalTrackParam::GetPredictedChi2(Double_t p[2],Double_t cov[3]) const {
954 //----------------------------------------------------------------
955 // Estimate the chi2 of the space point "p" with the cov. matrix "cov"
956 //----------------------------------------------------------------
957 Double_t sdd = fC[0] + cov[0];
958 Double_t sdz = fC[1] + cov[1];
959 Double_t szz = fC[2] + cov[2];
960 Double_t det = sdd*szz - sdz*sdz;
961
962 if (TMath::Abs(det) < kAlmost0) return kVeryBig;
963
964 Double_t d = fP[0] - p[0];
965 Double_t z = fP[1] - p[1];
966
967 return (d*szz*d - 2*d*sdz*z + z*sdd*z)/det;
968}
969
4b189f98 970Double_t AliExternalTrackParam::
971GetPredictedChi2(Double_t p[3],Double_t covyz[3],Double_t covxyz[3]) const {
972 //----------------------------------------------------------------
973 // Estimate the chi2 of the 3D space point "p" and
1e023a36 974 // the full covariance matrix "covyz" and "covxyz"
4b189f98 975 //
976 // Cov(x,x) ... : covxyz[0]
977 // Cov(y,x) ... : covxyz[1] covyz[0]
978 // Cov(z,x) ... : covxyz[2] covyz[1] covyz[2]
979 //----------------------------------------------------------------
980
981 Double_t res[3] = {
982 GetX() - p[0],
983 GetY() - p[1],
984 GetZ() - p[2]
985 };
986
987 Double_t f=GetSnp();
988 if (TMath::Abs(f) >= kAlmost1) return kVeryBig;
bfd20868 989 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
4b189f98 990 Double_t a=f/r, b=GetTgl()/r;
991
992 Double_t s2=333.*333.; //something reasonably big (cm^2)
993
994 TMatrixDSym v(3);
995 v(0,0)= s2; v(0,1)= a*s2; v(0,2)= b*s2;;
996 v(1,0)=a*s2; v(1,1)=a*a*s2 + GetSigmaY2(); v(1,2)=a*b*s2 + GetSigmaZY();
997 v(2,0)=b*s2; v(2,1)=a*b*s2 + GetSigmaZY(); v(2,2)=b*b*s2 + GetSigmaZ2();
998
999 v(0,0)+=covxyz[0]; v(0,1)+=covxyz[1]; v(0,2)+=covxyz[2];
1000 v(1,0)+=covxyz[1]; v(1,1)+=covyz[0]; v(1,2)+=covyz[1];
1001 v(2,0)+=covxyz[2]; v(2,1)+=covyz[1]; v(2,2)+=covyz[2];
1002
1003 v.Invert();
1004 if (!v.IsValid()) return kVeryBig;
1005
1006 Double_t chi2=0.;
1007 for (Int_t i = 0; i < 3; i++)
1008 for (Int_t j = 0; j < 3; j++) chi2 += res[i]*res[j]*v(i,j);
1009
1010 return chi2;
acdfbc78 1011}
1012
1013Double_t AliExternalTrackParam::
1014GetPredictedChi2(const AliExternalTrackParam *t) const {
1015 //----------------------------------------------------------------
1016 // Estimate the chi2 (5 dof) of this track with respect to the track
1017 // given by the argument.
1018 // The two tracks must be in the same reference system
1019 // and estimated at the same reference plane.
1020 //----------------------------------------------------------------
1021
1022 if (TMath::Abs(1. - t->GetAlpha()/GetAlpha()) > FLT_EPSILON) {
1023 AliError("The reference systems of the tracks differ !");
1024 return kVeryBig;
1025 }
1026 if (TMath::Abs(1. - t->GetX()/GetX()) > FLT_EPSILON) {
1027 AliError("The reference of the tracks planes differ !");
1028 return kVeryBig;
1029 }
1030
1031 TMatrixDSym c(5);
1032 c(0,0)=GetSigmaY2();
1033 c(1,0)=GetSigmaZY(); c(1,1)=GetSigmaZ2();
1034 c(2,0)=GetSigmaSnpY(); c(2,1)=GetSigmaSnpZ(); c(2,2)=GetSigmaSnp2();
1035 c(3,0)=GetSigmaTglY(); c(3,1)=GetSigmaTglZ(); c(3,2)=GetSigmaTglSnp(); c(3,3)=GetSigmaTgl2();
1036 c(4,0)=GetSigma1PtY(); c(4,1)=GetSigma1PtZ(); c(4,2)=GetSigma1PtSnp(); c(4,3)=GetSigma1PtTgl(); c(4,4)=GetSigma1Pt2();
1037
1038 c(0,0)+=t->GetSigmaY2();
1039 c(1,0)+=t->GetSigmaZY(); c(1,1)+=t->GetSigmaZ2();
1040 c(2,0)+=t->GetSigmaSnpY();c(2,1)+=t->GetSigmaSnpZ();c(2,2)+=t->GetSigmaSnp2();
1041 c(3,0)+=t->GetSigmaTglY();c(3,1)+=t->GetSigmaTglZ();c(3,2)+=t->GetSigmaTglSnp();c(3,3)+=t->GetSigmaTgl2();
1042 c(4,0)+=t->GetSigma1PtY();c(4,1)+=t->GetSigma1PtZ();c(4,2)+=t->GetSigma1PtSnp();c(4,3)+=t->GetSigma1PtTgl();c(4,4)+=t->GetSigma1Pt2();
1043 c(0,1)=c(1,0);
1044 c(0,2)=c(2,0); c(1,2)=c(2,1);
1045 c(0,3)=c(3,0); c(1,3)=c(3,1); c(2,3)=c(3,2);
1046 c(0,4)=c(4,0); c(1,4)=c(4,1); c(2,4)=c(4,2); c(3,4)=c(4,3);
1047
1048 c.Invert();
1049 if (!c.IsValid()) return kVeryBig;
1050
1051
1052 Double_t res[5] = {
1053 GetY() - t->GetY(),
1054 GetZ() - t->GetZ(),
1055 GetSnp() - t->GetSnp(),
1056 GetTgl() - t->GetTgl(),
1057 GetSigned1Pt() - t->GetSigned1Pt()
1058 };
4b189f98 1059
acdfbc78 1060 Double_t chi2=0.;
1061 for (Int_t i = 0; i < 5; i++)
1062 for (Int_t j = 0; j < 5; j++) chi2 += res[i]*res[j]*c(i,j);
4b189f98 1063
acdfbc78 1064 return chi2;
4b189f98 1065}
1066
1e023a36 1067Bool_t AliExternalTrackParam::
1068PropagateTo(Double_t p[3],Double_t covyz[3],Double_t covxyz[3],Double_t bz) {
1069 //----------------------------------------------------------------
1070 // Propagate this track to the plane
1071 // the 3D space point "p" (with the covariance matrix "covyz" and "covxyz")
1072 // belongs to.
1073 // The magnetic field is "bz" (kG)
1074 //
1075 // The track curvature and the change of the covariance matrix
1076 // of the track parameters are negleted !
