No debug by default.
[u/mrichter/AliRoot.git] / TFluka / TFluka.cxx
CommitLineData
829fb838 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//
19// Realisation of the TVirtualMC interface for the FLUKA code
20// (See official web side http://www.fluka.org/).
21//
22// This implementation makes use of the TGeo geometry modeller.
23// User configuration is via automatic generation of FLUKA input cards.
24//
25// Authors:
26// A. Fasso
27// E. Futo
28// A. Gheata
29// A. Morsch
30//
31
32#include <Riostream.h>
37b09b91 33#include <TList.h>
829fb838 34
829fb838 35#include "TFluka.h"
a9ea1616 36#include "TFlukaCodes.h"
829fb838 37#include "TCallf77.h" //For the fortran calls
38#include "Fdblprc.h" //(DBLPRC) fluka common
81f1d030 39#include "Fsourcm.h" //(SOURCM) fluka common
40#include "Fgenstk.h" //(GENSTK) fluka common
829fb838 41#include "Fiounit.h" //(IOUNIT) fluka common
42#include "Fpaprop.h" //(PAPROP) fluka common
43#include "Fpart.h" //(PART) fluka common
44#include "Ftrackr.h" //(TRACKR) fluka common
45#include "Fpaprop.h" //(PAPROP) fluka common
46#include "Ffheavy.h" //(FHEAVY) fluka common
3a625972 47#include "Fopphst.h" //(OPPHST) fluka common
81f1d030 48#include "Fflkstk.h" //(FLKSTK) fluka common
07f5b33e 49#include "Fstepsz.h" //(STEPSZ) fluka common
7b203b6e 50#include "Fopphst.h" //(OPPHST) fluka common
a9ea1616 51#include "Fltclcm.h" //(LTCLCM) fluka common
f2a98602 52#include "Falldlt.h" //(ALLDLT) fluka common
829fb838 53
54#include "TVirtualMC.h"
3a625972 55#include "TMCProcess.h"
829fb838 56#include "TGeoManager.h"
57#include "TGeoMaterial.h"
58#include "TGeoMedium.h"
59#include "TFlukaMCGeometry.h"
6f5667d1 60#include "TGeoMCGeometry.h"
829fb838 61#include "TFlukaCerenkov.h"
1df5fa54 62#include "TFlukaConfigOption.h"
b496f27c 63#include "TFlukaScoringOption.h"
829fb838 64#include "TLorentzVector.h"
b496f27c 65#include "TArrayI.h"
a9ea1616 66#include "TArrayD.h"
78df7be0 67#include "TDatabasePDG.h"
4aba9d66 68#include "TStopwatch.h"
69
829fb838 70
71// Fluka methods that may be needed.
72#ifndef WIN32
73# define flukam flukam_
74# define fluka_openinp fluka_openinp_
8e5bf079 75# define fluka_openout fluka_openout_
829fb838 76# define fluka_closeinp fluka_closeinp_
77# define mcihad mcihad_
78# define mpdgha mpdgha_
2047b055 79# define newplo newplo_
4aba9d66 80# define genout genout_
81# define flkend flkend_
829fb838 82#else
83# define flukam FLUKAM
84# define fluka_openinp FLUKA_OPENINP
8e5bf079 85# define fluka_openout FLUKA_OPENOUT
829fb838 86# define fluka_closeinp FLUKA_CLOSEINP
87# define mcihad MCIHAD
88# define mpdgha MPDGHA
eea53470 89# define newplo NEWPLO
4aba9d66 90# define genout GENOUT
91# define flkend FLKEND
829fb838 92#endif
93
94extern "C"
95{
96 //
97 // Prototypes for FLUKA functions
98 //
99 void type_of_call flukam(const int&);
eea53470 100 void type_of_call newplo();
4aba9d66 101 void type_of_call genout();
102 void type_of_call flkend();
829fb838 103 void type_of_call fluka_openinp(const int&, DEFCHARA);
8e5bf079 104 void type_of_call fluka_openout(const int&, DEFCHARA);
829fb838 105 void type_of_call fluka_closeinp(const int&);
106 int type_of_call mcihad(const int&);
107 int type_of_call mpdgha(const int&);
108}
109
110//
111// Class implementation for ROOT
112//
113ClassImp(TFluka)
114
115//
116//----------------------------------------------------------------------------
117// TFluka constructors and destructors.
