]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TFluka/TFluka.cxx
Temporary fix waiting for the real changes
[u/mrichter/AliRoot.git] / TFluka / TFluka.cxx
CommitLineData
829fb838 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//
19// Realisation of the TVirtualMC interface for the FLUKA code
20// (See official web side http://www.fluka.org/).
21//
22// This implementation makes use of the TGeo geometry modeller.
23// User configuration is via automatic generation of FLUKA input cards.
24//
25// Authors:
26// A. Fasso
27// E. Futo
28// A. Gheata
29// A. Morsch
30//
31
32#include <Riostream.h>
33
829fb838 34#include "TFluka.h"
35#include "TCallf77.h" //For the fortran calls
36#include "Fdblprc.h" //(DBLPRC) fluka common
37#include "Fepisor.h" //(EPISOR) fluka common
07f5b33e 38#include "Ffinuc.h" //(FINUC) fluka common
829fb838 39#include "Fiounit.h" //(IOUNIT) fluka common
40#include "Fpaprop.h" //(PAPROP) fluka common
41#include "Fpart.h" //(PART) fluka common
42#include "Ftrackr.h" //(TRACKR) fluka common
43#include "Fpaprop.h" //(PAPROP) fluka common
44#include "Ffheavy.h" //(FHEAVY) fluka common
3a625972 45#include "Fopphst.h" //(OPPHST) fluka common
07f5b33e 46#include "Fstack.h" //(STACK) fluka common
47#include "Fstepsz.h" //(STEPSZ) fluka common
7b203b6e 48#include "Fopphst.h" //(OPPHST) fluka common
829fb838 49
50#include "TVirtualMC.h"
3a625972 51#include "TMCProcess.h"
829fb838 52#include "TGeoManager.h"
53#include "TGeoMaterial.h"
54#include "TGeoMedium.h"
55#include "TFlukaMCGeometry.h"
6f5667d1 56#include "TGeoMCGeometry.h"
829fb838 57#include "TFlukaCerenkov.h"
1df5fa54 58#include "TFlukaConfigOption.h"
b496f27c 59#include "TFlukaScoringOption.h"
829fb838 60#include "TLorentzVector.h"
b496f27c 61#include "TArrayI.h"
829fb838 62
63// Fluka methods that may be needed.
64#ifndef WIN32
65# define flukam flukam_
66# define fluka_openinp fluka_openinp_
67# define fluka_closeinp fluka_closeinp_
68# define mcihad mcihad_
69# define mpdgha mpdgha_
70#else
71# define flukam FLUKAM
72# define fluka_openinp FLUKA_OPENINP
73# define fluka_closeinp FLUKA_CLOSEINP
74# define mcihad MCIHAD
75# define mpdgha MPDGHA
76#endif
77
78extern "C"
79{
80 //
81 // Prototypes for FLUKA functions
82 //
83 void type_of_call flukam(const int&);
84 void type_of_call fluka_openinp(const int&, DEFCHARA);
85 void type_of_call fluka_closeinp(const int&);
86 int type_of_call mcihad(const int&);
87 int type_of_call mpdgha(const int&);
88}
89
90//
91// Class implementation for ROOT
92//
93ClassImp(TFluka)
94
95//
96//----------------------------------------------------------------------------
97// TFluka constructors and destructors.
98//______________________________________________________________________________
99TFluka::TFluka()
100 :TVirtualMC(),
101 fVerbosityLevel(0),
1df5fa54 102 fInputFileName(""),
103 fProcesses(0),
104 fCuts(0),
105 fUserScore(0)
829fb838 106{
107 //
108 // Default constructor
109 //
110 fGeneratePemf = kFALSE;
111 fNVolumes = 0;
112 fCurrentFlukaRegion = -1;
113 fGeom = 0;
114 fMCGeo = 0;
115 fMaterials = 0;
116 fDummyBoundary = 0;
117 fFieldFlag = 1;
bd3d5c8a 118 fStopped = 0;
b496f27c 119 fStopEvent = 0;
120 fStopRun = 0;
121 fNEvent = 0;
829fb838 122}
123
124//______________________________________________________________________________
125TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported)
126 :TVirtualMC("TFluka",title, isRootGeometrySupported),
127 fVerbosityLevel(verbosity),
128 fInputFileName(""),
129 fTrackIsEntering(0),
130 fTrackIsExiting(0),
1df5fa54 131 fTrackIsNew(0),
132 fProcesses(new TObjArray(100)),
133 fCuts(new TObjArray(100)),
134 fUserScore(new TObjArray(100))
829fb838 135{
136 // create geometry interface
7f13be31 137 if (fVerbosityLevel >=3)
138 cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl;
139 SetCoreInputFileName();
140 SetInputFileName();
141 SetGeneratePemf(kFALSE);
829fb838 142 fNVolumes = 0;
143 fCurrentFlukaRegion = -1;
144 fDummyBoundary = 0;
145 fFieldFlag = 1;
146 fGeneratePemf = kFALSE;
147 fMCGeo = new TGeoMCGeometry("MCGeo", "TGeo Implementation of VirtualMCGeometry", kTRUE);
3b8c325d 148 fGeom = new TFlukaMCGeometry("geom", "FLUKA VMC Geometry");
829fb838 149 if (verbosity > 2) fGeom->SetDebugMode(kTRUE);
150 fMaterials = 0;
bd3d5c8a 151 fStopped = 0;
b496f27c 152 fStopEvent = 0;
153 fStopRun = 0;
154 fNEvent = 0;
829fb838 155}
156
157//______________________________________________________________________________
158TFluka::~TFluka() {
159// Destructor
1df5fa54 160 if (fVerbosityLevel >=3)
161 cout << "<== TFluka::~TFluka() destructor called." << endl;
162
163 delete fGeom;
164 delete fMCGeo;
165
166 if (fCuts) {
167 fCuts->Delete();
168 delete fCuts;
169 }
170
171 if (fProcesses) {
172 fProcesses->Delete();
173 delete fProcesses;
174 }
175
176
829fb838 177}
178
179//
180//______________________________________________________________________________
181// TFluka control methods
182//______________________________________________________________________________
183void TFluka::Init() {
184//
185// Geometry initialisation
186//
187 if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl;
188
189 if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry");
190 fApplication->ConstructGeometry();
191 TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First();
192 gGeoManager->SetTopVolume(top);
193 gGeoManager->CloseGeometry("di");
194 gGeoManager->DefaultColors(); // to be removed
195 fNVolumes = fGeom->NofVolumes();
196 fGeom->CreateFlukaMatFile("flukaMat.inp");
197 if (fVerbosityLevel >=3) {
198 printf("== Number of volumes: %i\n ==", fNVolumes);
199 cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
200 }
3b8c325d 201 // now we have TGeo geometry created and we have to patch FlukaVmc.inp
829fb838 202 // with the material mapping file FlukaMat.inp
203}
204
205
206//______________________________________________________________________________
207void TFluka::FinishGeometry() {
208//
209// Build-up table with region to medium correspondance
210//
211 if (fVerbosityLevel >=3) {
212 cout << "==> TFluka::FinishGeometry() called." << endl;
213 printf("----FinishGeometry - nothing to do with TGeo\n");
214 cout << "<== TFluka::FinishGeometry() called." << endl;
215 }
216}
217
218//______________________________________________________________________________
219void TFluka::BuildPhysics() {
220//
221// Prepare FLUKA input files and call FLUKA physics initialisation
222//
223
224 if (fVerbosityLevel >=3)
225 cout << "==> TFluka::BuildPhysics() called." << endl;
226// Prepare input file with the current physics settings
227 InitPhysics();
228 cout << "\t* InitPhysics() - Prepare input file was called" << endl;
229
230 if (fVerbosityLevel >=2)
231 cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F')
232 << ") in fluka..." << endl;
233 GLOBAL.lfdrtr = true;
234
235 if (fVerbosityLevel >=2)
236 cout << "\t* Opening file " << fInputFileName << endl;
237 const char* fname = fInputFileName;
238 fluka_openinp(lunin, PASSCHARA(fname));
239
240 if (fVerbosityLevel >=2)
241 cout << "\t* Calling flukam..." << endl;
242 flukam(1);
243
244 if (fVerbosityLevel >=2)
245 cout << "\t* Closing file " << fInputFileName << endl;
246 fluka_closeinp(lunin);
247
248 FinishGeometry();
249
250 if (fVerbosityLevel >=3)
251 cout << "<== TFluka::Init() called." << endl;
252
253
254 if (fVerbosityLevel >=3)
255 cout << "<== TFluka::BuildPhysics() called." << endl;
256}
257
258//______________________________________________________________________________
259void TFluka::ProcessEvent() {
260//
261// Process one event
262//
b496f27c 263 if (fStopRun) {
264 printf("User Run Abortion: No more events handled !\n");
265 fNEvent += 1;
266 return;
267 }
268
269 if (fVerbosityLevel >=3)
270 cout << "==> TFluka::ProcessEvent() called." << endl;
271 fApplication->GeneratePrimaries();
272 EPISOR.lsouit = true;
273 flukam(1);
274 if (fVerbosityLevel >=3)
275 cout << "<== TFluka::ProcessEvent() called." << endl;
276 //
277 // Increase event number
278 //
279 fNEvent += 1;
829fb838 280}
281
282//______________________________________________________________________________
283Bool_t TFluka::ProcessRun(Int_t nevent) {
284//
285// Run steering
286//
287
288 if (fVerbosityLevel >=3)
289 cout << "==> TFluka::ProcessRun(" << nevent << ") called."
290 << endl;
291
292 if (fVerbosityLevel >=2) {
293 cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl;
294 cout << "\t* Calling flukam again..." << endl;
295 }
296
297 fApplication->InitGeometry();
298 Int_t todo = TMath::Abs(nevent);
299 for (Int_t ev = 0; ev < todo; ev++) {
300 fApplication->BeginEvent();
301 ProcessEvent();
302 fApplication->FinishEvent();
303 }
304
305 if (fVerbosityLevel >=3)
306 cout << "<== TFluka::ProcessRun(" << nevent << ") called."
307 << endl;
308 return kTRUE;
309}
310
311//_____________________________________________________________________________
312// methods for building/management of geometry
313
314// functions from GCONS
315//____________________________________________________________________________
316void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
317 Float_t &dens, Float_t &radl, Float_t &absl,
318 Float_t* /*ubuf*/, Int_t& /*nbuf*/) {
319//
320 TGeoMaterial *mat;
321 TIter next (gGeoManager->GetListOfMaterials());
322 while ((mat = (TGeoMaterial*)next())) {
323 if (mat->GetUniqueID() == (UInt_t)imat) break;
324 }
325 if (!mat) {
326 Error("Gfmate", "no material with index %i found", imat);
327 return;
328 }
329 sprintf(name, "%s", mat->GetName());
330 a = mat->GetA();
331 z = mat->GetZ();
332 dens = mat->GetDensity();
333 radl = mat->GetRadLen();
334 absl = mat->GetIntLen();
335}
336
337//______________________________________________________________________________
338void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z,
339 Double_t &dens, Double_t &radl, Double_t &absl,
340 Double_t* /*ubuf*/, Int_t& /*nbuf*/) {
341//
342 TGeoMaterial *mat;
343 TIter next (gGeoManager->GetListOfMaterials());
344 while ((mat = (TGeoMaterial*)next())) {
345 if (mat->GetUniqueID() == (UInt_t)imat) break;
346 }
347 if (!mat) {
348 Error("Gfmate", "no material with index %i found", imat);
349 return;
350 }
351 sprintf(name, "%s", mat->GetName());
352 a = mat->GetA();
353 z = mat->GetZ();
354 dens = mat->GetDensity();
355 radl = mat->GetRadLen();
356 absl = mat->GetIntLen();
357}
358
359// detector composition
360//______________________________________________________________________________
361void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
362 Double_t z, Double_t dens, Double_t radl, Double_t absl,
363 Float_t* buf, Int_t nwbuf) {
364//
365 Double_t* dbuf = fGeom->CreateDoubleArray(buf, nwbuf);
366 Material(kmat, name, a, z, dens, radl, absl, dbuf, nwbuf);
367 delete [] dbuf;
368}
369
370//______________________________________________________________________________
371void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
372 Double_t z, Double_t dens, Double_t radl, Double_t absl,
373 Double_t* /*buf*/, Int_t /*nwbuf*/) {
374//
375 TGeoMaterial *mat;
376 kmat = gGeoManager->GetListOfMaterials()->GetSize();
377 if ((z-Int_t(z)) > 1E-3) {
378 mat = fGeom->GetMakeWrongMaterial(z);
379 if (mat) {
380 mat->SetRadLen(radl,absl);
381 mat->SetUniqueID(kmat);
382 return;
383 }
384 }
385 gGeoManager->Material(name, a, z, dens, kmat, radl, absl);
386}
387
388//______________________________________________________________________________
389void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a,
390 Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) {
391//
392 Double_t* da = fGeom->CreateDoubleArray(a, TMath::Abs(nlmat));
393 Double_t* dz = fGeom->CreateDoubleArray(z, TMath::Abs(nlmat));
394 Double_t* dwmat = fGeom->CreateDoubleArray(wmat, TMath::Abs(nlmat));
395
396 Mixture(kmat, name, da, dz, dens, nlmat, dwmat);
397 for (Int_t i=0; i<nlmat; i++) {
398 a[i] = da[i]; z[i] = dz[i]; wmat[i] = dwmat[i];
399 }
400
401 delete [] da;
402 delete [] dz;
403 delete [] dwmat;
404}
405
406//______________________________________________________________________________
407void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a,
408 Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) {
409//
410 // Defines mixture OR COMPOUND IMAT as composed by
411 // THE BASIC NLMAT materials defined by arrays A,Z and WMAT
412 //
413 // If NLMAT > 0 then wmat contains the proportion by
414 // weights of each basic material in the mixture.
415 //
416 // If nlmat < 0 then WMAT contains the number of atoms
417 // of a given kind into the molecule of the COMPOUND
418 // In this case, WMAT in output is changed to relative
419 // weigths.