1077 // (So the "step" should be small compared with 1/curvature)
1078 //----------------------------------------------------------------
1079
1080 Double_t f=GetSnp();
1081 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
bfd20868 1082 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
1e023a36 1083 Double_t a=f/r, b=GetTgl()/r;
1084
1085 Double_t s2=333.*333.; //something reasonably big (cm^2)
1086
1087 TMatrixDSym tV(3);
1088 tV(0,0)= s2; tV(0,1)= a*s2; tV(0,2)= b*s2;
1089 tV(1,0)=a*s2; tV(1,1)=a*a*s2; tV(1,2)=a*b*s2;
1090 tV(2,0)=b*s2; tV(2,1)=a*b*s2; tV(2,2)=b*b*s2;
1091
1092 TMatrixDSym pV(3);
1093 pV(0,0)=covxyz[0]; pV(0,1)=covxyz[1]; pV(0,2)=covxyz[2];
1094 pV(1,0)=covxyz[1]; pV(1,1)=covyz[0]; pV(1,2)=covyz[1];
1095 pV(2,0)=covxyz[2]; pV(2,1)=covyz[1]; pV(2,2)=covyz[2];
1096
1097 TMatrixDSym tpV(tV);
1098 tpV+=pV;
1099 tpV.Invert();
1100 if (!tpV.IsValid()) return kFALSE;
1101
1102 TMatrixDSym pW(3),tW(3);
1103 for (Int_t i=0; i<3; i++)
1104 for (Int_t j=0; j<3; j++) {
1105 pW(i,j)=tW(i,j)=0.;
1106 for (Int_t k=0; k<3; k++) {
1107 pW(i,j) += tV(i,k)*tpV(k,j);
1108 tW(i,j) += pV(i,k)*tpV(k,j);
1109 }
1110 }
1111
1112 Double_t t[3] = {GetX(), GetY(), GetZ()};
1113
1114 Double_t x=0.;
1115 for (Int_t i=0; i<3; i++) x += (tW(0,i)*t[i] + pW(0,i)*p[i]);
1116 Double_t crv=GetC(bz);
1117 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1118 f += crv*(x-fX);
1119 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
1120 fX=x;
1121
1122 fP[0]=0.;
1123 for (Int_t i=0; i<3; i++) fP[0] += (tW(1,i)*t[i] + pW(1,i)*p[i]);
1124 fP[1]=0.;
1125 for (Int_t i=0; i<3; i++) fP[1] += (tW(2,i)*t[i] + pW(2,i)*p[i]);
1126
1127 return kTRUE;
1128}
1129
e23a38cb 1130Double_t *AliExternalTrackParam::GetResiduals(
1131Double_t *p,Double_t *cov,Bool_t updated) const {
1132 //------------------------------------------------------------------
1133 // Returns the track residuals with the space point "p" having
1134 // the covariance matrix "cov".
1135 // If "updated" is kTRUE, the track parameters expected to be updated,
1136 // otherwise they must be predicted.
1137 //------------------------------------------------------------------
1138 static Double_t res[2];
1139
1140 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1141 if (updated) {
1142 r00-=fC[0]; r01-=fC[1]; r11-=fC[2];
1143 } else {
1144 r00+=fC[0]; r01+=fC[1]; r11+=fC[2];
1145 }
1146 Double_t det=r00*r11 - r01*r01;
1147
1148 if (TMath::Abs(det) < kAlmost0) return 0;
1149
1150 Double_t tmp=r00; r00=r11/det; r11=tmp/det;
f0fbf964 1151
1152 if (r00 < 0.) return 0;
1153 if (r11 < 0.) return 0;
1154
e23a38cb 1155 Double_t dy = fP[0] - p[0];
1156 Double_t dz = fP[1] - p[1];
1157
1158 res[0]=dy*TMath::Sqrt(r00);
1159 res[1]=dz*TMath::Sqrt(r11);
1160
1161 return res;
1162}
1163
49d13e89 1164Bool_t AliExternalTrackParam::Update(Double_t p[2], Double_t cov[3]) {
1165 //------------------------------------------------------------------
1166 // Update the track parameters with the space point "p" having
1167 // the covariance matrix "cov"
1168 //------------------------------------------------------------------
1169 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
1170 Double_t
1171 &fC00=fC[0],
1172 &fC10=fC[1], &fC11=fC[2],
1173 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1174 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1175 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1176
1177 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1178 r00+=fC00; r01+=fC10; r11+=fC11;
1179 Double_t det=r00*r11 - r01*r01;
1180
1181 if (TMath::Abs(det) < kAlmost0) return kFALSE;
1182
1183
1184 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
1185
1186 Double_t k00=fC00*r00+fC10*r01, k01=fC00*r01+fC10*r11;
1187 Double_t k10=fC10*r00+fC11*r01, k11=fC10*r01+fC11*r11;
1188 Double_t k20=fC20*r00+fC21*r01, k21=fC20*r01+fC21*r11;
1189 Double_t k30=fC30*r00+fC31*r01, k31=fC30*r01+fC31*r11;
1190 Double_t k40=fC40*r00+fC41*r01, k41=fC40*r01+fC41*r11;
1191
1192 Double_t dy=p[0] - fP0, dz=p[1] - fP1;
1193 Double_t sf=fP2 + k20*dy + k21*dz;
1194 if (TMath::Abs(sf) > kAlmost1) return kFALSE;
1195
1196 fP0 += k00*dy + k01*dz;
1197 fP1 += k10*dy + k11*dz;
1198 fP2 = sf;
1199 fP3 += k30*dy + k31*dz;
1200 fP4 += k40*dy + k41*dz;
1201
1202 Double_t c01=fC10, c02=fC20, c03=fC30, c04=fC40;
1203 Double_t c12=fC21, c13=fC31, c14=fC41;
1204
1205 fC00-=k00*fC00+k01*fC10; fC10-=k00*c01+k01*fC11;
1206 fC20-=k00*c02+k01*c12; fC30-=k00*c03+k01*c13;
1207 fC40-=k00*c04+k01*c14;
1208
1209 fC11-=k10*c01+k11*fC11;
1210 fC21-=k10*c02+k11*c12; fC31-=k10*c03+k11*c13;
1211 fC41-=k10*c04+k11*c14;
1212
1213 fC22-=k20*c02+k21*c12; fC32-=k20*c03+k21*c13;
1214 fC42-=k20*c04+k21*c14;
1215
1216 fC33-=k30*c03+k31*c13;
1217 fC43-=k30*c04+k31*c14;
1218
1219 fC44-=k40*c04+k41*c14;
1220
86be8934 1221 CheckCovariance();
1222
49d13e89 1223 return kTRUE;
1224}
1225
c7bafca9 1226void
1227AliExternalTrackParam::GetHelixParameters(Double_t hlx[6], Double_t b) const {
1228 //--------------------------------------------------------------------
1229 // External track parameters -> helix parameters
1230 // "b" - magnetic field (kG)
1231 //--------------------------------------------------------------------
1232 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1233
1530f89c 1234 hlx[0]=fP[0]; hlx[1]=fP[1]; hlx[2]=fP[2]; hlx[3]=fP[3];
c7bafca9 1235
1236 hlx[5]=fX*cs - hlx[0]*sn; // x0
1237 hlx[0]=fX*sn + hlx[0]*cs; // y0
1238//hlx[1]= // z0
1239 hlx[2]=TMath::ASin(hlx[2]) + fAlpha; // phi0
1240//hlx[3]= // tgl
1530f89c 1241 hlx[4]=GetC(b); // C
c7bafca9 1242}
1243
1244
1245static void Evaluate(const Double_t *h, Double_t t,
1246 Double_t r[3], //radius vector
1247 Double_t g[3], //first defivatives
1248 Double_t gg[3]) //second derivatives
1249{
1250 //--------------------------------------------------------------------
1251 // Calculate position of a point on a track and some derivatives
1252 //--------------------------------------------------------------------
1253 Double_t phase=h[4]*t+h[2];
1254 Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase);
1255
ba4550c4 1256 r[0] = h[5];
1257 r[1] = h[0];
1258 if (TMath::Abs(h[4])>kAlmost0) {
1259 r[0] += (sn - h[6])/h[4];
1260 r[1] -= (cs - h[7])/h[4];
1261 }
c7bafca9 1262 r[2] = h[1] + h[3]*t;
1263
1264 g[0] = cs; g[1]=sn; g[2]=h[3];
1265
1266 gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.;
1267}
1268
1269Double_t AliExternalTrackParam::GetDCA(const AliExternalTrackParam *p,
1270Double_t b, Double_t &xthis, Double_t &xp) const {
1271 //------------------------------------------------------------
1272 // Returns the (weighed !) distance of closest approach between
1273 // this track and the track "p".