118//______________________________________________________________________________
119TFluka::TFluka()
120 :TVirtualMC(),
121 fVerbosityLevel(0),
4aba9d66 122 fNEvent(0),
1df5fa54 123 fInputFileName(""),
4aba9d66 124 fCoreInputFileName(""),
125 fCaller(kNoCaller),
126 fIcode(kNoProcess),
127 fNewReg(-1),
128 fRull(0),
129 fXsco(0),
130 fYsco(0),
131 fZsco(0),
132 fTrackIsEntering(kFALSE),
133 fTrackIsExiting(kFALSE),
134 fTrackIsNew(kFALSE),
135 fFieldFlag(kTRUE),
4aba9d66 136 fDummyBoundary(kFALSE),
137 fStopped(kFALSE),
138 fStopEvent(kFALSE),
139 fStopRun(kFALSE),
5125d6e5 140 fPrimaryElectronIndex(-1),
4aba9d66 141 fMaterials(0),
142 fNVolumes(0),
143 fCurrentFlukaRegion(-1),
144 fNCerenkov(0),
145 fGeom(0),
146 fMCGeo(0),
fb2cbbec 147 fUserConfig(0),
1df5fa54 148 fUserScore(0)
829fb838 149{
150 //
151 // Default constructor
152 //
82a3f706 153 for (Int_t i = 0; i < 4; i++) fPint[i] = 0.;
829fb838 154}
155
156//______________________________________________________________________________
157TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported)
158 :TVirtualMC("TFluka",title, isRootGeometrySupported),
159 fVerbosityLevel(verbosity),
4aba9d66 160 fNEvent(0),
829fb838 161 fInputFileName(""),
4aba9d66 162 fCoreInputFileName(""),
163 fCaller(kNoCaller),
164 fIcode(kNoProcess),
165 fNewReg(-1),
166 fRull(0),
167 fXsco(0),
168 fYsco(0),
169 fZsco(0),
170 fTrackIsEntering(kFALSE),
171 fTrackIsExiting(kFALSE),
172 fTrackIsNew(kFALSE),
173 fFieldFlag(kTRUE),
4aba9d66 174 fDummyBoundary(kFALSE),
175 fStopped(kFALSE),
176 fStopEvent(kFALSE),
177 fStopRun(kFALSE),
5125d6e5 178 fPrimaryElectronIndex(-1),
4aba9d66 179 fMaterials(0),
180 fNVolumes(0),
181 fCurrentFlukaRegion(-1),
182 fNCerenkov(0),
183 fGeom(0),
184 fMCGeo(0),
fb2cbbec 185 fUserConfig(new TObjArray(100)),
1df5fa54 186 fUserScore(new TObjArray(100))
829fb838 187{
188 // create geometry interface
82a3f706 189 for (Int_t i = 0; i < 4; i++) fPint[i] = 0.;
190
7f13be31 191 if (fVerbosityLevel >=3)
192 cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl;
193 SetCoreInputFileName();
194 SetInputFileName();
11e4ab84 195 fMCGeo = new TGeoMCGeometry("MCGeo", "TGeo Implementation of VirtualMCGeometry", kFALSE);
fb2cbbec 196 fGeom = new TFlukaMCGeometry("geom", "FLUKA VMC Geometry");
829fb838 197 if (verbosity > 2) fGeom->SetDebugMode(kTRUE);
8e5bf079 198 PrintHeader();
829fb838 199}
200
201//______________________________________________________________________________
4aba9d66 202TFluka::~TFluka()
203{
204 // Destructor
1df5fa54 205 if (fVerbosityLevel >=3)
4aba9d66 206 cout << "<== TFluka::~TFluka() destructor called." << endl;
207 if (fMaterials) delete [] fMaterials;
1df5fa54 208
209 delete fGeom;
210 delete fMCGeo;
211
fb2cbbec 212 if (fUserConfig) {
4aba9d66 213 fUserConfig->Delete();
214 delete fUserConfig;
1df5fa54 215 }
6d184c54 216
217 if (fUserScore) {
4aba9d66 218 fUserScore->Delete();
219 delete fUserScore;
6d184c54 220 }
829fb838 221}
222
223//
224//______________________________________________________________________________
225// TFluka control methods
226//______________________________________________________________________________
227void TFluka::Init() {
228//
229// Geometry initialisation
230//
231 if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl;
232
233 if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry");
234 fApplication->ConstructGeometry();
d59acfe7 235 if (!gGeoManager->IsClosed()) {
236 TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First();
237 gGeoManager->SetTopVolume(top);
238 gGeoManager->CloseGeometry("di");
239 } else {
240 TGeoNodeCache *cache = gGeoManager->GetCache();
241 if (!cache->HasIdArray()) {
a9ea1616 242 Warning("Init", "Node ID tracking must be enabled with TFluka: enabling...\n");
d59acfe7 243 cache->BuildIdArray();
244 }
245 }
829fb838 246 fNVolumes = fGeom->NofVolumes();
247 fGeom->CreateFlukaMatFile("flukaMat.inp");
248 if (fVerbosityLevel >=3) {
249 printf("== Number of volumes: %i\n ==", fNVolumes);
