Increases transport cuts in the tunnel.
[u/mrichter/AliRoot.git] / STRUCT / AliHALLv3.cxx
CommitLineData
257726e6 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
20// Experimental Hall //
21// This class contains the description of the experimental hall //
22// and the shielding blocks. //
23// Author: Andreas Morsch //
24// andreas.morsch@cern.ch //
25// //
26///////////////////////////////////////////////////////////////////////////////
27
28#include <TVirtualMC.h>
29
30#include "AliConst.h"
31#include "AliHALLv3.h"
32#include "AliMagF.h"
33#include "AliRun.h"
34#include "AliLog.h"
35#include <TGeoVolume.h>
36#include <TGeoManager.h>
37#include <TGeoMatrix.h>
38#include <TGeoCompositeShape.h>
39#include <TGeoBBox.h>
40#include <TGeoTube.h>
41#include <TGeoPgon.h>
42#include <TGeoPcon.h>
43#include <TGeoCone.h>
44#include <TGeoTrd1.h>
45#include <TGeoArb8.h>
46
47ClassImp(AliHALL)
48
49//_____________________________________________________________________________
50AliHALLv3::AliHALLv3()
51{
52 //
53 // Default constructor for the experimental Hall
54 //
55}
56
57//_____________________________________________________________________________
58AliHALLv3::AliHALLv3(const char *name, const char *title)
59 : AliHALL(name,title)
60{
61 //
62 // Standard constructor for the experimental Hall
63 //
64
65}
66
67//_____________________________________________________________________________
68void AliHALLv3::CreateGeometry()
69{
70 //
71 // Create the geometry of the exprimental hall
72 //
73 Float_t r2, dy;
74 Float_t phid, phim, h, r;
75 Float_t w1, dh, am, bm, dl,cm, hm, dr, dx, xl;
76 Float_t hullen;
77 Float_t phi;
78
79 // The top volume
80 //
81 TGeoVolume* top = gGeoManager->GetVolume("ALIC");
82 TGeoVolumeAssembly* asHall = new TGeoVolumeAssembly("HALL");
83
84 // Rotations
85 // rotation by 90 deg in the y-z plane
86 TGeoRotation* rot000 = new TGeoRotation("rot000", 90., 0., 0., 0., 90., 90.);
87 TGeoRotation* rot001 = new TGeoRotation("rot001", 270., 0., 90., 90., 0., 0.);
88
89 // Materials
90 TGeoMedium* kMedCC = gGeoManager->GetMedium("HALL_CC_C2");
91 TGeoMedium* kMedST = gGeoManager->GetMedium("HALL_STST_C2");
ffb3970c 92 TGeoMedium* kMedAir = gGeoManager->GetMedium("HALL_AIR_C2");
93 kMedST->Dump();
94
257726e6 95 // Floor thickness
96 Float_t dyFloor = 190.;
97 // Floor width
98 Float_t dxFloor = 1400.;
99 // Floor level
100 Float_t yFloor = -801.;
101 // Pit centre
102 Float_t zPit = 2300.;
103 // Pit radius
104 Float_t rPit = 1140.;
105 // Hall end
106 Float_t zHall24 = 1700.;
107 Float_t zHall26 = 1900.;
108 // Overlap between hall and pit radius
109 Float_t oPit = zHall24 - (zPit - rPit);
110 // Length of the L3 floor