1274 // Other returned values:
1275 // xthis, xt - coordinates of tracks' reference planes at the DCA
1276 //-----------------------------------------------------------
1277 Double_t dy2=GetSigmaY2() + p->GetSigmaY2();
1278 Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2();
1279 Double_t dx2=dy2;
1280
c7bafca9 1281 Double_t p1[8]; GetHelixParameters(p1,b);
1282 p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]);
1283 Double_t p2[8]; p->GetHelixParameters(p2,b);
1284 p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]);
1285
1286
1287 Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.;
1288 Evaluate(p1,t1,r1,g1,gg1);
1289 Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.;
1290 Evaluate(p2,t2,r2,g2,gg2);
1291
1292 Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2];
1293 Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1294
1295 Int_t max=27;
1296 while (max--) {
1297 Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2);
1298 Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2);
1299 Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 +
1300 (g1[1]*g1[1] - dy*gg1[1])/dy2 +
1301 (g1[2]*g1[2] - dz*gg1[2])/dz2;
1302 Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 +
1303 (g2[1]*g2[1] + dy*gg2[1])/dy2 +
1304 (g2[2]*g2[2] + dz*gg2[2])/dz2;
1305 Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2);
1306
1307 Double_t det=h11*h22-h12*h12;
1308
1309 Double_t dt1,dt2;
1310 if (TMath::Abs(det)<1.e-33) {
1311 //(quasi)singular Hessian
1312 dt1=-gt1; dt2=-gt2;
1313 } else {
1314 dt1=-(gt1*h22 - gt2*h12)/det;
1315 dt2=-(h11*gt2 - h12*gt1)/det;
1316 }
1317
1318 if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;}
1319
1320 //check delta(phase1) ?
1321 //check delta(phase2) ?
1322
1323 if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4)
1324 if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) {
1325 if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2)
358f16ae 1326 AliDebug(1," stopped at not a stationary point !");
c7bafca9 1327 Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det);
1328 if (lmb < 0.)
358f16ae 1329 AliDebug(1," stopped at not a minimum !");
c7bafca9 1330 break;
1331 }
1332
1333 Double_t dd=dm;
1334 for (Int_t div=1 ; ; div*=2) {
1335 Evaluate(p1,t1+dt1,r1,g1,gg1);
1336 Evaluate(p2,t2+dt2,r2,g2,gg2);
1337 dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2];
1338 dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1339 if (dd<dm) break;
1340 dt1*=0.5; dt2*=0.5;
1341 if (div>512) {
358f16ae 1342 AliDebug(1," overshoot !"); break;
c7bafca9 1343 }
1344 }
1345 dm=dd;
1346
1347 t1+=dt1;
1348 t2+=dt2;
1349
1350 }
1351
358f16ae 1352 if (max<=0) AliDebug(1," too many iterations !");
c7bafca9 1353
1354 Double_t cs=TMath::Cos(GetAlpha());
1355 Double_t sn=TMath::Sin(GetAlpha());
1356 xthis=r1[0]*cs + r1[1]*sn;
1357
1358 cs=TMath::Cos(p->GetAlpha());
1359 sn=TMath::Sin(p->GetAlpha());
1360 xp=r2[0]*cs + r2[1]*sn;
1361
1362 return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2));
1363}
1364
1365Double_t AliExternalTrackParam::
1366PropagateToDCA(AliExternalTrackParam *p, Double_t b) {
1367 //--------------------------------------------------------------
1368 // Propagates this track and the argument track to the position of the
1369 // distance of closest approach.
1370 // Returns the (weighed !) distance of closest approach.
1371 //--------------------------------------------------------------
1372 Double_t xthis,xp;
1373 Double_t dca=GetDCA(p,b,xthis,xp);
1374
1375 if (!PropagateTo(xthis,b)) {
1376 //AliWarning(" propagation failed !");
1377 return 1e+33;
1378 }
1379
1380 if (!p->PropagateTo(xp,b)) {
1381 //AliWarning(" propagation failed !";
1382 return 1e+33;
1383 }
1384
1385 return dca;
1386}
1387
1388
58e536c5 1389Bool_t AliExternalTrackParam::PropagateToDCA(const AliVVertex *vtx,
e99a34df 1390Double_t b, Double_t maxd, Double_t dz[2], Double_t covar[3]) {
f76701bf 1391 //
e99a34df 1392 // Propagate this track to the DCA to vertex "vtx",
f76701bf 1393 // if the (rough) transverse impact parameter is not bigger then "maxd".
1394 // Magnetic field is "b" (kG).
1395 //
1396 // a) The track gets extapolated to the DCA to the vertex.
1397 // b) The impact parameters and their covariance matrix are calculated.
1398 //
1399 // In the case of success, the returned value is kTRUE
1400 // (otherwise, it's kFALSE)
1401 //
1402 Double_t alpha=GetAlpha();
1403 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1404 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
58e536c5 1405 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1406 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
f76701bf 1407 x-=xv; y-=yv;
1408
1409 //Estimate the impact parameter neglecting the track curvature
bfd20868 1410 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
f76701bf 1411 if (d > maxd) return kFALSE;
1412
1413 //Propagate to the DCA
2258e165 1414 Double_t crv=GetC(b);
e99a34df 1415 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1416
bfd20868 1417 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1418 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
e99a34df 1419 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1420 else cs=1.;
f76701bf 1421
1422 x = xv*cs + yv*sn;
1423 yv=-xv*sn + yv*cs; xv=x;
1424
1425 if (!Propagate(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
266a0f9b 1426
1427 if (dz==0) return kTRUE;
1428 dz[0] = GetParameter()[0] - yv;
1429 dz[1] = GetParameter()[1] - zv;
1430
1431 if (covar==0) return kTRUE;
1432 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
1433
1434 //***** Improvements by A.Dainese
1435 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1436 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1437 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1438 covar[1] = GetCovariance()[1]; // between (x,y) and z
1439 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1440 //*****
1441
1442 return kTRUE;
1443}
1444
1445Bool_t AliExternalTrackParam::PropagateToDCABxByBz(const AliVVertex *vtx,
1446Double_t b[3], Double_t maxd, Double_t dz[2], Double_t covar[3]) {
1447 //
1448 // Propagate this track to the DCA to vertex "vtx",
1449 // if the (rough) transverse impact parameter is not bigger then "maxd".