250 cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
6d184c54 251 }
881cb248 252
253 fApplication->InitGeometry();
661663fa 254 fApplication->ConstructOpGeometry();
78df7be0 255 //
256 // Add ions to PDG Data base
257 //
258 AddParticlesToPdgDataBase();
a9923346 259 //
829fb838 260}
261
262
263//______________________________________________________________________________
264void TFluka::FinishGeometry() {
265//
266// Build-up table with region to medium correspondance
267//
268 if (fVerbosityLevel >=3) {
269 cout << "==> TFluka::FinishGeometry() called." << endl;
2753cb27 270 printf("----FinishGeometry - applying misalignment if any\n");
829fb838 271 cout << "<== TFluka::FinishGeometry() called." << endl;
272 }
2753cb27 273 TVirtualMCApplication::Instance()->MisalignGeometry();
829fb838 274}
275
276//______________________________________________________________________________
277void TFluka::BuildPhysics() {
278//
279// Prepare FLUKA input files and call FLUKA physics initialisation
280//
281
282 if (fVerbosityLevel >=3)
4aba9d66 283 cout << "==> TFluka::BuildPhysics() called." << endl;
6d184c54 284
285
286 if (fVerbosityLevel >=3) {
4aba9d66 287 TList *medlist = gGeoManager->GetListOfMedia();
288 TIter next(medlist);
289 TGeoMedium* med = 0x0;
290 TGeoMaterial* mat = 0x0;
291 Int_t ic = 0;
292
293 while((med = (TGeoMedium*)next()))
294 {
295 mat = med->GetMaterial();
296 printf("Medium %5d %12s %5d %5d\n", ic, (med->GetName()), med->GetId(), mat->GetIndex());
297 ic++;
298 }
6d184c54 299 }
300
d23f4fcd 301
6d184c54 302 // Prepare input file with the current physics settings
303
829fb838 304 InitPhysics();
b8a8a88c 305// Open fortran files
829fb838 306 const char* fname = fInputFileName;
307 fluka_openinp(lunin, PASSCHARA(fname));
8e5bf079 308 fluka_openout(11, PASSCHARA("fluka.out"));
b8a8a88c 309// Read input cards
4aba9d66 310 cout << "==> TFluka::BuildPhysics() Read input cards." << endl;
311 TStopwatch timer;
312 timer.Start();
b8a8a88c 313 GLOBAL.lfdrtr = true;
829fb838 314 flukam(1);
4aba9d66 315 cout << "<== TFluka::BuildPhysics() Read input cards End"
316 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
b8a8a88c 317// Close input file
829fb838 318 fluka_closeinp(lunin);
b8a8a88c 319// Finish geometry
829fb838 320 FinishGeometry();
829fb838 321}
322
323//______________________________________________________________________________
324void TFluka::ProcessEvent() {
325//
326// Process one event
327//
b496f27c 328 if (fStopRun) {
4aba9d66 329 Warning("ProcessEvent", "User Run Abortion: No more events handled !\n");
330 fNEvent += 1;
331 return;
b496f27c 332 }
333
334 if (fVerbosityLevel >=3)
4aba9d66 335 cout << "==> TFluka::ProcessEvent() called." << endl;
b496f27c 336 fApplication->GeneratePrimaries();
81f1d030 337 SOURCM.lsouit = true;
b496f27c 338 flukam(1);
339 if (fVerbosityLevel >=3)
4aba9d66 340 cout << "<== TFluka::ProcessEvent() called." << endl;
b496f27c 341 //
342 // Increase event number
343 //
344 fNEvent += 1;
829fb838 345}
346
347//______________________________________________________________________________
348Bool_t TFluka::ProcessRun(Int_t nevent) {
349//
350// Run steering
351//
4678abb9 352
829fb838 353 if (fVerbosityLevel >=3)
354 cout << "==> TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 355 << endl;
829fb838 356
357 if (fVerbosityLevel >=2) {
358 cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl;
359 cout << "\t* Calling flukam again..." << endl;
360 }
361
829fb838 362 Int_t todo = TMath::Abs(nevent);
363 for (Int_t ev = 0; ev < todo; ev++) {
4aba9d66 364 TStopwatch timer;
365 timer.Start();
829fb838 366 fApplication->BeginEvent();
367 ProcessEvent();
368 fApplication->FinishEvent();
4aba9d66 369 cout << "Event: "<< ev
370 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
829fb838 371 }
372
373 if (fVerbosityLevel >=3)
374 cout << "<== TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 375 << endl;
376
eea53470 377 // Write fluka specific scoring output