111 Float_t dzL3 = 1700.;
112 // Start of hall roof in y
113 Float_t yHall = 500.;
114 // Radius of the hall roof
115 Float_t rHall = 1070.;
116 //
117 Float_t epsBig = 100.;
118 Float_t epsSmall = 1.;
119
120
121
122 //
123 // RB24/26 Tunnel Floor
124 r = 220.;
125 h = 140.;
126 phi = TMath::ACos(h / r);
127 xl = r * TMath::Sin(phi);
128 dr = 1600.;
129 dh = dr * TMath::Cos(phi);
130 dl = dr * TMath::Sin(phi);
131 if (gAlice->GetModule("ZDC") == 0) {
132 // No ZDC
133 hullen = 370.;
134 } else {
135
136 // ZDC is present
137 hullen = 6520.;
138 }
139
140 TGeoVolume* voHUFL = new TGeoVolume("HUFL",
141 new TGeoTrd1(xl +dl, xl, hullen, dh / 2.),
142 kMedCC);
143 r2 = hullen + zHall26;
257726e6 144 asHall->AddNode(voHUFL, 1, new TGeoCombiTrans(70., -100. - dh / 2., -r2, rot000));
ffb3970c 145
257726e6 146 //
147 // RB24/26 wall
ffb3970c 148 phid = phi * kRaddeg;
257726e6 149 TGeoVolume* voHUWA = new TGeoVolume("HUWA",
150 new TGeoTubeSeg(r, r+dr, hullen, phid - 90., 270. - phid),
151 kMedCC);
152 asHall->AddNode(voHUWA, 1, new TGeoTranslation(70., 40., -zHall26 - hullen ));
153 //
ffb3970c 154 // Air inside tunnel
155 TGeoTube* shHUWAT1 = new TGeoTube(0., r, hullen);
156 shHUWAT1->SetName("shHUWAT1");
157 //
158 // Space for ZDC
159 TGeoBBox* shHUWAT2 = new TGeoBBox(70., 110., hullen + 20.);
160 shHUWAT2->SetName("shHUWAT2");
161 TGeoTranslation* tHUWAT2 = new TGeoTranslation("tHUWAT2", -70., -30., 0.);
162 tHUWAT2->RegisterYourself();
163
164 TGeoBBox* shHUWAT3 = new TGeoBBox(270., 110., hullen + 20.);
165 shHUWAT3->SetName("shHUWAT3");
166 TGeoTranslation* tHUWAT3 = new TGeoTranslation("tHUWAT3", 0., -110. - 140., 0.);
167 tHUWAT3->RegisterYourself();
168
169 TGeoCompositeShape* shHUWAT = new TGeoCompositeShape("HUWAT", "(shHUWAT1-shHUWAT2:tHUWAT2)-shHUWAT3:tHUWAT3");
170 TGeoVolume* voHUWAT = new TGeoVolume("HUWAT", shHUWAT, kMedAir);
171 asHall->AddNode(voHUWAT, 1, new TGeoTranslation(70., 40., -zHall26 - hullen));
172
173 //
257726e6 174 // Hall floor
175 // RB26 side
176 phid = 16.197;
177 Float_t dzFloor26 = zHall26 - dzL3/2.;
178 TGeoBBox* shHHF1 = new TGeoBBox(dxFloor/2. + 470., dyFloor/2., dzFloor26/2.);
179 shHHF1->SetName("shHHF1");
180 TGeoVolume* voHHF1 = new TGeoVolume("HHF1", shHHF1, kMedCC);
181 asHall->AddNode(voHHF1, 2, new TGeoTranslation(0., yFloor, -(dzL3/2. + dzFloor26/2.)));
182 // RB24 side
183 Float_t dzFloor24 = zHall24 - dzL3/2.;
184 TGeoBBox* shHHF41 = new TGeoBBox(dxFloor/2. + 470., dyFloor/2., dzFloor24/2.);
185 shHHF41->SetName("shHHF41");
186 TGeoTube* shHHF42 = new TGeoTube(0., rPit + epsBig, dyFloor/2.);
187 shHHF42->SetName("shHHF42");
188 TGeoCombiTrans* trHHF42 = new TGeoCombiTrans("trHHF42", 0., 0., dzFloor24/2. + rPit - oPit, rot000);