420 //
421 Int_t i,j;
422 if (nlmat < 0) {
423 nlmat = - nlmat;
424 Double_t amol = 0;
425 for (i=0;i<nlmat;i++) {
426 amol += a[i]*wmat[i];
427 }
428 for (i=0;i<nlmat;i++) {
429 wmat[i] *= a[i]/amol;
430 }
431 }
432 kmat = gGeoManager->GetListOfMaterials()->GetSize();
433 // Check if we have elements with fractional Z
434 TGeoMaterial *mat = 0;
435 TGeoMixture *mix = 0;
436 Bool_t mixnew = kFALSE;
437 for (i=0; i<nlmat; i++) {
438 if (z[i]-Int_t(z[i]) < 1E-3) continue;
439 // We have found an element with fractional Z -> loop mixtures to look for it
440 for (j=0; j<kmat; j++) {
441 mat = (TGeoMaterial*)gGeoManager->GetListOfMaterials()->At(j);
442 if (!mat) break;
443 if (!mat->IsMixture()) continue;
444 mix = (TGeoMixture*)mat;
445 if (TMath::Abs(z[i]-mix->GetZ()) >1E-3) continue;
446// printf(" FOUND component %i as mixture %s\n", i, mat->GetName());
447 mixnew = kTRUE;
448 break;
449 }
450 if (!mixnew) Warning("Mixture","%s : cannot find component %i with fractional Z=%f\n", name, i, z[i]);
451 break;
452 }
453 if (mixnew) {
454 Int_t nlmatnew = nlmat+mix->GetNelements()-1;
455 Double_t *anew = new Double_t[nlmatnew];
456 Double_t *znew = new Double_t[nlmatnew];
457 Double_t *wmatnew = new Double_t[nlmatnew];
458 Int_t ind=0;
459 for (j=0; j<nlmat; j++) {
460 if (j==i) continue;
461 anew[ind] = a[j];
462 znew[ind] = z[j];
463 wmatnew[ind] = wmat[j];
464 ind++;
465 }
466 for (j=0; j<mix->GetNelements(); j++) {
467 anew[ind] = mix->GetAmixt()[j];
468 znew[ind] = mix->GetZmixt()[j];
469 wmatnew[ind] = wmat[i]*mix->GetWmixt()[j];
470 ind++;
471 }
472 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
473 delete [] anew;
474 delete [] znew;
475 delete [] wmatnew;
476 return;
477 }
478 // Now we need to compact identical elements within the mixture
479 // First check if this happens
480 mixnew = kFALSE;
481 for (i=0; i<nlmat-1; i++) {
482 for (j=i+1; j<nlmat; j++) {
483 if (z[i] == z[j]) {
484 mixnew = kTRUE;
485 break;
486 }
487 }
488 if (mixnew) break;
489 }
490 if (mixnew) {
491 Int_t nlmatnew = 0;
492 Double_t *anew = new Double_t[nlmat];
493 Double_t *znew = new Double_t[nlmat];
494 memset(znew, 0, nlmat*sizeof(Double_t));
495 Double_t *wmatnew = new Double_t[nlmat];
496 Bool_t skipi;
497 for (i=0; i<nlmat; i++) {
498 skipi = kFALSE;
499 for (j=0; j<nlmatnew; j++) {
500 if (z[i] == z[j]) {
501 wmatnew[j] += wmat[i];
502 skipi = kTRUE;
503 break;
504 }
505 }
506 if (skipi) continue;
507 anew[nlmatnew] = a[i];
508 znew[nlmatnew] = z[i];
509 wmatnew[nlmatnew] = wmat[i];
510 nlmatnew++;
511 }
512 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
513 delete [] anew;
514 delete [] znew;
515 delete [] wmatnew;
516 return;
517 }
518 gGeoManager->Mixture(name, a, z, dens, nlmat, wmat, kmat);
519}
520
521//______________________________________________________________________________
522void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
523 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
524 Double_t stemax, Double_t deemax, Double_t epsil,
525 Double_t stmin, Float_t* ubuf, Int_t nbuf) {
526 //
527 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
528 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
529 epsil, stmin, ubuf, nbuf);
530}
531
532//______________________________________________________________________________
533void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
534 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
535 Double_t stemax, Double_t deemax, Double_t epsil,
536 Double_t stmin, Double_t* ubuf, Int_t nbuf) {
537 //
538 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
539 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
540 epsil, stmin, ubuf, nbuf);
541}
542
543//______________________________________________________________________________
544void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
545 Double_t thetaY, Double_t phiY, Double_t thetaZ,
546 Double_t phiZ) {
547//
548 krot = gGeoManager->GetListOfMatrices()->GetEntriesFast();
549 fMCGeo->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ);
550}
551
552//______________________________________________________________________________
553void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) {
554//
555//
7b203b6e 556// Check if material is used
557 if (fVerbosityLevel >=3)
558 printf("Gstpar called with %6d %5s %12.4e %6d\n", itmed, param, parval, fGeom->GetFlukaMaterial(itmed));
559 Int_t* reglist;
560 Int_t nreg;
c1c801f9 561 reglist = fGeom->GetMaterialList(fGeom->GetFlukaMaterial(itmed), nreg);
562 if (nreg == 0) {
563 return;
564 }
565
7b203b6e 566//
829fb838 567 Bool_t process = kFALSE;
568 if (strncmp(param, "DCAY", 4) == 0 ||
569 strncmp(param, "PAIR", 4) == 0 ||
570 strncmp(param, "COMP", 4) == 0 ||
571 strncmp(param, "PHOT", 4) == 0 ||
572 strncmp(param, "PFIS", 4) == 0 ||
573 strncmp(param, "DRAY", 4) == 0 ||
574 strncmp(param, "ANNI", 4) == 0 ||
575 strncmp(param, "BREM", 4) == 0 ||
576 strncmp(param, "MUNU", 4) == 0 ||
577 strncmp(param, "CKOV", 4) == 0 ||
578 strncmp(param, "HADR", 4) == 0 ||
579 strncmp(param, "LOSS", 4) == 0 ||
580 strncmp(param, "MULS", 4) == 0 ||
581 strncmp(param, "RAYL", 4) == 0)
582 {
583 process = kTRUE;
584 }
585 if (process) {
586 SetProcess(param, Int_t (parval), fGeom->GetFlukaMaterial(itmed));
587 } else {
588 SetCut(param, parval, fGeom->GetFlukaMaterial(itmed));
589 }
590}
591
592// functions from GGEOM
593//_____________________________________________________________________________
594void TFluka::Gsatt(const char *name, const char *att, Int_t val)
595{
6f5667d1 596 // Set visualisation attributes for one volume
829fb838 597 char vname[5];
598 fGeom->Vname(name,vname);
599 char vatt[5];
600 fGeom->Vname(att,vatt);
601 gGeoManager->SetVolumeAttribute(vname, vatt, val);
602}
603
604//______________________________________________________________________________
605Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
606 Float_t *upar, Int_t np) {
607//
608 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
609}
610
611//______________________________________________________________________________
612Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
613 Double_t *upar, Int_t np) {
614//
615 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
616}
617
618//______________________________________________________________________________
619void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv,
620 Int_t iaxis) {
621//
622 fMCGeo->Gsdvn(name, mother, ndiv, iaxis);
623}
624
625//______________________________________________________________________________
626void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
627 Int_t iaxis, Double_t c0i, Int_t numed) {
628//
629 fMCGeo->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed);
630}
631
632//______________________________________________________________________________
633void TFluka::Gsdvt(const char *name, const char *mother, Double_t step,
634 Int_t iaxis, Int_t numed, Int_t ndvmx) {
635//
636 fMCGeo->Gsdvt(name, mother, step, iaxis, numed, ndvmx);
637}
638
639//______________________________________________________________________________
640void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step,
641 Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) {
642//
643 fMCGeo->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx);
644}
645
646//______________________________________________________________________________
647void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) {
648//
649// Nothing to do with TGeo
650}
651
652//______________________________________________________________________________
653void TFluka::Gspos(const char *name, Int_t nr, const char *mother,
654 Double_t x, Double_t y, Double_t z, Int_t irot,
655 const char *konly) {
656//
657 fMCGeo->Gspos(name, nr, mother, x, y, z, irot, konly);
658}
659
660//______________________________________________________________________________
661void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
662 Double_t x, Double_t y, Double_t z, Int_t irot,
663 const char *konly, Float_t *upar, Int_t np) {
664 //
665 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
666}
667
668//______________________________________________________________________________
669void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
670 Double_t x, Double_t y, Double_t z, Int_t irot,
671 const char *konly, Double_t *upar, Int_t np) {
672 //
673 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
674}
675
676//______________________________________________________________________________
677void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) {
678//
679// Nothing to do with TGeo
680}
681
682//______________________________________________________________________________
683void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
684 Float_t* absco, Float_t* effic, Float_t* rindex) {
685//
686// Set Cerenkov properties for medium itmed
687//
688// npckov: number of sampling points
689// ppckov: energy values
690// absco: absorption length
691// effic: quantum efficiency
692// rindex: refraction index
693//
694//
695//
696// Create object holding Cerenkov properties
697//
698 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex);
699//
700// Pass object to medium
701 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
702 medium->SetCerenkovProperties(cerenkovProperties);
703}
704
705//______________________________________________________________________________
706void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t * /*ppckov*/,
707 Double_t * /*absco*/, Double_t * /*effic*/, Double_t * /*rindex*/) {
708//
709// Not implemented with TGeo - what G4 did ? Any FLUKA card generated?
710 Warning("SetCerenkov", "Not implemented with TGeo");
711}
712
713// Euclid
714//______________________________________________________________________________
715void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/,
716 Int_t /*number*/, Int_t /*nlevel*/) {
717//
718// Not with TGeo
719 Warning("WriteEuclid", "Not implemented with TGeo");
720}
721
722
723
724//_____________________________________________________________________________
725// methods needed by the stepping
726//____________________________________________________________________________
727
728Int_t TFluka::GetMedium() const {
729//
730// Get the medium number for the current fluka region
731//
732 return fGeom->GetMedium(); // this I need to check due to remapping !!!
733}
734
735
736
737//____________________________________________________________________________
738// particle table usage
739// ID <--> PDG transformations
740//_____________________________________________________________________________
741Int_t TFluka::IdFromPDG(Int_t pdg) const
742{
743 //
744 // Return Fluka code from PDG and pseudo ENDF code
745
746 // Catch the feedback photons
747 if (pdg == 50000051) return (-1);
748 // MCIHAD() goes from pdg to fluka internal.
749 Int_t intfluka = mcihad(pdg);
750 // KPTOIP array goes from internal to official
751 return GetFlukaKPTOIP(intfluka);
752}
753
754//______________________________________________________________________________
755Int_t TFluka::PDGFromId(Int_t id) const
756{
757 //
758 // Return PDG code and pseudo ENDF code from Fluka code
f926898e 759 // Alpha He3 Triton Deuteron gen. ion opt. photon
760 Int_t idSpecial[6] = {10020040, 10020030, 10010030, 10010020, 10000000, 50000050};
829fb838 761 // IPTOKP array goes from official to internal
762
763 if (id == -1) {
764// Cerenkov photon
bd3d5c8a 765 if (fVerbosityLevel >= 3)
829fb838 766 printf("\n PDGFromId: Cerenkov Photon \n");
767 return 50000050;
768 }
769// Error id
770 if (id == 0 || id < -6 || id > 250) {
f926898e 771 if (fVerbosityLevel >= 3)
829fb838 772 printf("PDGFromId: Error id = 0\n");
773 return -1;
774 }
775// Good id
f926898e 776 if (id > 0) {
777 Int_t intfluka = GetFlukaIPTOKP(id);
778 if (intfluka == 0) {
779 if (fVerbosityLevel >= 3)
780 printf("PDGFromId: Error intfluka = 0: %d\n", id);
781 return -1;
782 } else if (intfluka < 0) {
783 if (fVerbosityLevel >= 3)
784 printf("PDGFromId: Error intfluka < 0: %d\n", id);
785 return -1;
786 }
787 if (fVerbosityLevel >= 3)
788 printf("mpdgha called with %d %d \n", id, intfluka);
789 // MPDGHA() goes from fluka internal to pdg.