4aba9d66 378 genout();
eea53470 379 newplo();
4aba9d66 380 flkend();
eea53470 381
829fb838 382 return kTRUE;
383}
384
385//_____________________________________________________________________________
386// methods for building/management of geometry
387
388// functions from GCONS
389//____________________________________________________________________________
390void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
4aba9d66 391 Float_t &dens, Float_t &radl, Float_t &absl,
392 Float_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 393//
394 TGeoMaterial *mat;
395 TIter next (gGeoManager->GetListOfMaterials());
396 while ((mat = (TGeoMaterial*)next())) {
397 if (mat->GetUniqueID() == (UInt_t)imat) break;
398 }
399 if (!mat) {
400 Error("Gfmate", "no material with index %i found", imat);
401 return;
402 }
403 sprintf(name, "%s", mat->GetName());
404 a = mat->GetA();
405 z = mat->GetZ();
406 dens = mat->GetDensity();
407 radl = mat->GetRadLen();
408 absl = mat->GetIntLen();
409}
410
411//______________________________________________________________________________
412void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z,
4aba9d66 413 Double_t &dens, Double_t &radl, Double_t &absl,
414 Double_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 415//
416 TGeoMaterial *mat;
417 TIter next (gGeoManager->GetListOfMaterials());
418 while ((mat = (TGeoMaterial*)next())) {
419 if (mat->GetUniqueID() == (UInt_t)imat) break;
420 }
421 if (!mat) {
422 Error("Gfmate", "no material with index %i found", imat);
423 return;
424 }
425 sprintf(name, "%s", mat->GetName());
426 a = mat->GetA();
427 z = mat->GetZ();
428 dens = mat->GetDensity();
429 radl = mat->GetRadLen();
430 absl = mat->GetIntLen();
431}
432
433// detector composition
434//______________________________________________________________________________
435void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 436 Double_t z, Double_t dens, Double_t radl, Double_t absl,
437 Float_t* buf, Int_t nwbuf) {
829fb838 438//
439 Double_t* dbuf = fGeom->CreateDoubleArray(buf, nwbuf);
440 Material(kmat, name, a, z, dens, radl, absl, dbuf, nwbuf);
441 delete [] dbuf;
442}
443
444//______________________________________________________________________________
445void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 446 Double_t z, Double_t dens, Double_t radl, Double_t absl,
447 Double_t* /*buf*/, Int_t /*nwbuf*/) {
829fb838 448//
fb2cbbec 449// Define a material
829fb838 450 TGeoMaterial *mat;
451 kmat = gGeoManager->GetListOfMaterials()->GetSize();
452 if ((z-Int_t(z)) > 1E-3) {
453 mat = fGeom->GetMakeWrongMaterial(z);
454 if (mat) {
455 mat->SetRadLen(radl,absl);
456 mat->SetUniqueID(kmat);
457 return;
458 }
459 }
460 gGeoManager->Material(name, a, z, dens, kmat, radl, absl);
461}
462
463//______________________________________________________________________________
464void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a,
4aba9d66 465 Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) {
829fb838 466//
fb2cbbec 467// Define a material mixture
468//
829fb838 469 Double_t* da = fGeom->CreateDoubleArray(a, TMath::Abs(nlmat));
470 Double_t* dz = fGeom->CreateDoubleArray(z, TMath::Abs(nlmat));
471 Double_t* dwmat = fGeom->CreateDoubleArray(wmat, TMath::Abs(nlmat));
472
473 Mixture(kmat, name, da, dz, dens, nlmat, dwmat);
474 for (Int_t i=0; i<nlmat; i++) {
475 a[i] = da[i]; z[i] = dz[i]; wmat[i] = dwmat[i];
476 }
477
478 delete [] da;
479 delete [] dz;
480 delete [] dwmat;
481}
482
483//______________________________________________________________________________
484void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a,
4aba9d66 485 Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) {
829fb838 486//
487 // Defines mixture OR COMPOUND IMAT as composed by
488 // THE BASIC NLMAT materials defined by arrays A,Z and WMAT
489 //
490 // If NLMAT > 0 then wmat contains the proportion by
491 // weights of each basic material in the mixture.