1450 //
1451 // This function takes into account all three components of the magnetic
1452 // field given by the b[3] arument (kG)
1453 //
1454 // a) The track gets extapolated to the DCA to the vertex.
1455 // b) The impact parameters and their covariance matrix are calculated.
1456 //
1457 // In the case of success, the returned value is kTRUE
1458 // (otherwise, it's kFALSE)
1459 //
1460 Double_t alpha=GetAlpha();
1461 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1462 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
1463 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1464 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
1465 x-=xv; y-=yv;
1466
1467 //Estimate the impact parameter neglecting the track curvature
bfd20868 1468 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
266a0f9b 1469 if (d > maxd) return kFALSE;
1470
1471 //Propagate to the DCA
8567bf39 1472 Double_t crv=GetC(b[2]);
1473 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
266a0f9b 1474
bfd20868 1475 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1476 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
266a0f9b 1477 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1478 else cs=1.;
1479
1480 x = xv*cs + yv*sn;
1481 yv=-xv*sn + yv*cs; xv=x;
1482
1483 if (!PropagateBxByBz(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
e99a34df 1484
1485 if (dz==0) return kTRUE;
1486 dz[0] = GetParameter()[0] - yv;
1487 dz[1] = GetParameter()[1] - zv;
1488
1489 if (covar==0) return kTRUE;
58e536c5 1490 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
e99a34df 1491
1492 //***** Improvements by A.Dainese
1493 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1494 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1495 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1496 covar[1] = GetCovariance()[1]; // between (x,y) and z
1497 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1498 //*****
1499
29fbcc93 1500 return kTRUE;
f76701bf 1501}
1502
b1149664 1503void AliExternalTrackParam::GetDirection(Double_t d[3]) const {
1504 //----------------------------------------------------------------
1505 // This function returns a unit vector along the track direction
1506 // in the global coordinate system.
1507 //----------------------------------------------------------------
1508 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1509 Double_t snp=fP[2];
bfd20868 1510 Double_t csp =TMath::Sqrt((1.-snp)*(1.+snp));
b1149664 1511 Double_t norm=TMath::Sqrt(1.+ fP[3]*fP[3]);
1512 d[0]=(csp*cs - snp*sn)/norm;
1513 d[1]=(snp*cs + csp*sn)/norm;
1514 d[2]=fP[3]/norm;
1515}
1516
c683ddc2 1517Bool_t AliExternalTrackParam::GetPxPyPz(Double_t p[3]) const {
c9ec41e8 1518 //---------------------------------------------------------------------
1519 // This function returns the global track momentum components
1520 // Results for (nearly) straight tracks are meaningless !
1521 //---------------------------------------------------------------------
1522 p[0]=fP[4]; p[1]=fP[2]; p[2]=fP[3];
1523 return Local2GlobalMomentum(p,fAlpha);
1524}
a5e407e9 1525
def9660e 1526Double_t AliExternalTrackParam::Px() const {
957fb479 1527 //---------------------------------------------------------------------
1528 // Returns x-component of momentum
1529 // Result for (nearly) straight tracks is meaningless !
1530 //---------------------------------------------------------------------
def9660e 1531
957fb479 1532 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1533 GetPxPyPz(p);
1534
1535 return p[0];
1536}
1537
1538Double_t AliExternalTrackParam::Py() const {
957fb479 1539 //---------------------------------------------------------------------
1540 // Returns y-component of momentum
1541 // Result for (nearly) straight tracks is meaningless !
1542 //---------------------------------------------------------------------
def9660e 1543
957fb479 1544 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1545 GetPxPyPz(p);
1546
1547 return p[1];
1548}
1549
c683ddc2 1550Double_t AliExternalTrackParam::Xv() const {
1551 //---------------------------------------------------------------------
1552 // Returns x-component of first track point
1553 //---------------------------------------------------------------------
1554
1555 Double_t r[3]={0.,0.,0.};
1556 GetXYZ(r);
1557
1558 return r[0];
1559}
1560
1561Double_t AliExternalTrackParam::Yv() const {
1562 //---------------------------------------------------------------------
1563 // Returns y-component of first track point
1564 //---------------------------------------------------------------------
1565
1566 Double_t r[3]={0.,0.,0.};
1567 GetXYZ(r);
1568
1569 return r[1];
1570}
1571
def9660e 1572Double_t AliExternalTrackParam::Theta() const {
1573 // return theta angle of momentum
1574
7cdd0c20 1575 return 0.5*TMath::Pi() - TMath::ATan(fP[3]);
def9660e 1576}
1577
1578Double_t AliExternalTrackParam::Phi() const {
957fb479 1579 //---------------------------------------------------------------------
1580 // Returns the azimuthal angle of momentum
1581 // 0 <= phi < 2*pi
1582 //---------------------------------------------------------------------
def9660e 1583
957fb479 1584 Double_t phi=TMath::ASin(fP[2]) + fAlpha;
1585 if (phi<0.) phi+=2.*TMath::Pi();
1586 else if (phi>=2.*TMath::Pi()) phi-=2.*TMath::Pi();
1587
1588 return phi;
def9660e 1589}
1590
1591Double_t AliExternalTrackParam::M() const {
1592 // return particle mass
1593
1594 // No mass information available so far.
1595 // Redifine in derived class!
1596
1597 return -999.;
1598}
1599
1600Double_t AliExternalTrackParam::E() const {
1601 // return particle energy
1602
1603 // No PID information available so far.
1604 // Redifine in derived class!
1605
1606 return -999.;
1607}
1608
1609Double_t AliExternalTrackParam::Eta() const {
1610 // return pseudorapidity
1611
1612 return -TMath::Log(TMath::Tan(0.5 * Theta()));
1613}
1614
1615Double_t AliExternalTrackParam::Y() const {
1616 // return rapidity
1617
1618 // No PID information available so far.
1619 // Redifine in derived class!
1620
1621 return -999.;
1622}
1623
c9ec41e8 1624Bool_t AliExternalTrackParam::GetXYZ(Double_t *r) const {
1625 //---------------------------------------------------------------------
1626 // This function returns the global track position
1627 //---------------------------------------------------------------------
1628 r[0]=fX; r[1]=fP[0]; r[2]=fP[1];
1629 return Local2GlobalPosition(r,fAlpha);
51ad6848 1630}
1631
c9ec41e8 1632Bool_t AliExternalTrackParam::GetCovarianceXYZPxPyPz(Double_t cv[21]) const {
1633 //---------------------------------------------------------------------
1634 // This function returns the global covariance matrix of the track params
1635 //
1636 // Cov(x,x) ... : cv[0]
1637 // Cov(y,x) ... : cv[1] cv[2]
1638 // Cov(z,x) ... : cv[3] cv[4] cv[5]
1639 // Cov(px,x)... : cv[6] cv[7] cv[8] cv[9]
1640 // Cov(py,x)... : cv[10] cv[11] cv[12] cv[13] cv[14]
1641 // Cov(pz,x)... : cv[15] cv[16] cv[17] cv[18] cv[19] cv[20]
a5e407e9 1642 //
c9ec41e8 1643 // Results for (nearly) straight tracks are meaningless !