790 return mpdgha(intfluka);
791 } else {
792 // ions and optical photons
793 return idSpecial[id + 6];
829fb838 794 }
829fb838 795}
796
bd3d5c8a 797void TFluka::StopTrack()
798{
799 // Set stopping conditions
800 // Works for photons and charged particles
801 fStopped = kTRUE;
802}
803
829fb838 804//_____________________________________________________________________________
805// methods for physics management
806//____________________________________________________________________________
807//
808// set methods
809//
810
1df5fa54 811void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed)
829fb838 812{
813// Set process user flag for material imat
814//
1df5fa54 815 TFlukaConfigOption* proc = new TFlukaConfigOption(flagName, flagValue, imed);
816 fProcesses->Add(proc);
829fb838 817}
818
819//______________________________________________________________________________
820Bool_t TFluka::SetProcess(const char* flagName, Int_t flagValue)
821{
822// Set process user flag
1df5fa54 823//
824//
825// Update if already in the list
829fb838 826//
827
1df5fa54 828 TIter next(fProcesses);
829 TFlukaConfigOption* proc;
830 while((proc = (TFlukaConfigOption*)next()))
831 {
832 if (strcmp(proc->GetName(), flagName) == 0) {
833 proc->SetFlag(flagValue);
834 proc->SetMedium(-1);
835 return kTRUE;
829fb838 836 }
1df5fa54 837 }
838//
839// If not create a new process
840//
841
842 proc = new TFlukaConfigOption(flagName, flagValue);
843 fProcesses->Add(proc);
844
845 return kTRUE;
829fb838 846}
847
848//______________________________________________________________________________
849void TFluka::SetCut(const char* cutName, Double_t cutValue, Int_t imed)
850{
851// Set user cut value for material imed
852//
1df5fa54 853 TFlukaConfigOption* cut = new TFlukaConfigOption(cutName, cutValue, imed);
854 fCuts->Add(cut);
829fb838 855}
856
857//______________________________________________________________________________
858Bool_t TFluka::SetCut(const char* cutName, Double_t cutValue)
859{
860// Set user cut value
861//
1df5fa54 862//
863// Update if already in the list
864//
865
866 TIter next(fCuts);
867 TFlukaConfigOption* cut;
868 while((cut = (TFlukaConfigOption*)next()))
869 {
870 if (strcmp(cut->GetName(), cutName) == 0) {
871 cut->SetCut(cutValue);
872 return kTRUE;
829fb838 873 }
1df5fa54 874 }
875//
876// If not create a new process
877//
878
879 cut = new TFlukaConfigOption(cutName, cutValue);
880 fCuts->Add(cut);
881
882 return kTRUE;
829fb838 883}
884
b496f27c 885void TFluka::SetUserScoring(const char* option, Int_t npar, Float_t what[12])
886{
887//
888// Ads a user scoring option to th list
889//
890 TFlukaScoringOption* opt = new TFlukaScoringOption(option, "User Scoring", npar, what);
891 fUserScore->Add(opt);
892}
893
894
829fb838 895//______________________________________________________________________________
896Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t)
897{
898 printf("WARNING: Xsec not yet implemented !\n"); return -1.;
899}
900
901
902//______________________________________________________________________________
903void TFluka::InitPhysics()
904{
905//
906// Physics initialisation with preparation of FLUKA input cards
907//
1df5fa54 908 printf("=>InitPhysics\n");
909 Int_t j, k;
829fb838 910 Double_t fCut;
911
3b8c325d 912 FILE *pFlukaVmcCoreInp, *pFlukaVmcFlukaMat, *pFlukaVmcInp;
829fb838 913
914 Double_t zero = 0.0;
915 Double_t one = 1.0;
916 Double_t two = 2.0;
917 Double_t three = 3.0;
918
919 Float_t fLastMaterial = fGeom->GetLastMaterialIndex();
920 if (fVerbosityLevel >= 3) printf(" last FLUKA material is %g\n", fLastMaterial);
921
922 // Prepare Cerenkov
923 TObjArray *matList = GetFlukaMaterials();
924 Int_t nmaterial = matList->GetEntriesFast();
925 fMaterials = new Int_t[nmaterial+3];
926
927// construct file names
928
3b8c325d 929 TString sFlukaVmcCoreInp = getenv("ALICE_ROOT");
930 sFlukaVmcCoreInp +="/TFluka/input/";
931 TString sFlukaVmcTmp = "flukaMat.inp";
932 TString sFlukaVmcInp = GetInputFileName();
933 sFlukaVmcCoreInp += GetCoreInputFileName();
829fb838 934
935// open files
936
3b8c325d 937 if ((pFlukaVmcCoreInp = fopen(sFlukaVmcCoreInp.Data(),"r")) == NULL) {
938 printf("\nCannot open file %s\n",sFlukaVmcCoreInp.Data());
829fb838 939 exit(1);
940 }
3b8c325d 941 if ((pFlukaVmcFlukaMat = fopen(sFlukaVmcTmp.Data(),"r")) == NULL) {
942 printf("\nCannot open file %s\n",sFlukaVmcTmp.Data());
829fb838 943 exit(1);
944 }
3b8c325d 945 if ((pFlukaVmcInp = fopen(sFlukaVmcInp.Data(),"w")) == NULL) {
946 printf("\nCannot open file %s\n",sFlukaVmcInp.Data());
829fb838 947 exit(1);
948 }
949
950// copy core input file
951 Char_t sLine[255];
952 Float_t fEventsPerRun;
953
3b8c325d 954 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
829fb838 955 if (strncmp(sLine,"GEOEND",6) != 0)
3b8c325d 956 fprintf(pFlukaVmcInp,"%s",sLine); // copy until GEOEND card
829fb838 957 else {
3b8c325d 958 fprintf(pFlukaVmcInp,"GEOEND\n"); // add GEOEND card
829fb838 959 goto flukamat;
960 }
961 } // end of while until GEOEND card
962
963
964 flukamat:
3b8c325d 965 while ((fgets(sLine,255,pFlukaVmcFlukaMat)) != NULL) { // copy flukaMat.inp file
966 fprintf(pFlukaVmcInp,"%s\n",sLine);
829fb838 967 }
968
3b8c325d 969 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
829fb838 970 if (strncmp(sLine,"START",5) != 0)
3b8c325d 971 fprintf(pFlukaVmcInp,"%s\n",sLine);
829fb838 972 else {
973 sscanf(sLine+10,"%10f",&fEventsPerRun);
974 goto fin;
975 }
976 } //end of while until START card
977
978fin:
979// in G3 the process control values meaning can be different for
980// different processes, but for most of them is:
981// 0 process is not activated
982// 1 process is activated WITH generation of secondaries
983// 2 process is activated WITHOUT generation of secondaries
984// if process does not generate secondaries => 1 same as 2
985//
986// Exceptions:
987// MULS: also 3
988// LOSS: also 3, 4
989// RAYL: only 0,1
990// HADR: may be > 2
991//
992
993// Loop over number of SetProcess calls
3b8c325d 994 fprintf(pFlukaVmcInp,"*----------------------------------------------------------------------------- \n");
995 fprintf(pFlukaVmcInp,"*----- The following data are generated from SetProcess and SetCut calls ----- \n");
996 fprintf(pFlukaVmcInp,"*----------------------------------------------------------------------------- \n");
829fb838 997
1df5fa54 998// Outer loop over processes
999 TIter next(fProcesses);
1000 TFlukaConfigOption *proc;
1001// Inner loop over processes
1002 TIter nextp(fProcesses);
1003 TFlukaConfigOption *procp;
1004// Loop over cuts
1005 TIter nextc(fCuts);
1006 TFlukaConfigOption *cut = 0x0;
1007
1008 while((proc = (TFlukaConfigOption*)next())) {
829fb838 1009 Float_t matMin = three;
1010 Float_t matMax = fLastMaterial;
1011 Bool_t global = kTRUE;
1df5fa54 1012 if (proc->Medium() != -1) {
7b203b6e 1013 Int_t mat;
1014 if ((mat = proc->Medium()) >= GetFlukaMaterials()->GetEntries()) continue;
1015 matMin = Float_t(mat);
829fb838 1016 matMax = matMin;
1017 global = kFALSE;
7b203b6e 1018
1019 fprintf(pFlukaVmcInp,"*\n*Material specific process setting for #%8d \n", mat);
829fb838 1020 }
1021
1022 // annihilation
1023 // G3 default value: 1
1024 // G4 processes: G4eplusAnnihilation/G4IeplusAnnihilation
1025 // Particles: e+
1026 // Physics: EM
1027 // flag = 0 no annihilation
1028 // flag = 1 annihilation, decays processed
1029 // flag = 2 annihilation, no decay product stored
1030 // gMC ->SetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR
1df5fa54 1031 if (strncmp(proc->GetName(),"ANNI",4) == 0) {
1032 if (proc->Flag() == 1 || proc->Flag() == 2) {
3b8c325d 1033 fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.\n");
1034 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)\n");
829fb838 1035 // -one = kinetic energy threshold (GeV) for e+ annihilation (resets to default=0)
1036 // zero = not used
1037 // zero = not used
1038 // matMin = lower bound of the material indices in which the respective thresholds apply
1039 // matMax = upper bound of the material indices in which the respective thresholds apply
1040 // one = step length in assigning indices
1041 // "ANNH-THR";
3b8c325d 1042 fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fANNH-THR\n",-one,zero,zero,matMin,matMax,one);
829fb838 1043 }
1df5fa54 1044 else if (proc->Flag() == 0) {
3b8c325d 1045 fprintf(pFlukaVmcInp,"*\n*No annihilation - no FLUKA card generated\n");
1046 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('ANNI',0)\n");
829fb838 1047 }
1048 else {
3b8c325d 1049 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('ANNI',?) call.\n");
1050 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1051 }
1052 }
1053
1054 // bremsstrahlung and pair production are both activated
1055 // G3 default value: 1
1056 // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
1057 // G4MuBremsstrahlung/G4IMuBremsstrahlung,
1058 // G4LowEnergyBremstrahlung
1059 // Particles: e-/e+; mu+/mu-
1060 // Physics: EM
1061 // flag = 0 no bremsstrahlung
1062 // flag = 1 bremsstrahlung, photon processed
1063 // flag = 2 bremsstrahlung, no photon stored
1064 // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
1065 // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
1066 // G3 default value: 1
1067 // G4 processes: G4GammaConversion,
1068 // G4MuPairProduction/G4IMuPairProduction
1069 // G4LowEnergyGammaConversion
1070 // Particles: gamma, mu
1071 // Physics: EM
1072 // flag = 0 no delta rays
1073 // flag = 1 delta rays, secondaries processed
1074 // flag = 2 delta rays, no secondaries stored
1075 // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat
1076 // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR
1df5fa54 1077 else if ((strncmp(proc->GetName(),"PAIR",4) == 0) && (proc->Flag() == 1 || proc->Flag() == 2)) {
829fb838 1078
1df5fa54 1079 nextp.Reset();
1080
1081 while ((procp = (TFlukaConfigOption*)nextp())) {
1082 if ((strncmp(procp->GetName(),"BREM",4) == 0) &&
1083 (proc->Flag() == 1 || procp->Flag() == 2) &&
1084 (procp->Medium() == proc->Medium())) {
3b8c325d 1085 fprintf(pFlukaVmcInp,"*\n*Bremsstrahlung and pair production by muons and charged hadrons both activated\n");
1086 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',1) and SetProcess('PAIR',1)\n");
1087 fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n");
1088 fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n");
829fb838 1089 // three = bremsstrahlung and pair production by muons and charged hadrons both are activated
3b8c325d 1090 fprintf(pFlukaVmcInp,"PAIRBREM %10.1f",three);
829fb838 1091 // direct pair production by muons
1092 // G4 particles: "e-", "e+"
1093 // G3 default value: 0.01 GeV
1094 //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
1095 fCut = 0.0;
1df5fa54 1096 nextc.Reset();
1097 while ((cut = (TFlukaConfigOption*)nextc())) {
1098 if (strncmp(cut->GetName(), "PPCUTM", 6) == 0 &&
1099 (cut->Medium() == proc->Medium())) fCut = cut->Cut();
829fb838 1100 }
3b8c325d 1101 fprintf(pFlukaVmcInp,"%10.4g",fCut);
829fb838 1102 // fCut; = e+, e- kinetic energy threshold (in GeV) for explicit pair production.
1103 // muon and hadron bremsstrahlung
1104 // G4 particles: "gamma"
1105 // G3 default value: CUTGAM=0.001 GeV
1106 //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
1107 fCut = 0.0;
1df5fa54 1108 nextc.Reset();
1109 while ((cut = (TFlukaConfigOption*)nextc())) {
1110 if (strncmp(cut->GetName(), "BCUTM", 5) == 0 &&
1111 (cut->Medium() == proc->Medium())) fCut = cut->Cut();
829fb838 1112 }
3b8c325d 1113 fprintf(pFlukaVmcInp,"%10.4g%10.1f%10.1f\n",fCut,matMin,matMax);
829fb838 1114 // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production
1115 // matMin = lower bound of the material indices in which the respective thresholds apply
1116 // matMax = upper bound of the material indices in which the respective thresholds apply
1117
1118 // for e+ and e-
3b8c325d 1119 fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n");
1120 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',1);\n");
829fb838 1121 fCut = -1.0;
1df5fa54 1122 nextc.Reset();
1123 while ((cut = (TFlukaConfigOption*)nextc())) {
1124 if (strncmp(cut->GetName(), "BCUTE", 5) == 0 &&
1125 (cut->Medium() == proc->Medium())) fCut = cut->Cut();
829fb838 1126 }
1127 //fCut = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
1128 // zero = not used
1129 // zero = not used
1130 // matMin = lower bound of the material indices in which the respective thresholds apply
1131 // matMax = upper bound of the material indices in which the respective thresholds apply
1132 // one = step length in assigning indices
1133 // "ELPO-THR";
3b8c325d 1134 fprintf(pFlukaVmcInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",fCut,zero,zero,matMin,matMax,one);
829fb838 1135
1136 // for e+ and e-
3b8c325d 1137 fprintf(pFlukaVmcInp,"*\n*Pair production by electrons is activated\n");
1138 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PAIR',1);\n");
829fb838 1139 fCut = -1.0;
1df5fa54 1140 nextc.Reset();
1141 while ((cut = (TFlukaConfigOption*)nextc())) {
1142 if (strncmp(cut->GetName(), "CUTGAM", 6) == 0 &&
1143 (cut->Medium() == proc->Medium())) fCut = cut->Cut();
829fb838 1144 }
1145 // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
1146 // matMin = lower bound of the material indices in which the respective thresholds apply
1147 // matMax = upper bound of the material indices in which the respective thresholds apply
1148 // one = step length in assigning indices
3b8c325d 1149 fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,matMin,matMax,one);
829fb838 1150 goto BOTH;
1151 } // end of if for BREM
1152 } // end of loop for BREM
1153
1154 // only pair production by muons and charged hadrons is activated
3b8c325d 1155 fprintf(pFlukaVmcInp,"*\n*Pair production by muons and charged hadrons is activated\n");
1156 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n");
1157 fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n");
829fb838 1158 // direct pair production by muons
1159 // G4 particles: "e-", "e+"
1160 // G3 default value: 0.01 GeV
1161 //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
1162 // one = pair production by muons and charged hadrons is activated
1163 // zero = e+, e- kinetic energy threshold (in GeV) for explicit pair production.