189 trHHF42->RegisterYourself();
190
191 TGeoCompositeShape* shHHF4 = new TGeoCompositeShape("HHF4", "shHHF41+shHHF42:trHHF42");
192 TGeoVolume* voHHF4 = new TGeoVolume("HHF4", shHHF4, kMedCC);
193 asHall->AddNode(voHHF4, 1, new TGeoTranslation(0., yFloor, dzL3/2. + dzFloor24/2.));
194
195
196 //
197 // Hall side walls
198 Float_t trH1 = (1273.78 - dyFloor)/ 2.;
199 Float_t trBL1 = 207.3;
200 Float_t trTL1 = 50.;
201 Float_t trALP1 = TMath::ATan((trBL1 - trTL1) / 2. / trH1) * kRaddeg;
202 dx = 1.5 * trBL1 - 0.5 * trTL1 + dxFloor/2. + dyFloor * TMath::Tan(phid * kDegrad);
203 TGeoVolume* voHHW11 = new TGeoVolume("HHW11",
204 new TGeoTrap(dzFloor26/2., 0., 0.,
205 trH1, trBL1, trTL1, trALP1, trH1, trBL1, trTL1, trALP1),
206 kMedCC);
207 TGeoVolume* voHHW12 = new TGeoVolume("HHW12",
208 new TGeoTrap(dzFloor24/2., 0., 0.,
209 trH1, trBL1, trTL1, trALP1, trH1, trBL1, trTL1, trALP1),
210 kMedCC);
211
212 dy = yFloor + dyFloor/2. + trH1;
213
214 asHall->AddNode(voHHW12, 1, new TGeoTranslation( dx, dy, (dzL3/2. + dzFloor24/2.)));
215 asHall->AddNode(voHHW12, 2, new TGeoCombiTrans (-dx, dy, (dzL3/2. + dzFloor24/2.), rot001));
216 asHall->AddNode(voHHW11, 3, new TGeoTranslation( dx, dy, -(dzL3/2. + dzFloor26/2.)));
217 asHall->AddNode(voHHW11, 4, new TGeoCombiTrans (-dx, dy, -(dzL3/2. + dzFloor26/2.), rot001));
218
219 Float_t boDY = (yHall - (yFloor + dyFloor/2.) - 2. * trH1)/ 2.;
220 Float_t dzHall = zHall26 + zHall24;
221
222 TGeoVolume* voHBW1 = new TGeoVolume("HBW1", new TGeoBBox(50., boDY, dzHall / 2.), kMedCC);
223
224 asHall->AddNode(voHBW1, 1, new TGeoTranslation( 1120., yHall - boDY, (zHall24-zHall26)/2.));
225 asHall->AddNode(voHBW1, 2, new TGeoTranslation(-1120., yHall - boDY, (zHall24-zHall26)/2.));
226
227 //
228 // Slanted wall close to L3 magnet
ffb3970c 229 //
257726e6 230 phim = 45.;
231 hm = 790.;
232 am = hm * TMath::Tan(phim / 2. * kDegrad);
233 bm = (hm + 76.) / hm * am;
234 cm = bm * 2. / TMath::Sqrt(2.);
235 trH1 = (1273.78 - cm) / 2.;
236 trBL1 = 235. - cm * TMath::Tan(phid * kDegrad) / 2.;
237 trTL1 = 50.;
238 trALP1 = TMath::ATan((trBL1 - trTL1) / 2. / trH1) * kRaddeg;
239
240 w1 = trBL1;
241 dx = cm * TMath::Tan(phid * kDegrad) + dxFloor/2. + trBL1 * 1.5 - trTL1 * .5;
242
243 TGeoVolume* voHHW2 = new TGeoVolume("HHW2",
244 new TGeoTrap(dzL3/2., 0., 0.,
245 trH1, trBL1, trTL1, trALP1, trH1, trBL1, trTL1, trALP1),
246 kMedCC);
247
248 r2 = cm + yFloor - dyFloor/2. + trH1;
249
250 asHall->AddNode(voHHW2, 1, new TGeoTranslation(dx, r2, 0.));
251 asHall->AddNode(voHHW2, 2, new TGeoCombiTrans(-dx, r2, 0., rot001));
252
253 trH1 = cm / 2.;
254 trBL1 = w1 + cm / 2.;
255 trTL1 = w1;
256 trALP1 = TMath::ATan(.5) * kRaddeg;