492 //
493 // If nlmat < 0 then WMAT contains the number of atoms
494 // of a given kind into the molecule of the COMPOUND
495 // In this case, WMAT in output is changed to relative
496 // weigths.
497 //
a8e4986c 498 printf("Mixture %5d %10s %5d \n", kmat, name, nlmat);
499
829fb838 500 Int_t i,j;
501 if (nlmat < 0) {
502 nlmat = - nlmat;
503 Double_t amol = 0;
504 for (i=0;i<nlmat;i++) {
505 amol += a[i]*wmat[i];
506 }
507 for (i=0;i<nlmat;i++) {
508 wmat[i] *= a[i]/amol;
509 }
510 }
511 kmat = gGeoManager->GetListOfMaterials()->GetSize();
512 // Check if we have elements with fractional Z
513 TGeoMaterial *mat = 0;
514 TGeoMixture *mix = 0;
515 Bool_t mixnew = kFALSE;
516 for (i=0; i<nlmat; i++) {
517 if (z[i]-Int_t(z[i]) < 1E-3) continue;
518 // We have found an element with fractional Z -> loop mixtures to look for it
519 for (j=0; j<kmat; j++) {
520 mat = (TGeoMaterial*)gGeoManager->GetListOfMaterials()->At(j);
521 if (!mat) break;
522 if (!mat->IsMixture()) continue;
523 mix = (TGeoMixture*)mat;
524 if (TMath::Abs(z[i]-mix->GetZ()) >1E-3) continue;
829fb838 525 mixnew = kTRUE;
526 break;
527 }
528 if (!mixnew) Warning("Mixture","%s : cannot find component %i with fractional Z=%f\n", name, i, z[i]);
529 break;
530 }
531 if (mixnew) {
532 Int_t nlmatnew = nlmat+mix->GetNelements()-1;
533 Double_t *anew = new Double_t[nlmatnew];
534 Double_t *znew = new Double_t[nlmatnew];
535 Double_t *wmatnew = new Double_t[nlmatnew];
536 Int_t ind=0;
537 for (j=0; j<nlmat; j++) {
538 if (j==i) continue;
539 anew[ind] = a[j];
540 znew[ind] = z[j];
541 wmatnew[ind] = wmat[j];
542 ind++;
543 }
544 for (j=0; j<mix->GetNelements(); j++) {
545 anew[ind] = mix->GetAmixt()[j];
546 znew[ind] = mix->GetZmixt()[j];
547 wmatnew[ind] = wmat[i]*mix->GetWmixt()[j];
548 ind++;
549 }
550 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
551 delete [] anew;
552 delete [] znew;
553 delete [] wmatnew;
554 return;
555 }
556 // Now we need to compact identical elements within the mixture
557 // First check if this happens
558 mixnew = kFALSE;
559 for (i=0; i<nlmat-1; i++) {
560 for (j=i+1; j<nlmat; j++) {
561 if (z[i] == z[j]) {
562 mixnew = kTRUE;
563 break;
564 }
565 }
566 if (mixnew) break;
567 }
568 if (mixnew) {
569 Int_t nlmatnew = 0;
570 Double_t *anew = new Double_t[nlmat];
571 Double_t *znew = new Double_t[nlmat];
572 memset(znew, 0, nlmat*sizeof(Double_t));
573 Double_t *wmatnew = new Double_t[nlmat];
574 Bool_t skipi;
575 for (i=0; i<nlmat; i++) {
576 skipi = kFALSE;
577 for (j=0; j<nlmatnew; j++) {
578 if (z[i] == z[j]) {
579 wmatnew[j] += wmat[i];
580 skipi = kTRUE;
581 break;
582 }
583 }
584 if (skipi) continue;
585 anew[nlmatnew] = a[i];
586 znew[nlmatnew] = z[i];
587 wmatnew[nlmatnew] = wmat[i];
588 nlmatnew++;
589 }
590 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
591 delete [] anew;
592 delete [] znew;
593 delete [] wmatnew;
594 return;
595 }
a8e4986c 596 printf("Mixture (2) %5d %10s %5d \n", kmat, name, nlmat);
597 gGeoManager->Mixture(name, a, z, dens, nlmat, wmat, kmat);
829fb838 598}
599
600//______________________________________________________________________________
601void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 602 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
603 Double_t stemax, Double_t deemax, Double_t epsil,
604 Double_t stmin, Float_t* ubuf, Int_t nbuf) {
b2129742 605 // Define a medium
606 //
829fb838 607 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
608 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 609 epsil, stmin, ubuf, nbuf);
829fb838 610}
611
612//______________________________________________________________________________
613void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 614 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
615 Double_t stemax, Double_t deemax, Double_t epsil,
616 Double_t stmin, Double_t* ubuf, Int_t nbuf) {
b2129742 617 // Define a medium
618 //
829fb838 619 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
620 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 621 epsil, stmin, ubuf, nbuf);
829fb838 622}
623
624//______________________________________________________________________________
625void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
4aba9d66 626 Double_t thetaY, Double_t phiY, Double_t thetaZ,
627 Double_t phiZ) {
628//
829fb838 629 krot = gGeoManager->GetListOfMatrices()->GetEntriesFast();
630 fMCGeo->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ);
631}
632
633//______________________________________________________________________________
634void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) {
635//
636//
7b203b6e 637//
829fb838 638 Bool_t process = kFALSE;
acf2e119 639 Bool_t modelp = kFALSE;
640
829fb838 641 if (strncmp(param, "DCAY", 4) == 0 ||
642 strncmp(param, "PAIR", 4) == 0 ||
643 strncmp(param, "COMP", 4) == 0 ||
644 strncmp(param, "PHOT", 4) == 0 ||
645 strncmp(param, "PFIS", 4) == 0 ||
646 strncmp(param, "DRAY", 4) == 0 ||