1164 // zero = no explicit bremsstrahlung production is simulated
1165 // matMin = lower bound of the material indices in which the respective thresholds apply
1166 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1167 fprintf(pFlukaVmcInp,"PAIRBREM %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax);
829fb838 1168
1169 // for e+ and e-
3b8c325d 1170 fprintf(pFlukaVmcInp,"*\n*Pair production by electrons is activated\n");
1171 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n");
829fb838 1172 fCut = -1.0;
1df5fa54 1173 nextc.Reset();
1174 while ((cut = (TFlukaConfigOption*)nextc())) {
1175 if (strncmp(cut->GetName(), "CUTGAM", 6) == 0 &&
1176 (cut->Medium() == proc->Medium())) fCut = cut->Cut();
829fb838 1177 }
1178 // zero = energy threshold (GeV) for Compton scattering (= 0.0 : ignored)
1179 // zero = energy threshold (GeV) for Photoelectric (= 0.0 : ignored)
1180 // fCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
1181 // matMin = lower bound of the material indices in which the respective thresholds apply
1182 // matMax = upper bound of the material indices in which the respective thresholds apply
1183 // one = step length in assigning indices
3b8c325d 1184 fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,fCut,matMin,matMax,one);
829fb838 1185
1186 BOTH:
1187 k = 0;
1188 } // end of if for PAIR
1189
1190
1191
1192 // bremsstrahlung
1193 // G3 default value: 1
1194 // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
1195 // G4MuBremsstrahlung/G4IMuBremsstrahlung,
1196 // G4LowEnergyBremstrahlung
1197 // Particles: e-/e+; mu+/mu-
1198 // Physics: EM
1199 // flag = 0 no bremsstrahlung
1200 // flag = 1 bremsstrahlung, photon processed
1201 // flag = 2 bremsstrahlung, no photon stored
1202 // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
1203 // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
1df5fa54 1204 else if (strncmp(proc->GetName(),"BREM",4) == 0) {
1205 nextp.Reset();
1206 while((procp = (TFlukaConfigOption*)nextp())) {
1207 if ((strncmp(procp->GetName(),"PAIR",4) == 0) &&
1208 procp->Flag() == 1 &&
1209 (procp->Medium() == proc->Medium())) goto NOBREM;
829fb838 1210 }
1df5fa54 1211 if (proc->Flag() == 1 || proc->Flag() == 2) {
3b8c325d 1212 fprintf(pFlukaVmcInp,"*\n*Bremsstrahlung by muons and charged hadrons is activated\n");
1213 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)\n");
1214 fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n");
829fb838 1215 // two = bremsstrahlung by muons and charged hadrons is activated
1216 // zero = no meaning
1217 // muon and hadron bremsstrahlung
1218 // G4 particles: "gamma"
1219 // G3 default value: CUTGAM=0.001 GeV
1220 //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
1221 fCut = 0.0;
1df5fa54 1222 nextc.Reset();
1223 while ((cut = (TFlukaConfigOption*)nextc())) {
1224 if (strncmp(cut->GetName(), "BCUTM", 5) == 0 &&
1225 (cut->Medium() == proc->Medium())) fCut = cut->Cut();
829fb838 1226 }
1227 // fCut = photon energy threshold (GeV) for explicit bremsstrahlung production
1228 // matMin = lower bound of the material indices in which the respective thresholds apply
1229 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1230 fprintf(pFlukaVmcInp,"PAIRBREM %10.1f%10.1f%10.4g%10.1f%10.1f\n",two,zero,fCut,matMin,matMax);
829fb838 1231
1232 // for e+ and e-
3b8c325d 1233 fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n");
1234 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',1);");
829fb838 1235 // - one = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
1236 // zero = not used
1237 // zero = not used
1238 // matMin = lower bound of the material indices in which the respective thresholds apply
1239 // matMax = upper bound of the material indices in which the respective thresholds apply
1240 // one = step length in assigning indices
1241 //"ELPO-THR";
3b8c325d 1242 fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",-one,zero,zero,matMin,matMax,one);
829fb838 1243 }
1df5fa54 1244 else if (proc->Flag() == 0) {
3b8c325d 1245 fprintf(pFlukaVmcInp,"*\n*No bremsstrahlung - no FLUKA card generated\n");
1246 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',0)\n");
829fb838 1247 }
1248 else {
3b8c325d 1249 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('BREM',?) call.\n");
1250 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1251 }
1252 NOBREM:
1253 j = 0;
1df5fa54 1254 } // end of else if (strncmp(proc->GetName(),"BREM",4) == 0)
829fb838 1255
1256 // Cerenkov photon generation
1257 // G3 default value: 0
1258 // G4 process: G4Cerenkov
1259 //
1260 // Particles: charged
1261 // Physics: Optical
1262 // flag = 0 no Cerenkov photon generation
1263 // flag = 1 Cerenkov photon generation
1264 // flag = 2 Cerenkov photon generation with primary stopped at each step
1265 //xx gMC ->SetProcess("CKOV",1); // ??? Cerenkov photon generation
1266
1df5fa54 1267 else if (strncmp(proc->GetName(),"CKOV",4) == 0) {
1268 if ((proc->Flag() == 1 || proc->Flag() == 2) && global) {
829fb838 1269 // Write comments
3b8c325d 1270 fprintf(pFlukaVmcInp, "* \n");
1271 fprintf(pFlukaVmcInp, "*Cerenkov photon generation\n");
1272 fprintf(pFlukaVmcInp, "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)\n");
829fb838 1273 // Loop over media
1274 for (Int_t im = 0; im < nmaterial; im++)
1275 {
1276 TGeoMaterial* material = dynamic_cast<TGeoMaterial*> (matList->At(im));
1277 Int_t idmat = material->GetIndex();
1278
1df5fa54 1279 if (!global && idmat != proc->Medium()) continue;
829fb838 1280
1281 fMaterials[idmat] = im;
1282 // Skip media with no Cerenkov properties
1283 TFlukaCerenkov* cerenkovProp;
1284 if (!(cerenkovProp = dynamic_cast<TFlukaCerenkov*>(material->GetCerenkovProperties()))) continue;
1285 //
1286 // This medium has Cerenkov properties
1287 //
1288 //
1289 // Write OPT-PROD card for each medium
1290 Float_t emin = cerenkovProp->GetMinimumEnergy();
1291 Float_t emax = cerenkovProp->GetMaximumEnergy();
3b8c325d 1292 fprintf(pFlukaVmcInp, "OPT-PROD %10.4g%10.4g%10.4g%10.4g%10.4g%10.4gCERENKOV\n", emin, emax, 0.,
829fb838 1293 Float_t(idmat), Float_t(idmat), 0.);
1294 //
1295 // Write OPT-PROP card for each medium
1296 // Forcing FLUKA to call user routines (queffc.cxx, rflctv.cxx, rfrndx.cxx)
1297 //
3b8c325d 1298 fprintf(pFlukaVmcInp, "OPT-PROP %10.4g%10.4g%10.4g%10.1f%10.1f%10.1fWV-LIMIT\n",
829fb838 1299 cerenkovProp->GetMinimumWavelength(),
1300 cerenkovProp->GetMaximumWavelength(),
1301 cerenkovProp->GetMaximumWavelength(),
1302 Float_t(idmat), Float_t(idmat), 0.0);
1303
1304 if (cerenkovProp->IsMetal()) {
3b8c325d 1305 fprintf(pFlukaVmcInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fMETAL\n",
829fb838 1306 -100., -100., -100.,
1307 Float_t(idmat), Float_t(idmat), 0.0);
1308 } else {
3b8c325d 1309 fprintf(pFlukaVmcInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f\n",
829fb838 1310 -100., -100., -100.,
1311 Float_t(idmat), Float_t(idmat), 0.0);
1312 }
1313
1314
1315 for (Int_t j = 0; j < 3; j++) {
3b8c325d 1316 fprintf(pFlukaVmcInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f&\n",
829fb838 1317 -100., -100., -100.,
1318 Float_t(idmat), Float_t(idmat), 0.0);
1319 }
1320 // Photon detection efficiency user defined
1321
1322 if (cerenkovProp->IsSensitive())
3b8c325d 1323 fprintf(pFlukaVmcInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fSENSITIV\n",
829fb838 1324 -100., -100., -100.,
1325 Float_t(idmat), Float_t(idmat), 0.0);
1326
1327 } // materials
1df5fa54 1328 } else if (proc->Flag() == 0) {
3b8c325d 1329 fprintf(pFlukaVmcInp,"*\n*No Cerenkov photon generation\n");
1330 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('CKOV',0)\n");
829fb838 1331 // zero = not used
1332 // zero = not used
1333 // zero = not used
1334 // matMin = lower bound of the material indices in which the respective thresholds apply
1335 // matMax = upper bound of the material indices in which the respective thresholds apply
1336 // one = step length in assigning indices
1337 //"CERE-OFF";
3b8c325d 1338 fprintf(pFlukaVmcInp,"OPT-PROD %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fCERE-OFF\n",zero,zero,zero,matMin,matMax,one);
829fb838 1339 }
1340 else {
3b8c325d 1341 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('CKOV',?) call.\n");
1342 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1343 }
1df5fa54 1344 } // end of else if (strncmp(proc->GetName(),"CKOV",4) == 0)
829fb838 1345
1346 // Compton scattering
1347 // G3 default value: 1
1348 // G4 processes: G4ComptonScattering,
1349 // G4LowEnergyCompton,
1350 // G4PolarizedComptonScattering
1351 // Particles: gamma
1352 // Physics: EM
1353 // flag = 0 no Compton scattering
1354 // flag = 1 Compton scattering, electron processed
1355 // flag = 2 Compton scattering, no electron stored
1356 // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR
1df5fa54 1357 else if (strncmp(proc->GetName(),"COMP",4) == 0) {
1358 if (proc->Flag() == 1 || proc->Flag() == 2) {
3b8c325d 1359 fprintf(pFlukaVmcInp,"*\n*Energy threshold (GeV) for Compton scattering - resets to default=0.\n");
1360 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('COMP',1);\n");
829fb838 1361 // - one = energy threshold (GeV) for Compton scattering - resets to default=0.
1362 // zero = not used
1363 // zero = not used
1364 // matMin = lower bound of the material indices in which the respective thresholds apply
1365 // matMax = upper bound of the material indices in which the respective thresholds apply
1366 // one = step length in assigning indices
1367 //"PHOT-THR";
3b8c325d 1368 fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",-one,zero,zero,matMin,matMax,one);
829fb838 1369 }
1df5fa54 1370 else if (proc->Flag() == 0) {
3b8c325d 1371 fprintf(pFlukaVmcInp,"*\n*No Compton scattering - no FLUKA card generated\n");
1372 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('COMP',0)\n");
829fb838 1373 }
1374 else {
3b8c325d 1375 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('COMP',?) call.\n");
1376 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1377 }
1df5fa54 1378 } // end of else if (strncmp(proc->GetName(),"COMP",4) == 0)
829fb838 1379
1380 // decay
1381 // G3 default value: 1
1382 // G4 process: G4Decay
1383 //
1384 // Particles: all which decay is applicable for
1385 // Physics: General
1386 // flag = 0 no decays
1387 // flag = 1 decays, secondaries processed
1388 // flag = 2 decays, no secondaries stored
7f13be31 1389 //gMC ->SetProcess("DCAY",0); // not available
83ec523a 1390 else if ((strncmp(proc->GetName(),"DCAY",4) == 0) && proc->Flag() == 0)
7f13be31 1391 cout << "SetProcess for flag =" << proc->GetName() << " value=" << proc->Flag() << " not avaliable!" << endl;
1392 else if ((strncmp(proc->GetName(),"DCAY",4) == 0) && proc->Flag() == 1) {
1393 // Nothing to do decays are switched on by default
1394 }
1395
829fb838 1396
1397 // delta-ray
1398 // G3 default value: 2
1399 // !! G4 treats delta rays in different way
1400 // G4 processes: G4eIonisation/G4IeIonization,
1401 // G4MuIonisation/G4IMuIonization,
1402 // G4hIonisation/G4IhIonisation
1403 // Particles: charged
1404 // Physics: EM
1405 // flag = 0 no energy loss
1406 // flag = 1 restricted energy loss fluctuations
1407 // flag = 2 complete energy loss fluctuations
1408 // flag = 3 same as 1
1409 // flag = 4 no energy loss fluctuations
1410 // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0.
1df5fa54 1411 else if (strncmp(proc->GetName(),"DRAY",4) == 0) {
1412 if (proc->Flag() == 0 || proc->Flag() == 4) {
3b8c325d 1413 fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n");
1414 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)\n");
1415 fprintf(pFlukaVmcInp,"*No delta ray production by muons - threshold set artificially high\n");
829fb838 1416 Double_t emin = 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
1417 // zero = ignored
1418 // zero = ignored
1419 // matMin = lower bound of the material indices in which the respective thresholds apply
1420 // matMax = upper bound of the material indices in which the respective thresholds apply
1421 // one = step length in assigning indices
3b8c325d 1422 fprintf(pFlukaVmcInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",emin,zero,zero,matMin,matMax,one);
829fb838 1423 }
1df5fa54 1424 else if (proc->Flag() == 1 || proc->Flag() == 2 || proc->Flag() == 3) {
3b8c325d 1425 fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n");
1426 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('DRAY',flag), flag=1,2,3\n");
1427 fprintf(pFlukaVmcInp,"*Delta ray production by muons switched on\n");
1428 fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('DCUTM',cut) or set to 1.0e+6.\n");
829fb838 1429 fCut = 1.0e+6;
1df5fa54 1430 nextc.Reset();
1431 while ((cut = (TFlukaConfigOption*)nextc())) {
1432 if (strncmp(cut->GetName(), "DCUTM", 5) == 0 &&
1433 cut->Medium() == proc->Medium()) fCut = cut->Cut();
829fb838 1434 }
1435 // fCut = kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
1436 // zero = ignored
1437 // zero = ignored
1438 // matMin = lower bound of the material indices in which the respective thresholds apply
1439 // matMax = upper bound of the material indices in which the respective thresholds apply
1440 // one = step length in assigning indices
3b8c325d 1441 fprintf(pFlukaVmcInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",fCut,zero,zero,matMin,matMax,one);
829fb838 1442 }
1443 else {
3b8c325d 1444 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('DRAY',?) call.\n");
1445 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1446 }
1df5fa54 1447 } // end of else if (strncmp(proc->GetName(),"DRAY",4) == 0)
829fb838 1448
1449 // hadronic process
1450 // G3 default value: 1
1451 // G4 processes: all defined by TG4PhysicsConstructorHadron
1452 //
1453 // Particles: hadrons
1454 // Physics: Hadron
1455 // flag = 0 no multiple scattering
1456 // flag = 1 hadronic interactions, secondaries processed
1457 // flag = 2 hadronic interactions, no secondaries stored
1458 // gMC ->SetProcess("HADR",1); // ??? hadronic process
1459 //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ?????