257 dx = 1170. - trBL1 * .5 - trTL1 * .5;
258
259 TGeoVolume* voHHW3 = new TGeoVolume("HHW3",
260 new TGeoTrap(dzL3/2., 0., 0.,
261 trH1, trBL1, trTL1, trALP1, trH1, trBL1, trTL1, trALP1),
262 kMedCC);
263
264 r2 = trH1 - 896.;
265 asHall->AddNode(voHHW3, 1, new TGeoTranslation( dx, r2, 0.));
266 asHall->AddNode(voHHW3, 2, new TGeoCombiTrans (-dx, r2, 0., rot001));
267 //
268 // Floor L3
269 Float_t dyFloorL3 = 76.;
270 Float_t dx1FloorL3 = rHall + epsBig - 2. * trBL1;
271 Float_t dx2FloorL3 = dx1FloorL3 + TMath::Tan(phim * kDegrad) * dyFloorL3;
272
273
274 TGeoVolume* voHHF2 = new TGeoVolume("HHF2",
275 new TGeoTrd1(dx1FloorL3, dx2FloorL3, dzL3/2., dyFloorL3/2.),
276 kMedCC);
277
278 asHall->AddNode(voHHF2, 1, new TGeoCombiTrans(0., yFloor - dyFloor / 2. + dyFloorL3 / 2.,0., rot000));
279 //
280 // Tunnel roof and pit
281 // Roof
282 TGeoTubeSeg* shHHC11 = new TGeoTubeSeg(rHall, rHall + 100., dzHall / 2., 0., 180.);
283 shHHC11->SetName("shHHC11");
284 // Pit
285 TGeoTube* shHHC12 = new TGeoTube(rPit, rPit + 100., 1000.);
286 shHHC12->SetName("shHHC12");
287 // Pit inside
288 TGeoTube* shHHC13 = new TGeoTube( 0, rPit - epsSmall, 1000.);
289 shHHC13->SetName("shHHC13");
290 // Roof inside
291 TGeoTubeSeg* shHHC14 = new TGeoTubeSeg(0., rHall, dzHall / 2. + epsBig, 0., 180.);
292 shHHC14->SetName("shHHC14");
293
294 TGeoCombiTrans* trHHC = new TGeoCombiTrans("trHHC", 0., 1000., dzHall/2. + rPit - oPit, rot000);
295 trHHC->RegisterYourself();
296 TGeoCompositeShape* shHHC1 = new TGeoCompositeShape("HHC1", "shHHC11+shHHC12:trHHC-(shHHC14+shHHC13:trHHC)");
297 TGeoVolume* voHHC1 = new TGeoVolume("HHC1", shHHC1, kMedCC);
298
299 asHall->AddNode(voHHC1, 1, new TGeoTranslation(0., yHall, -(zHall26-zHall24)/2.));
300
301
302 //
303 // Pit wall ground level
304 TGeoTube* shHHCPW1 = new TGeoTube(rPit, rPit + 100., 1206./2.);
305 shHHCPW1->SetName("shHHCPW1");
306 TGeoCombiTrans* trHHCPW1 = new TGeoCombiTrans("trHHCPW1", 0., 0., 0., rot000);
307 trHHCPW1->RegisterYourself();
308
309 TGeoBBox* shHHCPW2 = new TGeoBBox(rPit + 100., 1206./ 2. + 20., rPit + 100.);
310 shHHCPW2->SetName("shHHCPW2");
311
312
313 TGeoTranslation* trHHCPW2 = new TGeoTranslation("trHHCPW2", 0., 0., -(rPit + 100.) - oPit);
314 trHHCPW2->RegisterYourself();
315
316 TGeoCompositeShape* shHHCPW = new TGeoCompositeShape("HHCPW", "shHHCPW1:trHHCPW1-shHHCPW2:trHHCPW2");
317 TGeoVolume* voHHCPW = new TGeoVolume("HHCPW", shHHCPW, kMedCC);
318 dy = yFloor + 1206. / 2. + dyFloor/2.;
319 asHall->AddNode(voHHCPW, 1, new TGeoTranslation(0., dy, 2300.));
320 //
321 // Foundations of the Muon Spectrometer
322 // Drawing ALIP2A_0110
323 //
324 TGeoVolumeAssembly* asFMS = new TGeoVolumeAssembly("asFMS");