647 strncmp(param, "ANNI", 4) == 0 ||
648 strncmp(param, "BREM", 4) == 0 ||
649 strncmp(param, "MUNU", 4) == 0 ||
650 strncmp(param, "CKOV", 4) == 0 ||
651 strncmp(param, "HADR", 4) == 0 ||
652 strncmp(param, "LOSS", 4) == 0 ||
653 strncmp(param, "MULS", 4) == 0 ||
ea262cc6 654 strncmp(param, "RAYL", 4) == 0)
829fb838 655 {
656 process = kTRUE;
657 }
81f1d030 658
acf2e119 659 if (strncmp(param, "PRIMIO_N", 8) == 0 ||
660 strncmp(param, "PRIMIO_E", 8) == 0)
661 {
662 modelp = kTRUE;
663 }
664
829fb838 665 if (process) {
acf2e119 666 // Process switch
81f1d030 667 SetProcess(param, Int_t (parval), itmed);
acf2e119 668 } else if (modelp) {
669 // Model parameters
670 SetModelParameter(param, parval, itmed);
829fb838 671 } else {
acf2e119 672 // Cuts
81f1d030 673 SetCut(param, parval, itmed);
829fb838 674 }
acf2e119 675
676
829fb838 677}
678
679// functions from GGEOM
680//_____________________________________________________________________________
681void TFluka::Gsatt(const char *name, const char *att, Int_t val)
682{
6f5667d1 683 // Set visualisation attributes for one volume
829fb838 684 char vname[5];
685 fGeom->Vname(name,vname);
686 char vatt[5];
687 fGeom->Vname(att,vatt);
688 gGeoManager->SetVolumeAttribute(vname, vatt, val);
689}
690
691//______________________________________________________________________________
692Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 693 Float_t *upar, Int_t np) {
829fb838 694//
695 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
696}
697
698//______________________________________________________________________________
699Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 700 Double_t *upar, Int_t np) {
829fb838 701//
702 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
703}
704
705//______________________________________________________________________________
706void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv,
4aba9d66 707 Int_t iaxis) {
829fb838 708//
709 fMCGeo->Gsdvn(name, mother, ndiv, iaxis);
710}
711
712//______________________________________________________________________________
713void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
4aba9d66 714 Int_t iaxis, Double_t c0i, Int_t numed) {
829fb838 715//
716 fMCGeo->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed);
717}
718
719//______________________________________________________________________________
720void TFluka::Gsdvt(const char *name, const char *mother, Double_t step,
4aba9d66 721 Int_t iaxis, Int_t numed, Int_t ndvmx) {
722//
829fb838 723 fMCGeo->Gsdvt(name, mother, step, iaxis, numed, ndvmx);
724}
725
726//______________________________________________________________________________
727void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step,
4aba9d66 728 Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) {
829fb838 729//
730 fMCGeo->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx);
731}
732
733//______________________________________________________________________________
734void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) {
735//
736// Nothing to do with TGeo
737}
738
739//______________________________________________________________________________
740void TFluka::Gspos(const char *name, Int_t nr, const char *mother,
4aba9d66 741 Double_t x, Double_t y, Double_t z, Int_t irot,
742 const char *konly) {
829fb838 743//
744 fMCGeo->Gspos(name, nr, mother, x, y, z, irot, konly);
745}
746
747//______________________________________________________________________________
748void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 749 Double_t x, Double_t y, Double_t z, Int_t irot,
750 const char *konly, Float_t *upar, Int_t np) {
829fb838 751 //
752 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
753}
754
755//______________________________________________________________________________
756void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 757 Double_t x, Double_t y, Double_t z, Int_t irot,
758 const char *konly, Double_t *upar, Int_t np) {
829fb838 759 //
760 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
761}
762
763//______________________________________________________________________________
764void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) {
765//
766// Nothing to do with TGeo
767}
768
a9ea1616 769//______________________________________________________________________
770Bool_t TFluka::GetTransformation(const TString &volumePath,TGeoHMatrix &mat)
771{
772 // Returns the Transformation matrix between the volume specified
773 // by the path volumePath and the Top or mater volume. The format
774 // of the path volumePath is as follows (assuming ALIC is the Top volume)
775 // "/ALIC_1/DDIP_1/S05I_2/S05H_1/S05G_3". Here ALIC is the top most
776 // or master volume which has only 1 instance of. Of all of the daughter
777 // volumes of ALICE, DDIP volume copy #1 is indicated. Similarly for
778 // the daughter volume of DDIP is S05I copy #2 and so on.