1df5fa54 1460 else if (strncmp(proc->GetName(),"HADR",4) == 0) {
1461 if (proc->Flag() == 1 || proc->Flag() == 2) {
3b8c325d 1462 fprintf(pFlukaVmcInp,"*\n*Hadronic interaction is ON by default in FLUKA\n");
1463 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1464 }
1df5fa54 1465 else if (proc->Flag() == 0) {
3b8c325d 1466 fprintf(pFlukaVmcInp,"*\n*Hadronic interaction is set OFF\n");
1467 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('HADR',0);\n");
1468 fprintf(pFlukaVmcInp,"*Switching off hadronic interactions not foreseen in FLUKA\n");
1469 fprintf(pFlukaVmcInp,"THRESHOL %10.1f%10.1f%10.1f%10.1e%10.1f\n",zero, zero, zero, 1.e10, zero);
829fb838 1470 }
1471 else {
3b8c325d 1472 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('HADR',?) call.\n");
1473 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1474 }
1df5fa54 1475 } // end of else if (strncmp(proc->GetName(),"HADR",4) == 0)
829fb838 1476
1477
1478 // energy loss
1479 // G3 default value: 2
1480 // G4 processes: G4eIonisation/G4IeIonization,
1481 // G4MuIonisation/G4IMuIonization,
1482 // G4hIonisation/G4IhIonisation
1483 //
1484 // Particles: charged
1485 // Physics: EM
1486 // flag=0 no energy loss
1487 // flag=1 restricted energy loss fluctuations
1488 // flag=2 complete energy loss fluctuations
1489 // flag=3 same as 1
1490 // flag=4 no energy loss fluctuations
1491 // If the value ILOSS is changed, then (in G3) cross-sections and energy
1492 // loss tables must be recomputed via the command 'PHYSI'
1493 // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss
1df5fa54 1494 else if (strncmp(proc->GetName(),"LOSS",4) == 0) {
1495 if (proc->Flag() == 2) { // complete energy loss fluctuations
3b8c325d 1496 fprintf(pFlukaVmcInp,"*\n*Complete energy loss fluctuations do not exist in FLUKA\n");
1497 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('LOSS',2);\n");
1498 fprintf(pFlukaVmcInp,"*flag=2=complete energy loss fluctuations\n");
1499 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1500 }
1df5fa54 1501 else if (proc->Flag() == 1 || proc->Flag() == 3) { // restricted energy loss fluctuations
3b8c325d 1502 fprintf(pFlukaVmcInp,"*\n*Restricted energy loss fluctuations\n");
1503 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)\n");
829fb838 1504 // one = restricted energy loss fluctuations (for hadrons and muons) switched on
1505 // one = restricted energy loss fluctuations (for e+ and e-) switched on
1506 // one = minimal accuracy
1507 // matMin = lower bound of the material indices in which the respective thresholds apply
1508 // upper bound of the material indices in which the respective thresholds apply
3b8c325d 1509 fprintf(pFlukaVmcInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax);
829fb838 1510 }
1df5fa54 1511 else if (proc->Flag() == 4) { // no energy loss fluctuations
3b8c325d 1512 fprintf(pFlukaVmcInp,"*\n*No energy loss fluctuations\n");
1513 fprintf(pFlukaVmcInp,"*\n*Generated from call: SetProcess('LOSS',4)\n");
829fb838 1514 // - one = restricted energy loss fluctuations (for hadrons and muons) switched off
1515 // - one = restricted energy loss fluctuations (for e+ and e-) switched off
1516 // one = minimal accuracy
1517 // matMin = lower bound of the material indices in which the respective thresholds apply
1518 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1519 fprintf(pFlukaVmcInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,-one,one,matMin,matMax);
829fb838 1520 }
1521 else {
3b8c325d 1522 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('LOSS',?) call.\n");
1523 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1524 }
1df5fa54 1525 } // end of else if (strncmp(proc->GetName(),"LOSS",4) == 0)
829fb838 1526
1527
1528 // multiple scattering
1529 // G3 default value: 1
1530 // G4 process: G4MultipleScattering/G4IMultipleScattering
1531 //
1532 // Particles: charged
1533 // Physics: EM
1534 // flag = 0 no multiple scattering
1535 // flag = 1 Moliere or Coulomb scattering
1536 // flag = 2 Moliere or Coulomb scattering
1537 // flag = 3 Gaussian scattering
1538 // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering
1df5fa54 1539 else if (strncmp(proc->GetName(),"MULS",4) == 0) {
1540 if (proc->Flag() == 1 || proc->Flag() == 2 || proc->Flag() == 3) {
3b8c325d 1541 fprintf(pFlukaVmcInp,"*\n*Multiple scattering is ON by default for e+e- and for hadrons/muons\n");
1542 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1543 }
1df5fa54 1544 else if (proc->Flag() == 0) {
3b8c325d 1545 fprintf(pFlukaVmcInp,"*\n*Multiple scattering is set OFF\n");
1546 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('MULS',0);\n");
829fb838 1547 // zero = ignored
1548 // three = multiple scattering for hadrons and muons is completely suppressed
1549 // three = multiple scattering for e+ and e- is completely suppressed
1550 // matMin = lower bound of the material indices in which the respective thresholds apply
1551 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1552 fprintf(pFlukaVmcInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,three,matMin,matMax);
829fb838 1553 }
1554 else {
3b8c325d 1555 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('MULS',?) call.\n");
1556 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1557 }
1df5fa54 1558 } // end of else if (strncmp(proc->GetName(),"MULS",4) == 0)
829fb838 1559
1560
1561 // muon nuclear interaction
1562 // G3 default value: 0
1563 // G4 processes: G4MuNuclearInteraction,
1564 // G4MuonMinusCaptureAtRest
1565 //
1566 // Particles: mu
1567 // Physics: Not set
1568 // flag = 0 no muon-nuclear interaction
1569 // flag = 1 nuclear interaction, secondaries processed
1570 // flag = 2 nuclear interaction, secondaries not processed
1571 // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat
1df5fa54 1572 else if (strncmp(proc->GetName(),"MUNU",4) == 0) {
1573 if (proc->Flag() == 1) {
3b8c325d 1574 fprintf(pFlukaVmcInp,"*\n*Muon nuclear interactions with production of secondary hadrons\n");
1575 fprintf(pFlukaVmcInp,"*\n*Generated from call: SetProcess('MUNU',1);\n");
829fb838 1576 // one = full simulation of muon nuclear interactions and production of secondary hadrons
1577 // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
1578 // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75.
1579 // matMin = lower bound of the material indices in which the respective thresholds apply
1580 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1581 fprintf(pFlukaVmcInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax);
829fb838 1582 }
1df5fa54 1583 else if (proc->Flag() == 2) {
3b8c325d 1584 fprintf(pFlukaVmcInp,"*\n*Muon nuclear interactions without production of secondary hadrons\n");
1585 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('MUNU',2);\n");
829fb838 1586 // two = full simulation of muon nuclear interactions and production of secondary hadrons
1587 // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
1588 // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75.
1589 // matMin = lower bound of the material indices in which the respective thresholds apply
1590 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1591 fprintf(pFlukaVmcInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",two,zero,zero,matMin,matMax);
829fb838 1592 }
1df5fa54 1593 else if (proc->Flag() == 0) {
3b8c325d 1594 fprintf(pFlukaVmcInp,"*\n*No muon nuclear interaction - no FLUKA card generated\n");
1595 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('MUNU',0)\n");
829fb838 1596 }
1597 else {
3b8c325d 1598 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('MUNU',?) call.\n");
1599 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1600 }
1df5fa54 1601 } // end of else if (strncmp(proc->GetName(),"MUNU",4) == 0)
829fb838 1602
1603
1604 // photofission
1605 // G3 default value: 0
1606 // G4 process: ??
1607 //
1608 // Particles: gamma
1609 // Physics: ??
1610 // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0.
1611 // flag = 0 no photon fission
1612 // flag = 1 photon fission, secondaries processed
1613 // flag = 2 photon fission, no secondaries stored
1df5fa54 1614 else if (strncmp(proc->GetName(),"PFIS",4) == 0) {
1615 if (proc->Flag() == 0) {
3b8c325d 1616 fprintf(pFlukaVmcInp,"*\n*No photonuclear interactions\n");
1617 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PFIS',0);\n");
829fb838 1618 // - one = no photonuclear interactions
1619 // zero = not used
1620 // zero = not used
1621 // matMin = lower bound of the material indices in which the respective thresholds apply
1622 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1623 fprintf(pFlukaVmcInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,zero,zero,matMin,matMax);
829fb838 1624 }
1df5fa54 1625 else if (proc->Flag() == 1) {
3b8c325d 1626 fprintf(pFlukaVmcInp,"*\n*Photon nuclear interactions are activated at all energies\n");
1627 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PFIS',1);\n");
829fb838 1628 // one = photonuclear interactions are activated at all energies
1629 // zero = not used
1630 // zero = not used
1631 // matMin = lower bound of the material indices in which the respective thresholds apply
1632 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1633 fprintf(pFlukaVmcInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax);
829fb838 1634 }
1df5fa54 1635 else if (proc->Flag() == 0) {
3b8c325d 1636 fprintf(pFlukaVmcInp,"*\n*No photofission - no FLUKA card generated\n");
1637 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PFIS',0)\n");
829fb838 1638 }
1639 else {
3b8c325d 1640 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('PFIS',?) call.\n");
1641 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1642 }
1643 }
1644
1645
1646 // photo electric effect
1647 // G3 default value: 1
1648 // G4 processes: G4PhotoElectricEffect
1649 // G4LowEnergyPhotoElectric
1650 // Particles: gamma
1651 // Physics: EM
1652 // flag = 0 no photo electric effect
1653 // flag = 1 photo electric effect, electron processed
1654 // flag = 2 photo electric effect, no electron stored
1655 // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR
1df5fa54 1656 else if (strncmp(proc->GetName(),"PHOT",4) == 0) {
1657 if (proc->Flag() == 1 || proc->Flag() == 2) {
3b8c325d 1658 fprintf(pFlukaVmcInp,"*\n*Photo electric effect is activated\n");
1659 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PHOT',1);\n");
829fb838 1660 // zero = ignored
1661 // - one = resets to default=0.
1662 // zero = ignored
1663 // matMin = lower bound of the material indices in which the respective thresholds apply
1664 // matMax = upper bound of the material indices in which the respective thresholds apply
1665 // one = step length in assigning indices
1666 //"PHOT-THR";
3b8c325d 1667 fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",zero,-one,zero,matMin,matMax,one);
829fb838 1668 }
1df5fa54 1669 else if (proc->Flag() == 0) {
3b8c325d 1670 fprintf(pFlukaVmcInp,"*\n*No photo electric effect - no FLUKA card generated\n");
1671 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PHOT',0)\n");
829fb838 1672 }
1673 else {
3b8c325d 1674 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('PHOT',?) call.\n");
1675 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1676 }
1df5fa54 1677 } // else if (strncmp(proc->GetName(),"PHOT",4) == 0)
829fb838 1678
1679
1680 // Rayleigh scattering
1681 // G3 default value: 0
1682 // G4 process: G4OpRayleigh
1683 //
1684 // Particles: optical photon
1685 // Physics: Optical
1686 // flag = 0 Rayleigh scattering off
1687 // flag = 1 Rayleigh scattering on
1688 //xx gMC ->SetProcess("RAYL",1);
1df5fa54 1689 else if (strncmp(proc->GetName(),"RAYL",4) == 0) {
1690 if (proc->Flag() == 1) {
3b8c325d 1691 fprintf(pFlukaVmcInp,"*\n*Rayleigh scattering is ON by default in FLUKA\n");
1692 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1693 }
1df5fa54 1694 else if (proc->Flag() == 0) {
3b8c325d 1695 fprintf(pFlukaVmcInp,"*\n*Rayleigh scattering is set OFF\n");
1696 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('RAYL',0);\n");
829fb838 1697 // - one = no Rayleigh scattering and no binding corrections for Compton
1698 // matMin = lower bound of the material indices in which the respective thresholds apply
1699 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1700 fprintf(pFlukaVmcInp,"EMFRAY %10.1f%10.1f%10.1f%10.1f\n",-one,three,matMin,matMax);
829fb838 1701 }
1702 else {
3b8c325d 1703 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('RAYL',?) call.\n");
1704 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1705 }
1df5fa54 1706 } // end of else if (strncmp(proc->GetName(),"RAYL",4) == 0)
829fb838 1707
1708
1709 // synchrotron radiation in magnetic field
1710 // G3 default value: 0
1711 // G4 process: G4SynchrotronRadiation
1712 //
1713 // Particles: ??