325 Float_t zFil = -1465.86 - 60.;
326 // Muon Filter Foundation
327 // Pillars
328 dy = 263.54/2.;
329 Float_t ys = yFloor + dyFloor / 2.;
330 TGeoVolume* voFmsMfPil = new TGeoVolume("FmsMfPil", new TGeoBBox( 50., dy, 165.), kMedCC);
331 ys += dy;
332 asFMS->AddNode(voFmsMfPil, 1, new TGeoTranslation(-330. + 50., ys, zFil + 165. - 90.));
333 asFMS->AddNode(voFmsMfPil, 2, new TGeoTranslation( 330. - 50., ys, zFil + 165 - 90.));
334 //
335 // Transverse bars
336 ys += dy;
337 dy = 126.46/2.;
338 ys += dy;
339 TGeoVolume* voFmsMfTb1 = new TGeoVolume("FmsMfTb1", new TGeoBBox(330., dy, 90.), kMedCC);
340 asFMS->AddNode(voFmsMfTb1, 1, new TGeoTranslation(0., ys, zFil));
341 ys += dy;
342 dy = 41.14/2.;
343 ys += dy;
344 TGeoVolume* voFmsMfTb2 = new TGeoVolume("FmsMfTb2", new TGeoBBox(330., dy, 60.), kMedCC);
345 asFMS->AddNode(voFmsMfTb2, 1, new TGeoTranslation(0., ys, zFil));
346 //
347 // Dipole foundation
348 ys = yFloor + dyFloor / 2.;
349 dy = 263.54/2;
350 ys += dy;
351 TGeoVolume* voFmsDf1 = new TGeoVolume("FmsDf1", new TGeoBBox(370., dy, 448.0 / 2.), kMedCC);
352 asFMS->AddNode(voFmsDf1, 1, new TGeoTranslation(0., ys, zFil + 240. + 224.));
353 TGeoVolume* voFmsDf2 = new TGeoVolume("FmsDf2", new TGeoBBox(370., (263.54 + 110.)/2., 112.0 / 2.), kMedCC);
354 asFMS->AddNode(voFmsDf2, 1, new TGeoTranslation(0., ys - 110./2., zFil + 688. + 56.));
355
356 //
357 // Shielding in front of L3 magnet in PX24 and UX25
358 // Drawing ALIP2I__0016
359 //
360
361 TGeoVolumeAssembly* asShRb24 = new TGeoVolumeAssembly("ShRb24");
362 //
363 // Side walls
364 // start 7450 from IP
365 TGeoVolume* voShRb24Sw = new TGeoVolume("ShRb24Sw", new TGeoBBox(80., 420., 520.), kMedCC);
366 asShRb24->AddNode(voShRb24Sw, 1, new TGeoTranslation(+315, -420. + 140., 0.));
367 asShRb24->AddNode(voShRb24Sw, 2, new TGeoTranslation(-315, -420. + 140., 0.));
368 //
369 // Roof
370 TGeoVolume* voShRb24Ro = new TGeoVolume("ShRb24Ro", new TGeoBBox(395., 80., 520.), kMedCC);
371 asShRb24->AddNode(voShRb24Ro, 1, new TGeoTranslation(0., +80. + 140., 0.));
372 //
373 // Plug
374 TGeoBBox* shShRb24Pl1 = new TGeoBBox(235., 140., 40.);
375 shShRb24Pl1->SetName("ShRb24Pl1");
376 //
377 // Opening for beam pipe
378 TGeoBBox* shShRb24Pl2 = new TGeoBBox(15., 20., 60.);
379 shShRb24Pl2->SetName("ShRb24Pl2");
380 //
381 // Opening for tubes
382 TGeoBBox* shShRb24Pl3 = new TGeoBBox(20., 60., 60.);
383 shShRb24Pl3->SetName("ShRb24Pl3");
384
385 TGeoTranslation* trPl3 = new TGeoTranslation("trPl3", +235. -90., 80., 0.);
386 trPl3->RegisterYourself();
387 TGeoCompositeShape* shRb24Pl = new TGeoCompositeShape("Rb24Pl", "ShRb24Pl1-(ShRb24Pl2+ShRb24Pl3:trPl3)");
388 TGeoVolume* voRb24Pl = new TGeoVolume("Rb24Pl", shRb24Pl, kMedCC);