779 // Inputs:
780 // TString& volumePath The volume path to the specific volume
781 // for which you want the matrix. Volume name
782 // hierarchy is separated by "/" while the
783 // copy number is appended using a "_".
784 // Outputs:
785 // TGeoHMatrix &mat A matrix with its values set to those
786 // appropriate to the Local to Master transformation
787 // Return:
788 // A logical value if kFALSE then an error occurred and no change to
789 // mat was made.
790
791 // We have to preserve the modeler state
792 return fMCGeo->GetTransformation(volumePath, mat);
793}
794
795//______________________________________________________________________
796Bool_t TFluka::GetShape(const TString &volumePath,TString &shapeType,
797 TArrayD &par)
798{
799 // Returns the shape and its parameters for the volume specified
800 // by volumeName.
801 // Inputs:
802 // TString& volumeName The volume name
803 // Outputs:
804 // TString &shapeType Shape type
805 // TArrayD &par A TArrayD of parameters with all of the
806 // parameters of the specified shape.
807 // Return:
808 // A logical indicating whether there was an error in getting this
809 // information
810 return fMCGeo->GetShape(volumePath, shapeType, par);
811}
812
813//______________________________________________________________________
814Bool_t TFluka::GetMaterial(const TString &volumeName,
815 TString &name,Int_t &imat,
816 Double_t &a,Double_t &z,Double_t &dens,
817 Double_t &radl,Double_t &inter,TArrayD &par)
818{
819 // Returns the Material and its parameters for the volume specified
820 // by volumeName.
821 // Note, Geant3 stores and uses mixtures as an element with an effective
822 // Z and A. Consequently, if the parameter Z is not integer, then
823 // this material represents some sort of mixture.
824 // Inputs:
825 // TString& volumeName The volume name
826 // Outputs:
827 // TSrting &name Material name
828 // Int_t &imat Material index number
829 // Double_t &a Average Atomic mass of material
830 // Double_t &z Average Atomic number of material
831 // Double_t &dens Density of material [g/cm^3]
832 // Double_t &radl Average radiation length of material [cm]
833 // Double_t &inter Average interaction length of material [cm]
834 // TArrayD &par A TArrayD of user defined parameters.
835 // Return:
836 // kTRUE if no errors
837 return fMCGeo->GetMaterial(volumeName,name,imat,a,z,dens,radl,inter,par);
838}
839
840//______________________________________________________________________
841Bool_t TFluka::GetMedium(const TString &volumeName,TString &name,
842 Int_t &imed,Int_t &nmat,Int_t &isvol,Int_t &ifield,
843 Double_t &fieldm,Double_t &tmaxfd,Double_t &stemax,
844 Double_t &deemax,Double_t &epsil, Double_t &stmin,
845 TArrayD &par)
846{
847 // Returns the Medium and its parameters for the volume specified
848 // by volumeName.
849 // Inputs:
850 // TString& volumeName The volume name.
851 // Outputs:
852 // TString &name Medium name
853 // Int_t &nmat Material number defined for this medium
854 // Int_t &imed The medium index number
855 // Int_t &isvol volume number defined for this medium
856 // Int_t &iflield Magnetic field flag
857 // Double_t &fieldm Magnetic field strength
858 // Double_t &tmaxfd Maximum angle of deflection per step
859 // Double_t &stemax Maximum step size
860 // Double_t &deemax Maximum fraction of energy allowed to be lost
861 // to continuous process.