1644 //---------------------------------------------------------------------
e421f556 1645 if (TMath::Abs(fP[4])<=kAlmost0) {
c9ec41e8 1646 for (Int_t i=0; i<21; i++) cv[i]=0.;
1647 return kFALSE;
a5e407e9 1648 }
49d13e89 1649 if (TMath::Abs(fP[2]) > kAlmost1) {
c9ec41e8 1650 for (Int_t i=0; i<21; i++) cv[i]=0.;
1651 return kFALSE;
1652 }
1653 Double_t pt=1./TMath::Abs(fP[4]);
1654 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
92934324 1655 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
c9ec41e8 1656
1657 Double_t m00=-sn, m10=cs;
1658 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
1659 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
1660 Double_t m35=pt, m45=-pt*pt*fP[3];
1661
854d5d49 1662 m43*=GetSign();
1663 m44*=GetSign();
1664 m45*=GetSign();
1665
c9ec41e8 1666 cv[0 ] = fC[0]*m00*m00;
1667 cv[1 ] = fC[0]*m00*m10;
1668 cv[2 ] = fC[0]*m10*m10;
1669 cv[3 ] = fC[1]*m00;
1670 cv[4 ] = fC[1]*m10;
1671 cv[5 ] = fC[2];
1672 cv[6 ] = m00*(fC[3]*m23 + fC[10]*m43);
1673 cv[7 ] = m10*(fC[3]*m23 + fC[10]*m43);
1674 cv[8 ] = fC[4]*m23 + fC[11]*m43;
1675 cv[9 ] = m23*(fC[5]*m23 + fC[12]*m43) + m43*(fC[12]*m23 + fC[14]*m43);
1676 cv[10] = m00*(fC[3]*m24 + fC[10]*m44);
1677 cv[11] = m10*(fC[3]*m24 + fC[10]*m44);
1678 cv[12] = fC[4]*m24 + fC[11]*m44;
1679 cv[13] = m23*(fC[5]*m24 + fC[12]*m44) + m43*(fC[12]*m24 + fC[14]*m44);
1680 cv[14] = m24*(fC[5]*m24 + fC[12]*m44) + m44*(fC[12]*m24 + fC[14]*m44);
1681 cv[15] = m00*(fC[6]*m35 + fC[10]*m45);
1682 cv[16] = m10*(fC[6]*m35 + fC[10]*m45);
1683 cv[17] = fC[7]*m35 + fC[11]*m45;
1684 cv[18] = m23*(fC[8]*m35 + fC[12]*m45) + m43*(fC[13]*m35 + fC[14]*m45);
1685 cv[19] = m24*(fC[8]*m35 + fC[12]*m45) + m44*(fC[13]*m35 + fC[14]*m45);
1686 cv[20] = m35*(fC[9]*m35 + fC[13]*m45) + m45*(fC[13]*m35 + fC[14]*m45);
51ad6848 1687
c9ec41e8 1688 return kTRUE;
51ad6848 1689}
1690
51ad6848 1691
c9ec41e8 1692Bool_t
1693AliExternalTrackParam::GetPxPyPzAt(Double_t x, Double_t b, Double_t *p) const {
1694 //---------------------------------------------------------------------
1695 // This function returns the global track momentum extrapolated to
1696 // the radial position "x" (cm) in the magnetic field "b" (kG)
1697 //---------------------------------------------------------------------
c9ec41e8 1698 p[0]=fP[4];
1530f89c 1699 p[1]=fP[2]+(x-fX)*GetC(b);
c9ec41e8 1700 p[2]=fP[3];
1701 return Local2GlobalMomentum(p,fAlpha);
51ad6848 1702}
1703
7cf7bb6c 1704Bool_t
1705AliExternalTrackParam::GetYAt(Double_t x, Double_t b, Double_t &y) const {
1706 //---------------------------------------------------------------------
1707 // This function returns the local Y-coordinate of the intersection
1708 // point between this track and the reference plane "x" (cm).
1709 // Magnetic field "b" (kG)
1710 //---------------------------------------------------------------------
1711 Double_t dx=x-fX;
1712 if(TMath::Abs(dx)<=kAlmost0) {y=fP[0]; return kTRUE;}
1713
1530f89c 1714 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
7cf7bb6c 1715
1716 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1717 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1718
60e55aee 1719 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
7cf7bb6c 1720 y = fP[0] + dx*(f1+f2)/(r1+r2);
1721 return kTRUE;
1722}
1723
6c94f330 1724Bool_t
1725AliExternalTrackParam::GetZAt(Double_t x, Double_t b, Double_t &z) const {
1726 //---------------------------------------------------------------------
1727 // This function returns the local Z-coordinate of the intersection
1728 // point between this track and the reference plane "x" (cm).
1729 // Magnetic field "b" (kG)
1730 //---------------------------------------------------------------------
1731 Double_t dx=x-fX;
1732 if(TMath::Abs(dx)<=kAlmost0) {z=fP[1]; return kTRUE;}
1733
2258e165 1734 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
6c94f330 1735
1736 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1737 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1738
60e55aee 1739 Double_t r1=sqrt((1.-f1)*(1.+f1)), r2=sqrt((1.-f2)*(1.+f2));
6c94f330 1740 z = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3]; // Many thanks to P.Hristov !
1741 return kTRUE;
1742}
1743
c9ec41e8 1744Bool_t
1745AliExternalTrackParam::GetXYZAt(Double_t x, Double_t b, Double_t *r) const {
1746 //---------------------------------------------------------------------
1747 // This function returns the global track position extrapolated to
1748 // the radial position "x" (cm) in the magnetic field "b" (kG)
1749 //---------------------------------------------------------------------
c9ec41e8 1750 Double_t dx=x-fX;
e421f556 1751 if(TMath::Abs(dx)<=kAlmost0) return GetXYZ(r);
1752
1530f89c 1753 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
c9ec41e8 1754
e421f556 1755 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 1756 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
c9ec41e8 1757
60e55aee 1758 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
c9ec41e8 1759 r[0] = x;
1760 r[1] = fP[0] + dx*(f1+f2)/(r1+r2);
f90a11c9 1761 r[2] = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3];//Thanks to Andrea & Peter
1762
c9ec41e8 1763 return Local2GlobalPosition(r,fAlpha);
51ad6848 1764}
1765
51ad6848 1766//_____________________________________________________________________________
1767void AliExternalTrackParam::Print(Option_t* /*option*/) const
1768{
1769// print the parameters and the covariance matrix
1770
1771 printf("AliExternalTrackParam: x = %-12g alpha = %-12g\n", fX, fAlpha);
1772 printf(" parameters: %12g %12g %12g %12g %12g\n",
c9ec41e8 1773 fP[0], fP[1], fP[2], fP[3], fP[4]);
1774 printf(" covariance: %12g\n", fC[0]);
1775 printf(" %12g %12g\n", fC[1], fC[2]);
1776 printf(" %12g %12g %12g\n", fC[3], fC[4], fC[5]);
51ad6848 1777 printf(" %12g %12g %12g %12g\n",
c9ec41e8 1778 fC[6], fC[7], fC[8], fC[9]);
51ad6848 1779 printf(" %12g %12g %12g %12g %12g\n",
c9ec41e8 1780 fC[10], fC[11], fC[12], fC[13], fC[14]);
51ad6848 1781}
5b77d93c 1782
c194ba83 1783Double_t AliExternalTrackParam::GetSnpAt(Double_t x,Double_t b) const {
1784 //
1785 // Get sinus at given x
1786 //
1530f89c 1787 Double_t crv=GetC(b);
c194ba83 1788 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1789 Double_t dx = x-fX;
1790 Double_t res = fP[2]+dx*crv;
1791 return res;
1792}
bf00ebb8 1793
1794Bool_t AliExternalTrackParam::GetDistance(AliExternalTrackParam *param2, Double_t x, Double_t dist[3], Double_t bz){
1795 //------------------------------------------------------------------------
1796 // Get the distance between two tracks at the local position x
1797 // working in the local frame of this track.