1714 // Physics: Not set
1715 // flag = 0 no synchrotron radiation
1716 // flag = 1 synchrotron radiation
1717 //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation
1df5fa54 1718 else if (strncmp(proc->GetName(),"SYNC",4) == 0) {
3b8c325d 1719 fprintf(pFlukaVmcInp,"*\n*Synchrotron radiation generation is NOT implemented in FLUKA\n");
1720 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1721 }
1722
1723
1724 // Automatic calculation of tracking medium parameters
1725 // flag = 0 no automatic calculation
1726 // flag = 1 automatic calculation
1727 //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters
1df5fa54 1728 else if (strncmp(proc->GetName(),"AUTO",4) == 0) {
3b8c325d 1729 fprintf(pFlukaVmcInp,"*\n*Automatic calculation of tracking medium parameters is always ON in FLUKA\n");
1730 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1731 }
1732
1733
1734 // To control energy loss fluctuation model
1735 // flag = 0 Urban model
1736 // flag = 1 PAI model
1737 // flag = 2 PAI+ASHO model (not active at the moment)
1738 //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model
1df5fa54 1739 else if (strncmp(proc->GetName(),"STRA",4) == 0) {
1740 if (proc->Flag() == 0 || proc->Flag() == 2 || proc->Flag() == 3) {
3b8c325d 1741 fprintf(pFlukaVmcInp,"*\n*Ionization energy losses calculation is activated\n");
1742 fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('STRA',n);, n=0,1,2\n");
829fb838 1743 // one = restricted energy loss fluctuations (for hadrons and muons) switched on
1744 // one = restricted energy loss fluctuations (for e+ and e-) switched on
1745 // one = minimal accuracy
1746 // matMin = lower bound of the material indices in which the respective thresholds apply
1747 // matMax = upper bound of the material indices in which the respective thresholds apply
3b8c325d 1748 fprintf(pFlukaVmcInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax);
829fb838 1749 }
1750 else {
3b8c325d 1751 fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('STRA',?) call.\n");
1752 fprintf(pFlukaVmcInp,"*No FLUKA card generated\n");
829fb838 1753 }
1df5fa54 1754 } // else if (strncmp(proc->GetName(),"STRA",4) == 0)
829fb838 1755
1756
1757
1758
1759 else { // processes not yet treated
1760
1761 // light photon absorption (Cerenkov photons)
1762 // it is turned on when Cerenkov process is turned on
1763 // G3 default value: 0
1764 // G4 process: G4OpAbsorption, G4OpBoundaryProcess
1765 //
1766 // Particles: optical photon
1767 // Physics: Optical
1768 // flag = 0 no absorption of Cerenkov photons
1769 // flag = 1 absorption of Cerenkov photons
1770 // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption
1771
1772
1773
1df5fa54 1774 cout << "SetProcess for flag=" << proc->GetName() << " value=" << proc->Flag() << " not yet implemented!" << endl;
829fb838 1775 }
1776 } //end of loop number of SetProcess calls
1777
1778
1779// Loop over number of SetCut calls
1df5fa54 1780
1781 nextc.Reset();
1782 while ((cut = (TFlukaConfigOption*)nextc())) {
829fb838 1783 Float_t matMin = three;
1784 Float_t matMax = fLastMaterial;
1785 Bool_t global = kTRUE;
1df5fa54 1786 if (cut->Medium() != -1) {
7b203b6e 1787 Int_t mat;
1788 if ((mat = cut->Medium()) >= GetFlukaMaterials()->GetEntries()) continue;
1789 matMin = Float_t(mat);
1790 matMax = matMin;
1791 global = kFALSE;
1792 TGeoMaterial* material = (TGeoMaterial*) (GetFlukaMaterials())->At(GetMaterialIndex(mat));
c1c801f9 1793 fprintf(pFlukaVmcInp,"*\n*Material specific cut setting for #%8d %s %s %13.3e\n",
1794 mat, material->GetName(), cut->GetName(), cut->Cut());
7b203b6e 1795
1796 }
829fb838 1797
1798 // cuts handled in SetProcess calls
1df5fa54 1799 if (strncmp(cut->GetName(),"BCUTM",5) == 0) continue;
1800 else if (strncmp(cut->GetName(),"BCUTE",5) == 0) continue;
1801 else if (strncmp(cut->GetName(),"DCUTM",5) == 0) continue;
1802 else if (strncmp(cut->GetName(),"PPCUTM",6) == 0) continue;
829fb838 1803
1804 // delta-rays by electrons
1805 // G4 particles: "e-"
1806 // G3 default value: 10**4 GeV
1807 // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons
1df5fa54 1808 else if (strncmp(cut->GetName(),"DCUTE",5) == 0) {
7b203b6e 1809 fprintf(pFlukaVmcInp,"*Cut for delta rays by electrons\n");
1df5fa54 1810 // -cut->Cut();
829fb838 1811 // zero = ignored
1812 // zero = ignored
1813 // matMin = lower bound of the material indices in which the respective thresholds apply
1814 // matMax = upper bound of the material indices in which the respective thresholds apply
1815 // loop over materials for EMFCUT FLUKA cards
1816 for (j=0; j < matMax-matMin+1; j++) {
1817 Int_t nreg, imat, *reglist;
1818 Float_t ireg;
1819 imat = (Int_t) matMin + j;
1820 reglist = fGeom->GetMaterialList(imat, nreg);
1821 // loop over regions of a given material
1822 for (k=0; k<nreg; k++) {
1823 ireg = reglist[k];
3b8c325d 1824 fprintf(pFlukaVmcInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",-cut->Cut(),zero,zero,ireg,ireg);
829fb838 1825 }
1826 }
3b8c325d 1827 fprintf(pFlukaVmcInp,"DELTARAY %10.4g%10.3f%10.3f%10.1f%10.1f%10.1f\n",cut->Cut(), 100., 1.03, matMin, matMax, 1.0);
829fb838 1828 } // end of if for delta-rays by electrons
1829
1830
1831 // gammas
1832 // G4 particles: "gamma"
1833 // G3 default value: 0.001 GeV
1834 // gMC ->SetCut("CUTGAM",cut); // cut for gammas
1835
1df5fa54 1836 else if (strncmp(cut->GetName(),"CUTGAM",6) == 0 && global) {
3b8c325d 1837 fprintf(pFlukaVmcInp,"*\n*Cut for gamma\n");
1838 fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTGAM',cut);\n");
1df5fa54 1839 // -cut->Cut();
829fb838 1840 // 7.0 = lower bound of the particle id-numbers to which the cut-off
3b8c325d 1841 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f\n",-cut->Cut(),7.0);
829fb838 1842 }
1df5fa54 1843 else if (strncmp(cut->GetName(),"CUTGAM",6) == 0 && !global) {
829fb838 1844 // loop over materials for EMFCUT FLUKA cards
1845 for (j=0; j < matMax-matMin+1; j++) {
1846 Int_t nreg, imat, *reglist;
1847 Float_t ireg;
1848 imat = (Int_t) matMin + j;
1849 reglist = fGeom->GetMaterialList(imat, nreg);
1850 // loop over regions of a given material
7b203b6e 1851 for (Int_t k = 0; k < nreg; k++) {
829fb838 1852 ireg = reglist[k];
3b8c325d 1853 fprintf(pFlukaVmcInp,"EMFCUT %10.4g%10.4g%10.1f%10.1f%10.1f%10.1f\n", zero, cut->Cut(), zero, ireg, ireg, one);
829fb838 1854 }
1855 }
1856 } // end of else if for gamma
1857
1858
1859 // electrons
1860 // G4 particles: "e-"
1861 // ?? positrons
1862 // G3 default value: 0.001 GeV
1863 //gMC ->SetCut("CUTELE",cut); // cut for e+,e-
1df5fa54 1864 else if (strncmp(cut->GetName(),"CUTELE",6) == 0 && global) {
3b8c325d 1865 fprintf(pFlukaVmcInp,"*\n*Cut for electrons\n");
1866 fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTELE',cut);\n");
1df5fa54 1867 // -cut->Cut();
829fb838 1868 // three = lower bound of the particle id-numbers to which the cut-off
1869 // 4.0 = upper bound of the particle id-numbers to which the cut-off
1870 // one = step length in assigning numbers
3b8c325d 1871 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-cut->Cut(),three,4.0,one);
829fb838 1872 }
1df5fa54 1873 else if (strncmp(cut->GetName(),"CUTELE",6) == 0 && !global) {
829fb838 1874 // loop over materials for EMFCUT FLUKA cards
1875 for (j=0; j < matMax-matMin+1; j++) {
1876 Int_t nreg, imat, *reglist;
1877 Float_t ireg;
1878 imat = (Int_t) matMin + j;
1879 reglist = fGeom->GetMaterialList(imat, nreg);
1880 // loop over regions of a given material
1881 for (k=0; k<nreg; k++) {
1882 ireg = reglist[k];
3b8c325d 1883 fprintf(pFlukaVmcInp,"EMFCUT %10.4g%10.4g%10.1f%10.1f%10.1f%10.1f\n", -cut->Cut(), zero, zero, ireg, ireg, one);
829fb838 1884 }
1885 }
1886 } // end of else if for electrons
1887
1888
1889 // neutral hadrons
1890 // G4 particles: of type "baryon", "meson", "nucleus" with zero charge
1891 // G3 default value: 0.01 GeV
1892 //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons
1df5fa54 1893 else if (strncmp(cut->GetName(),"CUTNEU",6) == 0 && global) {
3b8c325d 1894 fprintf(pFlukaVmcInp,"*\n*Cut for neutral hadrons\n");
1895 fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTNEU',cut);\n");
829fb838 1896
1897 // 8.0 = Neutron
1898 // 9.0 = Antineutron
3b8c325d 1899 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),8.0,9.0);
829fb838 1900
1901 // 12.0 = Kaon zero long
1902 // 12.0 = Kaon zero long
3b8c325d 1903 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),12.0,12.0);
829fb838 1904
1905 // 17.0 = Lambda, 18.0 = Antilambda
1906 // 19.0 = Kaon zero short
3b8c325d 1907 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),17.0,19.0);
829fb838 1908
1909 // 22.0 = Sigma zero, Pion zero, Kaon zero
1910 // 25.0 = Antikaon zero
3b8c325d 1911 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),22.0,25.0);
829fb838 1912
1913 // 32.0 = Antisigma zero
1914 // 32.0 = Antisigma zero
3b8c325d 1915 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),32.0,32.0);
829fb838 1916
1917 // 34.0 = Xi zero
1918 // 35.0 = AntiXi zero
3b8c325d 1919 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),34.0,35.0);
829fb838 1920
1921 // 47.0 = D zero
1922 // 48.0 = AntiD zero
3b8c325d 1923 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),47.0,48.0);
829fb838 1924
1925 // 53.0 = Xi_c zero
1926 // 53.0 = Xi_c zero
3b8c325d 1927 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),53.0,53.0);
829fb838 1928
1929 // 55.0 = Xi'_c zero
1930 // 56.0 = Omega_c zero
3b8c325d 1931 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),55.0,56.0);
829fb838 1932
1933 // 59.0 = AntiXi_c zero
1934 // 59.0 = AntiXi_c zero
3b8c325d 1935 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),59.0,59.0);
829fb838 1936
1937 // 61.0 = AntiXi'_c zero
1938 // 62.0 = AntiOmega_c zero
3b8c325d 1939 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),61.0,62.0);
829fb838 1940 }
1941
1942 // charged hadrons
1943 // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge
1944 // G3 default value: 0.01 GeV
1945 //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons
1df5fa54 1946 else if (strncmp(cut->GetName(),"CUTHAD",6) == 0 && global) {
3b8c325d 1947 fprintf(pFlukaVmcInp,"*\n*Cut for charged hadrons\n");
1948 fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTHAD',cut);\n");
829fb838 1949
1950 // 1.0 = Proton
1951 // 2.0 = Antiproton
3b8c325d 1952 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),1.0,2.0);
829fb838 1953
1954 // 13.0 = Positive Pion, Negative Pion, Positive Kaon
1955 // 16.0 = Negative Kaon
3b8c325d 1956 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),13.0,16.0);
829fb838 1957
1958 // 20.0 = Negative Sigma
1959 // 21.0 = Positive Sigma
3b8c325d 1960 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),20.0,21.0);
829fb838 1961
1962 // 31.0 = Antisigma minus
1963 // 33.0 = Antisigma plus
1964 // 2.0 = step length
3b8c325d 1965 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-cut->Cut(),31.0,33.0,2.0);
829fb838 1966
1967 // 36.0 = Negative Xi, Positive Xi, Omega minus
1968 // 39.0 = Antiomega
3b8c325d 1969 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),36.0,39.0);
829fb838 1970
1971 // 45.0 = D plus
1972 // 46.0 = D minus
3b8c325d 1973 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),45.0,46.0);
829fb838 1974
1975 // 49.0 = D_s plus, D_s minus, Lambda_c plus
1976 // 52.0 = Xi_c plus
3b8c325d 1977 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),49.0,52.0);
829fb838 1978
1979 // 54.0 = Xi'_c plus
1980 // 60.0 = AntiXi'_c minus
1981 // 6.0 = step length
3b8c325d 1982 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-cut->Cut(),54.0,60.0,6.0);
829fb838 1983
1984 // 57.0 = Antilambda_c minus
1985 // 58.0 = AntiXi_c minus
3b8c325d 1986 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),57.0,58.0);
829fb838 1987 }
1988
1989 // muons
1990 // G4 particles: "mu+", "mu-"
1991 // G3 default value: 0.01 GeV
1992 //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu-
1df5fa54 1993 else if (strncmp(cut->GetName(),"CUTMUO",6)== 0 && global) {
3b8c325d 1994 fprintf(pFlukaVmcInp,"*\n*Cut for muons\n");
1995 fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTMUO',cut);\n");
829fb838 1996 // 10.0 = Muon+
1997 // 11.0 = Muon-
3b8c325d 1998 fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),10.0,11.0);
829fb838 1999 }
2000
2001 //
2002 // time of flight cut in seconds
2003 // G4 particles: all
2004 // G3 default value: 0.01 GeV
2005 //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds
1df5fa54 2006 else if (strncmp(cut->GetName(),"TOFMAX",6) == 0) {
3b8c325d 2007 fprintf(pFlukaVmcInp,"*\n*Time of flight cuts in seconds\n");
2008 fprintf(pFlukaVmcInp,"*Generated from call: SetCut('TOFMAX',tofmax);\n");
829fb838 2009 // zero = ignored
2010 // zero = ignored
2011 // -6.0 = lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
2012 // 64.0 = upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
3b8c325d 2013 fprintf(pFlukaVmcInp,"TIME-CUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",cut->Cut()*1.e9,zero,zero,-6.0,64.0);
829fb838 2014 }
2015
2016 else if (global){
1df5fa54 2017 cout << "SetCut for flag=" << cut->GetName() << " value=" << cut->Cut() << " not yet implemented!" << endl;
829fb838 2018 }
2019 else {
1df5fa54 2020 cout << "SetCut for flag=" << cut->GetName() << " value=" << cut->Cut() << " (material specific) not yet implemented!" << endl;
829fb838 2021 }
2022
2023 } //end of loop over SetCut calls
2024
2025// Add START and STOP card
3b8c325d 2026 fprintf(pFlukaVmcInp,"START %10.1f\n",fEventsPerRun);
2027 fprintf(pFlukaVmcInp,"STOP \n");
829fb838 2028
2029
2030// Close files
2031
3b8c325d 2032 fclose(pFlukaVmcCoreInp);
2033 fclose(pFlukaVmcFlukaMat);
2034 fclose(pFlukaVmcInp);
829fb838 2035
2036} // end of InitPhysics
2037
2038
2039//______________________________________________________________________________
07f5b33e 2040void TFluka::SetMaxStep(Double_t step)
829fb838 2041{
07f5b33e 2042// Set the maximum step size
2043 if (step > 1.e4) return;
2044
2045 Int_t mreg, latt;
2046 fGeom->GetCurrentRegion(mreg, latt);
2047 STEPSZ.stepmx[mreg - 1] = step;
829fb838 2048}
2049
2f09b80e 2050
2051Double_t TFluka::MaxStep() const
2052{
2053// Return the maximum for current medium
2054 Int_t mreg, latt;
2055 fGeom->GetCurrentRegion(mreg, latt);
2056 return (STEPSZ.stepmx[mreg - 1]);
2057}
2058
829fb838 2059//______________________________________________________________________________
2060void TFluka::SetMaxNStep(Int_t)
2061{
2062// SetMaxNStep is dummy procedure in TFluka !