389 asShRb24->AddNode(voRb24Pl, 1, new TGeoTranslation(0., 0., 520. - 40.));
390
391 //
392 // Concrete platform and shielding PX24
393 // Drawing LHCJUX 250014
394 //
395 TGeoVolumeAssembly* asShPx24 = new TGeoVolumeAssembly("ShPx24");
396 // Platform
397 TGeoVolume* voShPx24Pl = new TGeoVolume("ShPx24Pl", new TGeoBBox(1613.5/2., 120./2., 1205./2.), kMedCC);
398 asShPx24->AddNode(voShPx24Pl, 1, new TGeoTranslation(55., -140. - 60., 0.));
399 // Pillars
400 TGeoVolume* voShPx24Pi = new TGeoVolume("ShPx24Pi", new TGeoBBox(160./2., 440./2., 40/2.), kMedCC);
401 asShPx24->AddNode(voShPx24Pi, 1, new TGeoTranslation(-180. - 80., -220. -260., 1205./2. - 20.));
402 asShPx24->AddNode(voShPx24Pi, 2, new TGeoTranslation(+290. + 80., -220. -260., 1205./2. - 20.));
403 asShPx24->AddNode(voShPx24Pi, 3, new TGeoTranslation(-180. - 80., -220. -260., -1205./2. + 20. + 120.));
404 asShPx24->AddNode(voShPx24Pi, 4, new TGeoTranslation(+290. + 80., -220. -260., -1205./2. + 20. + 120.));
405 asShPx24->AddNode(voShPx24Pi, 5, new TGeoTranslation(-180. - 80., -220. -260., -1205./2. - 20. + 480.));
406 asShPx24->AddNode(voShPx24Pi, 6, new TGeoTranslation(+290. + 80., -220. -260., -1205./2. - 20. + 480.));
407 asShPx24->AddNode(voShPx24Pi, 7, new TGeoTranslation(-180. - 80., -220. -260., -1205./2. - 20. + 800.));
408 asShPx24->AddNode(voShPx24Pi, 8, new TGeoTranslation(+290. + 80., -220. -260., -1205./2. - 20. + 800.));
409 // Side Walls
410 TGeoVolume* voShPx24Sw = new TGeoVolume("ShPx24Sw", new TGeoBBox(160./2., 280./2., 1205./2.), kMedCC);
411 asShPx24->AddNode(voShPx24Sw, 1, new TGeoTranslation(-180, 0., 0.));
412 asShPx24->AddNode(voShPx24Sw, 2, new TGeoTranslation(+290, 0., 0.));
413 // Roof
414 TGeoVolume* voShPx24Ro = new TGeoVolume("ShPx24Ro", new TGeoBBox(630./2., 160./2., 1205./2.), kMedCC);
415 asShPx24->AddNode(voShPx24Ro, 1, new TGeoTranslation(55., 80.+ 140., 0.));
416 asHall->AddNode(asShRb24, 1, new TGeoTranslation(0., 0., +745. + 520.));
417 asHall->AddNode(asShPx24, 1, new TGeoTranslation(0., 0., +745. + 1040. + 1205./ 2.));
418 // Stainless Steel Plug 80 cm thick
419 TGeoBBox* shShPx24Pl1 = new TGeoBBox(155., 140., 40.);
420 shShPx24Pl1->SetName("ShPx24Pl1");
421 // Opening for beam pipe
422 TGeoBBox* shShPx24Pl2 = new TGeoBBox(15., 20., 60.);
423 shShPx24Pl2->SetName("ShPx24Pl2");
424 TGeoCompositeShape* shPx24Pl = new TGeoCompositeShape("Px24Pl", "ShPx24Pl1-ShPx24Pl2");
425 TGeoVolume* voPx24Pl = new TGeoVolume("Px24Pl", shPx24Pl, kMedST);
426 asShPx24->AddNode(voPx24Pl, 1, new TGeoTranslation(55., 0., -1205./2. + 40.));
427 asHall->AddNode(asFMS, 1, new TGeoTranslation(0., 0., 0.));
428
429 //
430 top->AddNode(asHall, 1, gGeoIdentity);
431
432}