1798 // Origin : Marian.Ivanov@cern.ch
1799 //-----------------------------------------------------------------------
1800 Double_t xyz[3];
1801 Double_t xyz2[3];
1802 xyz[0]=x;
1803 if (!GetYAt(x,bz,xyz[1])) return kFALSE;
1804 if (!GetZAt(x,bz,xyz[2])) return kFALSE;
1805 //
1806 //
1807 if (TMath::Abs(GetAlpha()-param2->GetAlpha())<kAlmost0){
1808 xyz2[0]=x;
1809 if (!param2->GetYAt(x,bz,xyz2[1])) return kFALSE;
1810 if (!param2->GetZAt(x,bz,xyz2[2])) return kFALSE;
1811 }else{
1812 //
1813 Double_t xyz1[3];
1814 Double_t dfi = param2->GetAlpha()-GetAlpha();
1815 Double_t ca = TMath::Cos(dfi), sa = TMath::Sin(dfi);
1816 xyz2[0] = xyz[0]*ca+xyz[1]*sa;
1817 xyz2[1] = -xyz[0]*sa+xyz[1]*ca;
1818 //
1819 xyz1[0]=xyz2[0];
1820 if (!param2->GetYAt(xyz2[0],bz,xyz1[1])) return kFALSE;
1821 if (!param2->GetZAt(xyz2[0],bz,xyz1[2])) return kFALSE;
1822 //
1823 xyz2[0] = xyz1[0]*ca-xyz1[1]*sa;
1824 xyz2[1] = +xyz1[0]*sa+xyz1[1]*ca;
1825 xyz2[2] = xyz1[2];
1826 }
1827 dist[0] = xyz[0]-xyz2[0];
1828 dist[1] = xyz[1]-xyz2[1];
1829 dist[2] = xyz[2]-xyz2[2];
1830
1831 return kTRUE;
1832}
0c19adf7 1833
1834
1835//
1836// Draw functionality.
1837// Origin: Marian Ivanov, Marian.Ivanov@cern.ch
1838//
1839
1840void AliExternalTrackParam::DrawTrack(Float_t magf, Float_t minR, Float_t maxR, Float_t stepR){
1841 //
1842 // Draw track line
1843 //
1844 if (minR>maxR) return ;
1845 if (stepR<=0) return ;
1846 Int_t npoints = TMath::Nint((maxR-minR)/stepR)+1;
1847 if (npoints<1) return;
1848 TPolyMarker3D *polymarker = new TPolyMarker3D(npoints);
1849 FillPolymarker(polymarker, magf,minR,maxR,stepR);
1850 polymarker->Draw();
1851}
1852
1853//
1854void AliExternalTrackParam::FillPolymarker(TPolyMarker3D *pol, Float_t magF, Float_t minR, Float_t maxR, Float_t stepR){
1855 //
1856 // Fill points in the polymarker
1857 //
1858 Int_t counter=0;
1859 for (Double_t r=minR; r<maxR; r+=stepR){
1860 Double_t point[3];
1861 GetXYZAt(r,magF,point);
1862 pol->SetPoint(counter,point[0],point[1], point[2]);
047640da 1863 // printf("xyz\t%f\t%f\t%f\n",point[0], point[1],point[2]);
0c19adf7 1864 counter++;
1865 }
1866}
0e8460af 1867
1868Int_t AliExternalTrackParam::GetIndex(Int_t i, Int_t j) const {
1869 //
1870 Int_t min = TMath::Min(i,j);
1871 Int_t max = TMath::Max(i,j);
1872
1873 return min+(max+1)*max/2;
1874}
8b6e3369 1875
1876
1877void AliExternalTrackParam::g3helx3(Double_t qfield,
1878 Double_t step,
1879 Double_t vect[7]) {
1880/******************************************************************
1881 * *
1882 * GEANT3 tracking routine in a constant field oriented *
1883 * along axis 3 *
1884 * Tracking is performed with a conventional *
1885 * helix step method *
1886 * *
1887 * Authors R.Brun, M.Hansroul ********* *
1888 * Rewritten V.Perevoztchikov *
1889 * *
1890 * Rewritten in C++ by I.Belikov *
1891 * *
1892 * qfield (kG) - particle charge times magnetic field *
1893 * step (cm) - step length along the helix *
1894 * vect[7](cm,GeV/c) - input/output x, y, z, px/p, py/p ,pz/p, p *
1895 * *
1896 ******************************************************************/
1897 const Int_t ix=0, iy=1, iz=2, ipx=3, ipy=4, ipz=5, ipp=6;
bfd20868 1898 const Double_t kOvSqSix=TMath::Sqrt(1./6.);
8b6e3369 1899
1900 Double_t cosx=vect[ipx], cosy=vect[ipy], cosz=vect[ipz];
1901
1902 Double_t rho = qfield*kB2C/vect[ipp];
1903 Double_t tet = rho*step;
1904
1905 Double_t tsint, sintt, sint, cos1t;
2de63fc5 1906 if (TMath::Abs(tet) > 0.03) {
8b6e3369 1907 sint = TMath::Sin(tet);
1908 sintt = sint/tet;
1909 tsint = (tet - sint)/tet;
1910 Double_t t=TMath::Sin(0.5*tet);
1911 cos1t = 2*t*t/tet;
1912 } else {
1913 tsint = tet*tet/6.;
bfd20868 1914 sintt = (1.-tet*kOvSqSix)*(1.+tet*kOvSqSix); // 1.- tsint;
8b6e3369 1915 sint = tet*sintt;
1916 cos1t = 0.5*tet;
1917 }
1918
1919 Double_t f1 = step*sintt;
1920 Double_t f2 = step*cos1t;
1921 Double_t f3 = step*tsint*cosz;
1922 Double_t f4 = -tet*cos1t;
1923 Double_t f5 = sint;
1924
1925 vect[ix] += f1*cosx - f2*cosy;
1926 vect[iy] += f1*cosy + f2*cosx;
1927 vect[iz] += f1*cosz + f3;
1928
1929 vect[ipx] += f4*cosx - f5*cosy;
1930 vect[ipy] += f4*cosy + f5*cosx;
1931
1932}
1933
1934Bool_t AliExternalTrackParam::PropagateToBxByBz(Double_t xk, const Double_t b[3]) {
1935 //----------------------------------------------------------------
1936 // Extrapolate this track to the plane X=xk in the field b[].
1937 //
1938 // X [cm] is in the "tracking coordinate system" of this track.
1939 // b[]={Bx,By,Bz} [kG] is in the Global coordidate system.