2063 if (fVerbosityLevel >=3)
2064 cout << "SetMaxNStep is dummy procedure in TFluka !" << endl;
2065}
2066
2067//______________________________________________________________________________
2068void TFluka::SetUserDecay(Int_t)
2069{
2070// SetUserDecay is dummy procedure in TFluka !
2071 if (fVerbosityLevel >=3)
2072 cout << "SetUserDecay is dummy procedure in TFluka !" << endl;
2073}
2074
2075//
2076// dynamic properties
2077//
2078//______________________________________________________________________________
2079void TFluka::TrackPosition(TLorentzVector& position) const
2080{
2081// Return the current position in the master reference frame of the
2082// track being transported
2083// TRACKR.atrack = age of the particle
2084// TRACKR.xtrack = x-position of the last point
2085// TRACKR.ytrack = y-position of the last point
2086// TRACKR.ztrack = z-position of the last point
2087 Int_t caller = GetCaller();
2088 if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw
2089 position.SetX(GetXsco());
2090 position.SetY(GetYsco());
2091 position.SetZ(GetZsco());
2092 position.SetT(TRACKR.atrack);
2093 }
2094 else if (caller == 4) { // mgdraw
2095 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
2096 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
2097 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
2098 position.SetT(TRACKR.atrack);
2099 }
2100 else if (caller == 5) { // sodraw
2101 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
2102 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
2103 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
2104 position.SetT(0);
2105 }
2106 else
2107 Warning("TrackPosition","position not available");
2108}
2109
2110//______________________________________________________________________________
2111void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const
2112{
2113// Return the current position in the master reference frame of the
2114// track being transported
2115// TRACKR.atrack = age of the particle
2116// TRACKR.xtrack = x-position of the last point
2117// TRACKR.ytrack = y-position of the last point
2118// TRACKR.ztrack = z-position of the last point
2119 Int_t caller = GetCaller();
2120 if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw
2121 x = GetXsco();
2122 y = GetYsco();
2123 z = GetZsco();
2124 }
2125 else if (caller == 4 || caller == 5) { // mgdraw, sodraw
2126 x = TRACKR.xtrack[TRACKR.ntrack];
2127 y = TRACKR.ytrack[TRACKR.ntrack];
2128 z = TRACKR.ztrack[TRACKR.ntrack];
2129 }
2130 else
2131 Warning("TrackPosition","position not available");
2132}
2133
2134//______________________________________________________________________________
2135void TFluka::TrackMomentum(TLorentzVector& momentum) const
2136{
2137// Return the direction and the momentum (GeV/c) of the track
2138// currently being transported
2139// TRACKR.ptrack = momentum of the particle (not always defined, if
2140// < 0 must be obtained from etrack)
2141// TRACKR.cx,y,ztrck = direction cosines of the current particle
2142// TRACKR.etrack = total energy of the particle
2143// TRACKR.jtrack = identity number of the particle
2144// PAPROP.am[TRACKR.jtrack] = particle mass in gev
2145 Int_t caller = GetCaller();
2146 if (caller != 2) { // not eedraw
2147 if (TRACKR.ptrack >= 0) {
2148 momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck);
2149 momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck);
2150 momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck);
2151 momentum.SetE(TRACKR.etrack);
2152 return;
2153 }
2154 else {
2155 Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]);
2156 momentum.SetPx(p*TRACKR.cxtrck);
2157 momentum.SetPy(p*TRACKR.cytrck);
2158 momentum.SetPz(p*TRACKR.cztrck);
2159 momentum.SetE(TRACKR.etrack);
2160 return;
2161 }
2162 }
2163 else
2164 Warning("TrackMomentum","momentum not available");
2165}
2166
2167//______________________________________________________________________________
2168void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const
2169{
2170// Return the direction and the momentum (GeV/c) of the track
2171// currently being transported
2172// TRACKR.ptrack = momentum of the particle (not always defined, if
2173// < 0 must be obtained from etrack)
2174// TRACKR.cx,y,ztrck = direction cosines of the current particle
2175// TRACKR.etrack = total energy of the particle
2176// TRACKR.jtrack = identity number of the particle
2177// PAPROP.am[TRACKR.jtrack] = particle mass in gev
2178 Int_t caller = GetCaller();
2179 if (caller != 2) { // not eedraw
2180 if (TRACKR.ptrack >= 0) {
2181 px = TRACKR.ptrack*TRACKR.cxtrck;
2182 py = TRACKR.ptrack*TRACKR.cytrck;
2183 pz = TRACKR.ptrack*TRACKR.cztrck;
2184 e = TRACKR.etrack;
2185 return;
2186 }
2187 else {
2188 Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]);
2189 px = p*TRACKR.cxtrck;
2190 py = p*TRACKR.cytrck;
2191 pz = p*TRACKR.cztrck;
2192 e = TRACKR.etrack;
2193 return;
2194 }
2195 }
2196 else
2197 Warning("TrackMomentum","momentum not available");
2198}
2199
2200//______________________________________________________________________________
2201Double_t TFluka::TrackStep() const
2202{
2203// Return the length in centimeters of the current step
2204// TRACKR.ctrack = total curved path
2205 Int_t caller = GetCaller();
2206 if (caller == 11 || caller==12 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw
2207 return 0.0;
2208 else if (caller == 4) //mgdraw
2209 return TRACKR.ctrack;
2210 else
2211 return -1.0;
2212}
2213
2214//______________________________________________________________________________
2215Double_t TFluka::TrackLength() const
2216{
2217// TRACKR.cmtrck = cumulative curved path since particle birth
2218 Int_t caller = GetCaller();
2219 if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw
2220 return TRACKR.cmtrck;
2221 else
2222 return -1.0;
2223}
2224
2225//______________________________________________________________________________
2226Double_t TFluka::TrackTime() const
2227{
2228// Return the current time of flight of the track being transported
2229// TRACKR.atrack = age of the particle
2230 Int_t caller = GetCaller();
2231 if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw
2232 return TRACKR.atrack;
2233 else
2234 return -1;
2235}
2236
2237//______________________________________________________________________________
2238Double_t TFluka::Edep() const
2239{
2240// Energy deposition
2241// if TRACKR.ntrack = 0, TRACKR.mtrack = 0:
2242// -->local energy deposition (the value and the point are not recorded in TRACKR)
2243// but in the variable "rull" of the procedure "endraw.cxx"
2244// if TRACKR.ntrack > 0, TRACKR.mtrack = 0:
2245// -->no energy loss along the track
2246// if TRACKR.ntrack > 0, TRACKR.mtrack > 0:
2247// -->energy loss distributed along the track
07f5b33e 2248// TRACKR.dtrack = energy deposition of the jth deposition event
829fb838 2249
2250 // If coming from bxdraw we have 2 steps of 0 length and 0 edep
2251 Int_t caller = GetCaller();
2252 if (caller == 11 || caller==12) return 0.0;
2253 Double_t sum = 0;
2254 for ( Int_t j=0;j<TRACKR.mtrack;j++) {
2255 sum +=TRACKR.dtrack[j];
2256 }
2257 if (TRACKR.ntrack == 0 && TRACKR.mtrack == 0)
2258 return fRull + sum;
2259 else {
2260 return sum;
2261 }
2262}
2263
2264//______________________________________________________________________________
2265Int_t TFluka::TrackPid() const
2266{
2267// Return the id of the particle transported
2268// TRACKR.jtrack = identity number of the particle
2269 Int_t caller = GetCaller();
f926898e 2270 if (caller != 2) { // not eedraw
2271 return PDGFromId(TRACKR.jtrack);
2272 }
829fb838 2273 else
2274 return -1000;
2275}
2276
2277//______________________________________________________________________________
2278Double_t TFluka::TrackCharge() const
2279{
2280// Return charge of the track currently transported
2281// PAPROP.ichrge = electric charge of the particle
2282// TRACKR.jtrack = identity number of the particle
2283 Int_t caller = GetCaller();
2284 if (caller != 2) // not eedraw
2285 return PAPROP.ichrge[TRACKR.jtrack+6];
2286 else
2287 return -1000.0;
2288}
2289
2290//______________________________________________________________________________
2291Double_t TFluka::TrackMass() const
2292{
2293// PAPROP.am = particle mass in GeV
2294// TRACKR.jtrack = identity number of the particle
2295 Int_t caller = GetCaller();
2296 if (caller != 2) // not eedraw
2297 return PAPROP.am[TRACKR.jtrack+6];
2298 else
2299 return -1000.0;
2300}
2301
2302//______________________________________________________________________________
2303Double_t TFluka::Etot() const
2304{
2305// TRACKR.etrack = total energy of the particle
2306 Int_t caller = GetCaller();
2307 if (caller != 2) // not eedraw
2308 return TRACKR.etrack;
2309 else
2310 return -1000.0;
2311}
2312
2313//
2314// track status
2315//
2316//______________________________________________________________________________
2317Bool_t TFluka::IsNewTrack() const
2318{
2319// Return true for the first call of Stepping()
2320 return fTrackIsNew;
2321}
2322
0dabe425 2323void TFluka::SetTrackIsNew(Bool_t flag)
2324{
2325// Return true for the first call of Stepping()
2326 fTrackIsNew = flag;
2327
2328}
2329
2330
829fb838 2331//______________________________________________________________________________
2332Bool_t TFluka::IsTrackInside() const
2333{
2334// True if the track is not at the boundary of the current volume
2335// In Fluka a step is always inside one kind of material
2336// If the step would go behind the region of one material,
2337// it will be shortened to reach only the boundary.
2338// Therefore IsTrackInside() is always true.
2339 Int_t caller = GetCaller();
2340 if (caller == 11 || caller==12) // bxdraw
2341 return 0;
2342 else
2343 return 1;
2344}
2345
2346//______________________________________________________________________________
2347Bool_t TFluka::IsTrackEntering() const
2348{
2349// True if this is the first step of the track in the current volume
2350
2351 Int_t caller = GetCaller();
2352 if (caller == 11) // bxdraw entering
2353 return 1;
2354 else return 0;
2355}
2356
2357//______________________________________________________________________________
2358Bool_t TFluka::IsTrackExiting() const
2359{
2360// True if track is exiting volume
2361//
2362 Int_t caller = GetCaller();
2363 if (caller == 12) // bxdraw exiting
2364 return 1;
2365 else return 0;
2366}
2367
2368//______________________________________________________________________________
2369Bool_t TFluka::IsTrackOut() const
2370{
2371// True if the track is out of the setup
2372// means escape
2373// Icode = 14: escape - call from Kaskad
2374// Icode = 23: escape - call from Emfsco
2375// Icode = 32: escape - call from Kasneu
2376// Icode = 40: escape - call from Kashea
2377// Icode = 51: escape - call from Kasoph
2378 if (fIcode == 14 ||
2379 fIcode == 23 ||
2380 fIcode == 32 ||
2381 fIcode == 40 ||
2382 fIcode == 51) return 1;
2383 else return 0;
2384}
2385
2386//______________________________________________________________________________
2387Bool_t TFluka::IsTrackDisappeared() const
2388{
2389// means all inelastic interactions and decays
2390// fIcode from usdraw
2391 if (fIcode == 101 || // inelastic interaction
2392 fIcode == 102 || // particle decay
0dabe425 2393 fIcode == 103 || // delta ray generation by hadron
2394 fIcode == 104 || // direct pair production
2395 fIcode == 105 || // bremsstrahlung (muon)
2396 fIcode == 208 || // bremsstrahlung (electron)
829fb838 2397 fIcode == 214 || // in-flight annihilation
2398 fIcode == 215 || // annihilation at rest
2399 fIcode == 217 || // pair production
0dabe425 2400 fIcode == 219 || // Compton scattering
2401 fIcode == 221 || // Photoelectric effect
2402 fIcode == 300 || // hadronic interaction
2403 fIcode == 400 // delta-ray
2404 ) return 1;
829fb838 2405 else return 0;
2406}
2407
2408//______________________________________________________________________________
2409Bool_t TFluka::IsTrackStop() const
2410{
2411// True if the track energy has fallen below the threshold
2412// means stopped by signal or below energy threshold
2413// Icode = 12: stopping particle - call from Kaskad
2414// Icode = 15: time kill - call from Kaskad
2415// Icode = 21: below threshold, iarg=1 - call from Emfsco
2416// Icode = 22: below threshold, iarg=2 - call from Emfsco
2417// Icode = 24: time kill - call from Emfsco
2418// Icode = 31: below threshold - call from Kasneu
2419// Icode = 33: time kill - call from Kasneu
2420// Icode = 41: time kill - call from Kashea
2421// Icode = 52: time kill - call from Kasoph
2422 if (fIcode == 12 ||
2423 fIcode == 15 ||
2424 fIcode == 21 ||
2425 fIcode == 22 ||
2426 fIcode == 24 ||
2427 fIcode == 31 ||
2428 fIcode == 33 ||
2429 fIcode == 41 ||
2430 fIcode == 52) return 1;
2431 else return 0;
2432}
2433
2434//______________________________________________________________________________
2435Bool_t TFluka::IsTrackAlive() const
2436{
2437// means not disappeared or not out
2438 if (IsTrackDisappeared() || IsTrackOut() ) return 0;
2439 else return 1;
2440}
2441
2442//
2443// secondaries
2444//
2445
2446//______________________________________________________________________________
2447Int_t TFluka::NSecondaries() const
2448
2449{
2450// Number of secondary particles generated in the current step
2451// FINUC.np = number of secondaries except light and heavy ions
2452// FHEAVY.npheav = number of secondaries for light and heavy secondary ions
7b203b6e 2453 Int_t caller = GetCaller();
2454 if (caller == 6) // valid only after usdraw
2455 return FINUC.np + FHEAVY.npheav;
2456 else if (caller == 50) {
2457 // Cerenkov Photon production
2458 return fNCerenkov;
2459 }
829fb838 2460 return 0;
2461} // end of NSecondaries
2462
2463//______________________________________________________________________________
2464void TFluka::GetSecondary(Int_t isec, Int_t& particleId,
2465 TLorentzVector& position, TLorentzVector& momentum)
2466{
2467// Copy particles from secondary stack to vmc stack
2468//
2469
7b203b6e 2470 Int_t caller = GetCaller();
2471 if (caller == 6) { // valid only after usdraw
2472 if (FINUC.np > 0) {
2473 // Hadronic interaction
2474 if (isec >= 0 && isec < FINUC.np) {
2475 particleId = PDGFromId(FINUC.kpart[isec]);
2476 position.SetX(fXsco);
2477 position.SetY(fYsco);
2478 position.SetZ(fZsco);
2479 position.SetT(TRACKR.atrack);
2480 momentum.SetPx(FINUC.plr[isec]*FINUC.cxr[isec]);
2481 momentum.SetPy(FINUC.plr[isec]*FINUC.cyr[isec]);
2482 momentum.SetPz(FINUC.plr[isec]*FINUC.czr[isec]);
2483 momentum.SetE(FINUC.tki[isec] + PAPROP.am[FINUC.kpart[isec]+6]);
2484 }
2485 else if (isec >= FINUC.np && isec < FINUC.np + FHEAVY.npheav) {
2486 Int_t jsec = isec - FINUC.np;
2487 particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!!