1940 //----------------------------------------------------------------
1941
1942 Double_t dx=xk-fX;
1943 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
7e1b73dd 1944 if (TMath::Abs(fP[4])<=kAlmost0) return kFALSE;
ef3508c5 1945 // Do not propagate tracks outside the ALICE detector
1946 if (TMath::Abs(dx)>1e5 ||
1947 TMath::Abs(GetY())>1e5 ||
1948 TMath::Abs(GetZ())>1e5) {
1949 AliWarning(Form("Anomalous track, target X:%f",xk));
1950 Print();
1951 return kFALSE;
1952 }
8b6e3369 1953
1954 Double_t crv=GetC(b[2]);
1955 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
1956
2de63fc5 1957 Double_t x2r = crv*dx;
1958 Double_t f1=fP[2], f2=f1 + x2r;
8b6e3369 1959 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1960 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1961
1962
1963 // Estimate the covariance matrix
1964 Double_t &fP3=fP[3], &fP4=fP[4];
1965 Double_t
1966 &fC00=fC[0],
1967 &fC10=fC[1], &fC11=fC[2],
1968 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1969 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1970 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1971
bfd20868 1972 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
8b6e3369 1973
1974 //f = F - 1
1975 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
1976 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
1977 Double_t f12= dx*fP3*f1/(r1*r1*r1);
1978 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
1979 Double_t f13= dx/r1;
1980 Double_t f24= dx; f24*=cc;
1981
1982 //b = C*ft
1983 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
1984 Double_t b02=f24*fC40;
1985 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
1986 Double_t b12=f24*fC41;
1987 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
1988 Double_t b22=f24*fC42;
1989 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
1990 Double_t b42=f24*fC44;
1991 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
1992 Double_t b32=f24*fC43;
1993
1994 //a = f*b = f*C*ft
1995 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
1996 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
1997 Double_t a22=f24*b42;
1998
1999 //F*C*Ft = C + (b + bt + a)
2000 fC00 += b00 + b00 + a00;
2001 fC10 += b10 + b01 + a01;
2002 fC20 += b20 + b02 + a02;
2003 fC30 += b30;
2004 fC40 += b40;
2005 fC11 += b11 + b11 + a11;
2006 fC21 += b21 + b12 + a12;
2007 fC31 += b31;
2008 fC41 += b41;
2009 fC22 += b22 + b22 + a22;
2010 fC32 += b32;
2011 fC42 += b42;
2012
86be8934 2013 CheckCovariance();
8b6e3369 2014
2015 // Appoximate step length
2de63fc5 2016 double dy2dx = (f1+f2)/(r1+r2);
2017 Double_t step = (TMath::Abs(x2r)<0.05) ? dx*TMath::Abs(r2 + f2*dy2dx) // chord
2018 : 2.*TMath::ASin(0.5*dx*TMath::Sqrt(1.+dy2dx*dy2dx)*crv)/crv; // arc
8b6e3369 2019 step *= TMath::Sqrt(1.+ GetTgl()*GetTgl());
2020
8b6e3369 2021 // Get the track's (x,y,z) and (px,py,pz) in the Global System
2022 Double_t r[3]; GetXYZ(r);
2023 Double_t p[3]; GetPxPyPz(p);
2024 Double_t pp=GetP();
2025 p[0] /= pp;
2026 p[1] /= pp;
2027 p[2] /= pp;
2028
2029
2030 // Rotate to the system where Bx=By=0.
2031 Double_t bt=TMath::Sqrt(b[0]*b[0] + b[1]*b[1]);
2032 Double_t cosphi=1., sinphi=0.;
2033 if (bt > kAlmost0) {cosphi=b[0]/bt; sinphi=b[1]/bt;}
2034 Double_t bb=TMath::Sqrt(b[0]*b[0] + b[1]*b[1] + b[2]*b[2]);
2035 Double_t costet=1., sintet=0.;
2036 if (bb > kAlmost0) {costet=b[2]/bb; sintet=bt/bb;}
2037 Double_t vect[7];
2038
2039 vect[0] = costet*cosphi*r[0] + costet*sinphi*r[1] - sintet*r[2];
2040 vect[1] = -sinphi*r[0] + cosphi*r[1];
2041 vect[2] = sintet*cosphi*r[0] + sintet*sinphi*r[1] + costet*r[2];
2042
2043 vect[3] = costet*cosphi*p[0] + costet*sinphi*p[1] - sintet*p[2];
2044 vect[4] = -sinphi*p[0] + cosphi*p[1];
2045 vect[5] = sintet*cosphi*p[0] + sintet*sinphi*p[1] + costet*p[2];
2046
2047 vect[6] = pp;
2048
2049
2050 // Do the helix step
2051 g3helx3(GetSign()*bb,step,vect);
2052
2053
2054 // Rotate back to the Global System
2055 r[0] = cosphi*costet*vect[0] - sinphi*vect[1] + cosphi*sintet*vect[2];
2056 r[1] = sinphi*costet*vect[0] + cosphi*vect[1] + sinphi*sintet*vect[2];
2057 r[2] = -sintet*vect[0] + costet*vect[2];
2058
2059 p[0] = cosphi*costet*vect[3] - sinphi*vect[4] + cosphi*sintet*vect[5];
2060 p[1] = sinphi*costet*vect[3] + cosphi*vect[4] + sinphi*sintet*vect[5];
2061 p[2] = -sintet*vect[3] + costet*vect[5];
2062
2063
2064 // Rotate back to the Tracking System
2065 Double_t cosalp = TMath::Cos(fAlpha);
2066 Double_t sinalp =-TMath::Sin(fAlpha);
2067
2068 Double_t
2069 t = cosalp*r[0] - sinalp*r[1];
2070 r[1] = sinalp*r[0] + cosalp*r[1];
2071 r[0] = t;
2072
2073 t = cosalp*p[0] - sinalp*p[1];
2074 p[1] = sinalp*p[0] + cosalp*p[1];
2075 p[0] = t;
2076
2077
2078 // Do the final correcting step to the target plane (linear approximation)
2079 Double_t x=r[0], y=r[1], z=r[2];
2080 if (TMath::Abs(dx) > kAlmost0) {
2081 if (TMath::Abs(p[0]) < kAlmost0) return kFALSE;
2082 dx = xk - r[0];
2083 x += dx;
2084 y += p[1]/p[0]*dx;
2085 z += p[2]/p[0]*dx;
2086 }
2087
2088
2089 // Calculate the track parameters
2090 t=TMath::Sqrt(p[0]*p[0] + p[1]*p[1]);
2091 fX = x;
2092 fP[0] = y;
2093 fP[1] = z;
2094 fP[2] = p[1]/t;
2095 fP[3] = p[2]/t;
2096 fP[4] = GetSign()/(t*pp);
2097
2098 return kTRUE;
2099}
2100
cfdb62d4 2101Bool_t AliExternalTrackParam::Translate(Double_t *vTrasl,Double_t *covV){
2102 //
2103 //Translation: in the event mixing, the tracks can be shifted
2104 //of the difference among primary vertices (vTrasl) and
2105 //the covariance matrix is changed accordingly
2106 //(covV = covariance of the primary vertex).
2107 //Origin: "Romita, Rossella" <R.Romita@gsi.de>
2108 //
2109 TVector3 translation;
2110 // vTrasl coordinates in the local system
2111 translation.SetXYZ(vTrasl[0],vTrasl[1],vTrasl[2]);
2112 translation.RotateZ(-fAlpha);
2113 translation.GetXYZ(vTrasl);
2114
2115 //compute the new x,y,z of the track
5a87bb3d 2116 Double_t newX=fX-vTrasl[0];
2117 Double_t newY=fP[0]-vTrasl[1];
2118 Double_t newZ=fP[1]-vTrasl[2];
cfdb62d4 2119
2120 //define the new parameters
5a87bb3d 2121 Double_t newParam[5];
2122 newParam[0]=newY;
2123 newParam[1]=newZ;
2124 newParam[2]=fP[2];
2125 newParam[3]=fP[3];
2126 newParam[4]=fP[4];
cfdb62d4 2127
2128 // recompute the covariance matrix:
2129 // 1. covV in the local system
2130 Double_t cosRot=TMath::Cos(fAlpha), sinRot=TMath::Sin(fAlpha);
2131 TMatrixD qQi(3,3);
2132 qQi(0,0) = cosRot;
2133 qQi(0,1) = sinRot;
2134 qQi(0,2) = 0.;
2135 qQi(1,0) = -sinRot;
2136 qQi(1,1) = cosRot;
2137 qQi(1,2) = 0.;
2138 qQi(2,0) = 0.;
2139 qQi(2,1) = 0.;
2140 qQi(2,2) = 1.;
2141 TMatrixD uUi(3,3);
2142 uUi(0,0) = covV[0];
2143 uUi(0,0) = covV[0];
2144 uUi(1,0) = covV[1];
2145 uUi(0,1) = covV[1];
2146 uUi(2,0) = covV[3];
2147 uUi(0,2) = covV[3];
2148 uUi(1,1) = covV[2];
2149 uUi(2,2) = covV[5];
2150 uUi(1,2) = covV[4];
2151 if(uUi.Determinant() <= 0.) {return kFALSE;}
2152 TMatrixD uUiQi(uUi,TMatrixD::kMult,qQi);
2153 TMatrixD m(qQi,TMatrixD::kTransposeMult,uUiQi);
2154
2155 //2. compute the new covariance matrix of the track
2156 Double_t sigmaXX=m(0,0);
2157 Double_t sigmaXZ=m(2,0);
2158 Double_t sigmaXY=m(1,0);
2159 Double_t sigmaYY=GetSigmaY2()+m(1,1);
2160 Double_t sigmaYZ=fC[1]+m(1,2);
2161 Double_t sigmaZZ=fC[2]+m(2,2);
2162 Double_t covarianceYY=sigmaYY + (-1.)*((sigmaXY*sigmaXY)/sigmaXX);
2163 Double_t covarianceYZ=sigmaYZ-(sigmaXZ*sigmaXY/sigmaXX);
2164 Double_t covarianceZZ=sigmaZZ-((sigmaXZ*sigmaXZ)/sigmaXX);
2165
2166 Double_t newCov[15];
2167 newCov[0]=covarianceYY;
2168 newCov[1]=covarianceYZ;
2169 newCov[2]=covarianceZZ;
2170 for(Int_t i=3;i<15;i++){
2171 newCov[i]=fC[i];
2172 }
2173
2174 // set the new parameters
2175
5a87bb3d 2176 Set(newX,fAlpha,newParam,newCov);
cfdb62d4 2177
2178 return kTRUE;
2179 }
86be8934 2180
2181void AliExternalTrackParam::CheckCovariance() {
2182
2183 // This function forces the diagonal elements of the covariance matrix to be positive.
2184 // In case the diagonal element is bigger than the maximal allowed value, it is set to
2185 // the limit and the off-diagonal elements that correspond to it are set to zero.
2186
2187 fC[0] = TMath::Abs(fC[0]);
2188 if (fC[0]>kC0max) {
2189 fC[0] = kC0max;
2190 fC[1] = 0;
2191 fC[3] = 0;
2192 fC[6] = 0;
2193 fC[10] = 0;
2194 }
2195 fC[2] = TMath::Abs(fC[2]);
2196 if (fC[2]>kC2max) {
2197 fC[2] = kC2max;
2198 fC[1] = 0;
2199 fC[4] = 0;
2200 fC[7] = 0;
2201 fC[11] = 0;
2202 }
2203 fC[5] = TMath::Abs(fC[5]);
2204 if (fC[5]>kC5max) {
2205 fC[5] = kC5max;
2206 fC[3] = 0;
2207 fC[4] = 0;
2208 fC[8] = 0;
2209 fC[12] = 0;
2210 }
2211 fC[9] = TMath::Abs(fC[9]);
2212 if (fC[9]>kC9max) {
2213 fC[9] = kC9max;
2214 fC[6] = 0;
2215 fC[7] = 0;
2216 fC[8] = 0;
2217 fC[13] = 0;
2218 }
2219 fC[14] = TMath::Abs(fC[14]);
2220 if (fC[14]>kC14max) {
2221 fC[14] = kC14max;
2222 fC[10] = 0;
2223 fC[11] = 0;
2224 fC[12] = 0;
2225 fC[13] = 0;
2226 }
2227
2228 // The part below is used for tests and normally is commented out
2229// TMatrixDSym m(5);
2230// TVectorD eig(5);
2231
2232// m(0,0)=fC[0];
2233// m(1,0)=fC[1]; m(1,1)=fC[2];
2234// m(2,0)=fC[3]; m(2,1)=fC[4]; m(2,2)=fC[5];
2235// m(3,0)=fC[6]; m(3,1)=fC[7]; m(3,2)=fC[8]; m(3,3)=fC[9];
2236// m(4,0)=fC[10]; m(4,1)=fC[11]; m(4,2)=fC[12]; m(4,3)=fC[13]; m(4,4)=fC[14];
2237
2238// m(0,1)=m(1,0);
2239// m(0,2)=m(2,0); m(1,2)=m(2,1);
2240// m(0,3)=m(3,0); m(1,3)=m(3,1); m(2,3)=m(3,2);
2241// m(0,4)=m(4,0); m(1,4)=m(4,1); m(2,4)=m(4,2); m(3,4)=m(4,3);
2242// m.EigenVectors(eig);
2243
2244// // assert(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0);
2245// if (!(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0)) {
2246// AliWarning("Negative eigenvalues of the covariance matrix!");
2247// this->Print();
2248// eig.Print();
2249// }
2250}
4c3dc2a0 2251
2252Bool_t AliExternalTrackParam::ConstrainToVertex(const AliVVertex* vtx, Double_t b[3])
2253{
2254 // Constrain TPC inner params constrained
2255 //
2256 if (!vtx)
2257 return kFALSE;
2258
2259 Double_t dz[2], cov[3];
2260 if (!PropagateToDCABxByBz(vtx, b, 3, dz, cov))
2261 return kFALSE;
2262
2263 Double_t covar[6];
2264 vtx->GetCovarianceMatrix(covar);
2265
2266 Double_t p[2]= { fP[0] - dz[0], fP[1] - dz[1] };
2267 Double_t c[3]= { covar[2], 0., covar[5] };
2268
2269 Double_t chi2C = GetPredictedChi2(p,c);
2270 if (chi2C>kVeryBig)
2271 return kFALSE;
2272
2273 if (!Update(p,c))
2274 return kFALSE;
2275
2276 return kTRUE;
2277}