2488 position.SetX(fXsco);
2489 position.SetY(fYsco);
2490 position.SetZ(fZsco);
2491 position.SetT(TRACKR.atrack);
2492 momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]);
2493 momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]);
2494 momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]);
2495 if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6)
2496 momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]);
2497 else if (FHEAVY.tkheav[jsec] > 6)
2498 momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!!
2499 }
2500 else
2501 Warning("GetSecondary","isec out of range");
2502 }
2503 } else if (caller == 50) {
2504 Int_t index = OPPHST.lstopp - isec;
2505 position.SetX(OPPHST.xoptph[index]);
2506 position.SetY(OPPHST.yoptph[index]);
2507 position.SetZ(OPPHST.zoptph[index]);
2508 position.SetT(OPPHST.agopph[index]);
2509 Double_t p = OPPHST.poptph[index];
2510
2511 momentum.SetPx(p * OPPHST.txopph[index]);
2512 momentum.SetPy(p * OPPHST.tyopph[index]);
2513 momentum.SetPz(p * OPPHST.tzopph[index]);
2514 momentum.SetE(p);
829fb838 2515 }
2516 else
7b203b6e 2517 Warning("GetSecondary","no secondaries available");
2518
829fb838 2519} // end of GetSecondary
2520
7b203b6e 2521
829fb838 2522//______________________________________________________________________________
2523TMCProcess TFluka::ProdProcess(Int_t) const
2524
2525{
2526// Name of the process that has produced the secondary particles
2527// in the current step
0dabe425 2528
2529 Int_t mugamma = (TRACKR.jtrack == 7 || TRACKR.jtrack == 10 || TRACKR.jtrack == 11);
2530
b496f27c 2531 if (fIcode == 102) return kPDecay;
0dabe425 2532 else if (fIcode == 104 || fIcode == 217) return kPPair;
b496f27c 2533 else if (fIcode == 219) return kPCompton;
2534 else if (fIcode == 221) return kPPhotoelectric;
0dabe425 2535 else if (fIcode == 105 || fIcode == 208) return kPBrem;
2536 else if (fIcode == 103 || fIcode == 400) return kPDeltaRay;
2537 else if (fIcode == 210 || fIcode == 212) return kPDeltaRay;
2538 else if (fIcode == 214 || fIcode == 215) return kPAnnihilation;
b496f27c 2539 else if (fIcode == 101) return kPHadronic;
829fb838 2540 else if (fIcode == 101) {
b496f27c 2541 if (!mugamma) return kPHadronic;
2542 else if (TRACKR.jtrack == 7) return kPPhotoFission;
2543 else return kPMuonNuclear;
829fb838 2544 }
b496f27c 2545 else if (fIcode == 225) return kPRayleigh;
829fb838 2546// Fluka codes 100, 300 and 400 still to be investigasted
b496f27c 2547 else return kPNoProcess;
829fb838 2548}
2549
829fb838 2550
b496f27c 2551Int_t TFluka::StepProcesses(TArrayI &proc) const
2552{
2553 //
2554 // Return processes active in the current step
2555 //
2556 proc.Set(1);
2557 TMCProcess iproc;
2558 switch (fIcode) {
2559 case 15:
2560 case 24:
2561 case 33:
2562 case 41:
2563 case 52:
2564 iproc = kPTOFlimit;
2565 break;
2566 case 12:
2567 case 14:
2568 case 21:
2569 case 22:
2570 case 23:
2571 case 31:
2572 case 32:
2573 case 40:
2574 case 51:
2575 iproc = kPStop;
2576 break;
2577 case 50:
2578 iproc = kPLightAbsorption;
2579 break;
2580 case 20:
2581 iproc = kPPhotoelectric;
2582 break;
2583 default:
2584 iproc = ProdProcess(0);
2585 }
07f5b33e 2586 proc[0] = iproc;
b496f27c 2587 return 1;
2588}
829fb838 2589//______________________________________________________________________________
2590Int_t TFluka::VolId2Mate(Int_t id) const
2591{
2592//
2593// Returns the material number for a given volume ID
2594//
2595 return fMCGeo->VolId2Mate(id);
2596}
2597
2598//______________________________________________________________________________
2599const char* TFluka::VolName(Int_t id) const
2600{
2601//
2602// Returns the volume name for a given volume ID
2603//
2604 return fMCGeo->VolName(id);
2605}
2606
2607//______________________________________________________________________________
2608Int_t TFluka::VolId(const Text_t* volName) const
2609{
2610//
2611// Converts from volume name to volume ID.
2612// Time consuming. (Only used during set-up)
2613// Could be replaced by hash-table
2614//
2615 return fMCGeo->VolId(volName);
2616}
2617
2618//______________________________________________________________________________
2619Int_t TFluka::CurrentVolID(Int_t& copyNo) const
2620{
2621//
2622// Return the logical id and copy number corresponding to the current fluka region
2623//
2624 if (gGeoManager->IsOutside()) return 0;
2625 TGeoNode *node = gGeoManager->GetCurrentNode();
2626 copyNo = node->GetNumber();
2627 Int_t id = node->GetVolume()->GetNumber();
2628 return id;
2629}
2630
2631//______________________________________________________________________________
2632Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const
2633{
2634//
2635// Return the logical id and copy number of off'th mother
2636// corresponding to the current fluka region
2637//
2638 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2639 if (off==0) return CurrentVolID(copyNo);
2640 TGeoNode *node = gGeoManager->GetMother(off);
2641 if (!node) return 0;
2642 copyNo = node->GetNumber();
2643 return node->GetVolume()->GetNumber();
2644}
2645
2646//______________________________________________________________________________
2647const char* TFluka::CurrentVolName() const
2648{
2649//
2650// Return the current volume name
2651//
2652 if (gGeoManager->IsOutside()) return 0;
2653 return gGeoManager->GetCurrentVolume()->GetName();
2654}
2655
2656//______________________________________________________________________________
2657const char* TFluka::CurrentVolOffName(Int_t off) const
2658{
2659//
2660// Return the volume name of the off'th mother of the current volume
2661//
2662 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2663 if (off==0) return CurrentVolName();
2664 TGeoNode *node = gGeoManager->GetMother(off);
2665 if (!node) return 0;
2666 return node->GetVolume()->GetName();
2667}
2668
2669//______________________________________________________________________________
2670Int_t TFluka::CurrentMaterial(Float_t & /*a*/, Float_t & /*z*/,
2671 Float_t & /*dens*/, Float_t & /*radl*/, Float_t & /*absl*/) const
2672{
2673//
2674// Return the current medium number ??? what about material properties
2675//
2676 Int_t copy;
2677 Int_t id = TFluka::CurrentVolID(copy);
2678 Int_t med = TFluka::VolId2Mate(id);
2679 return med;
2680}
2681
2682//______________________________________________________________________________
2683void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
2684{
2685// Transforms a position from the world reference frame
2686// to the current volume reference frame.
2687//
2688// Geant3 desription:
2689// ==================
2690// Computes coordinates XD (in DRS)
2691// from known coordinates XM in MRS
2692// The local reference system can be initialized by
2693// - the tracking routines and GMTOD used in GUSTEP
2694// - a call to GMEDIA(XM,NUMED)
2695// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2696// (inverse routine is GDTOM)
2697//
2698// If IFLAG=1 convert coordinates
2699// IFLAG=2 convert direction cosinus
2700//
2701// ---
2702 Double_t xmL[3], xdL[3];
2703 Int_t i;
2704 for (i=0;i<3;i++) xmL[i]=xm[i];
2705 if (iflag == 1) gGeoManager->MasterToLocal(xmL,xdL);
2706 else gGeoManager->MasterToLocalVect(xmL,xdL);
2707 for (i=0;i<3;i++) xd[i] = xdL[i];
2708}
2709
2710//______________________________________________________________________________
2711void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
2712{
2713 if (iflag == 1) gGeoManager->MasterToLocal(xm,xd);
2714 else gGeoManager->MasterToLocalVect(xm,xd);
2715}
2716
2717//______________________________________________________________________________
2718void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
2719{
2720// Transforms a position from the current volume reference frame
2721// to the world reference frame.
2722//
2723// Geant3 desription:
2724// ==================
2725// Computes coordinates XM (Master Reference System
2726// knowing the coordinates XD (Detector Ref System)
2727// The local reference system can be initialized by
2728// - the tracking routines and GDTOM used in GUSTEP
2729// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2730// (inverse routine is GMTOD)
2731//
2732// If IFLAG=1 convert coordinates
2733// IFLAG=2 convert direction cosinus
2734//
2735// ---
2736 Double_t xmL[3], xdL[3];
2737 Int_t i;
2738 for (i=0;i<3;i++) xdL[i] = xd[i];
2739 if (iflag == 1) gGeoManager->LocalToMaster(xdL,xmL);
2740 else gGeoManager->LocalToMasterVect(xdL,xmL);
2741 for (i=0;i<3;i++) xm[i]=xmL[i];
2742}
2743
2744//______________________________________________________________________________
2745void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
2746{
2747 if (iflag == 1) gGeoManager->LocalToMaster(xd,xm);
2748 else gGeoManager->LocalToMasterVect(xd,xm);
2749}
2750
2751//______________________________________________________________________________
2752TObjArray *TFluka::GetFlukaMaterials()
2753{
2754 return fGeom->GetMatList();
2755}
2756
2757//______________________________________________________________________________
2758void TFluka::SetMreg(Int_t l)
2759{
2760// Set current fluka region
2761 fCurrentFlukaRegion = l;
2762 fGeom->SetMreg(l);
2763}
2764
2765
b496f27c 2766
2767
2768TString TFluka::ParticleName(Int_t pdg) const
2769{
2770 // Return particle name for particle with pdg code pdg.
2771 Int_t ifluka = IdFromPDG(pdg);
2772 return TString((CHPPRP.btype[ifluka+6]), 8);
2773}
2774
2775
2776Double_t TFluka::ParticleMass(Int_t pdg) const
2777{
2778 // Return particle mass for particle with pdg code pdg.
2779 Int_t ifluka = IdFromPDG(pdg);
2780 return (PAPROP.am[ifluka+6]);
2781}
2782
2783Double_t TFluka::ParticleCharge(Int_t pdg) const
2784{
2785 // Return particle charge for particle with pdg code pdg.
2786 Int_t ifluka = IdFromPDG(pdg);
2787 return Double_t(PAPROP.ichrge[ifluka+6]);
2788}
2789
2790Double_t TFluka::ParticleLifeTime(Int_t pdg) const
2791{
2792 // Return particle lifetime for particle with pdg code pdg.
2793 Int_t ifluka = IdFromPDG(pdg);
2794 return (PAPROP.thalf[ifluka+6]);
2795}
2796
2797void TFluka::Gfpart(Int_t pdg, char* name, Int_t& type, Float_t& mass, Float_t& charge, Float_t& tlife)
2798{
2799 // Retrieve particle properties for particle with pdg code pdg.
2800
2801 strcpy(name, ParticleName(pdg).Data());
2802 type = ParticleMCType(pdg);
2803 mass = ParticleMass(pdg);
2804 charge = ParticleCharge(pdg);
2805 tlife = ParticleLifeTime(pdg);
2806}
2807
2808
2809
3a625972 2810#define pushcerenkovphoton pushcerenkovphoton_
7b203b6e 2811#define usersteppingckv usersteppingckv_
3a625972 2812
2813
2814extern "C" {
2815 void pushcerenkovphoton(Double_t & px, Double_t & py, Double_t & pz, Double_t & e,
2816 Double_t & vx, Double_t & vy, Double_t & vz, Double_t & tof,
2817 Double_t & polx, Double_t & poly, Double_t & polz, Double_t & wgt, Int_t& ntr)
2818 {
2819 //
2820 // Pushes one cerenkov photon to the stack
2821 //
2822
2823 TFluka* fluka = (TFluka*) gMC;
2824 TVirtualMCStack* cppstack = fluka->GetStack();
bd3d5c8a 2825 Int_t parent = TRACKR.ispusr[mkbmx2-1];
921e0994 2826 cppstack->PushTrack(0, parent, 50000050,
3a625972 2827 px, py, pz, e,
2828 vx, vy, vz, tof,
2829 polx, poly, polz,
2830 kPCerenkov, ntr, wgt, 0);
2831 }
7b203b6e 2832
2833 void usersteppingckv(Int_t & nphot, Int_t & mreg, Double_t & x, Double_t & y, Double_t & z)
2834 {
2835 //
2836 // Calls stepping in order to signal cerenkov production
2837 //
2838 TFluka *fluka = (TFluka*)gMC;
2839 fluka->SetMreg(mreg);
2840 fluka->SetXsco(x);
2841 fluka->SetYsco(y);
2842 fluka->SetZsco(z);
2843 fluka->SetNCerenkov(nphot);
2844 fluka->SetCaller(50);
2845 printf("userstepping ckv: %10d %10d %13.3f %13.3f %13.2f\n", nphot, mreg, x, y, z);
2846 (TVirtualMCApplication::Instance())->Stepping();
2847 }
3a625972 2848}
829fb838 2849