862 // Double_t &epsil Boundary crossing precision
863 // Double_t &stmin Minimum step size allowed
864 // TArrayD &par A TArrayD of user parameters with all of the
865 // parameters of the specified medium.
866 // Return:
867 // kTRUE if there where no errors
868 return fMCGeo->GetMedium(volumeName,name,imed,nmat,isvol,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin,par);
869}
870
829fb838 871//______________________________________________________________________________
872void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 873 Float_t* absco, Float_t* effic, Float_t* rindex) {
829fb838 874//
875// Set Cerenkov properties for medium itmed
876//
877// npckov: number of sampling points
878// ppckov: energy values
879// absco: absorption length
880// effic: quantum efficiency
881// rindex: refraction index
882//
883//
884//
885// Create object holding Cerenkov properties
886//
887 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex);
888//
889// Pass object to medium
890 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
891 medium->SetCerenkovProperties(cerenkovProperties);
892}
893
b2be0e73 894void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 895 Float_t* absco, Float_t* effic, Float_t* rindex, Float_t* rfl) {
b2be0e73 896//
897// Set Cerenkov properties for medium itmed
898//
899// npckov: number of sampling points
900// ppckov: energy values
901// absco: absorption length
902// effic: quantum efficiency
903// rindex: refraction index
904// rfl: reflectivity for boundary to medium itmed
905//
906//
907// Create object holding Cerenkov properties
908//
909 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex, rfl);
910//
911// Pass object to medium
912 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
913 medium->SetCerenkovProperties(cerenkovProperties);
914}
915
916
829fb838 917//______________________________________________________________________________
918void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t * /*ppckov*/,
4aba9d66 919 Double_t * /*absco*/, Double_t * /*effic*/, Double_t * /*rindex*/) {
829fb838 920//
b2be0e73 921// Double_t version not implemented
829fb838 922}
b2be0e73 923
924void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t* /*ppckov*/,
4aba9d66 925 Double_t* /*absco*/, Double_t* /*effic*/, Double_t* /*rindex*/, Double_t* /*rfl*/) {
b2be0e73 926//
927// // Double_t version not implemented
928}
929
829fb838 930// Euclid
931//______________________________________________________________________________
932void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/,
933 Int_t /*number*/, Int_t /*nlevel*/) {
934//
935// Not with TGeo
a9ea1616 936 Warning("WriteEuclid", "Not implemented !");
829fb838 937}
938
939
940
941//_____________________________________________________________________________
942// methods needed by the stepping
943//____________________________________________________________________________
944
945Int_t TFluka::GetMedium() const {
946//
947// Get the medium number for the current fluka region
948//
949 return fGeom->GetMedium(); // this I need to check due to remapping !!!
950}
951
a9ea1616 952//____________________________________________________________________________
953Int_t TFluka::GetDummyRegion() const
954{
955// Returns index of the dummy region.
956 return fGeom->GetDummyRegion();
957}
829fb838 958
a9ea1616 959//____________________________________________________________________________
960Int_t TFluka::GetDummyLattice() const
961{
962// Returns index of the dummy lattice.
963 return fGeom->GetDummyLattice();
964}
829fb838 965
966//____________________________________________________________________________
967// particle table usage
968// ID <--> PDG transformations
969//_____________________________________________________________________________
970Int_t TFluka::IdFromPDG(Int_t pdg) const
971{
972 //
973 // Return Fluka code from PDG and pseudo ENDF code
974
975 // Catch the feedback photons
a9ea1616 976 if (pdg == 50000051) return (kFLUKAoptical);
829fb838 977 // MCIHAD() goes from pdg to fluka internal.
978 Int_t intfluka = mcihad(pdg);
979 // KPTOIP array goes from internal to official
980 return GetFlukaKPTOIP(intfluka);
981}
982
983//______________________________________________________________________________
984Int_t TFluka::PDGFromId(Int_t id) const
985{
986 //
987 // Return PDG code and pseudo ENDF code from Fluka code
f926898e 988 // Alpha He3 Triton Deuteron gen. ion opt. photon
13858fbd 989 Int_t idSpecial[6] = {GetIonPdg(2,4), GetIonPdg(2, 3), GetIonPdg(1,3), GetIonPdg(1,2), GetIonPdg(0,0), 50000050};
829fb838 990 // IPTOKP array goes from official to internal
991
a9ea1616 992 if (id == kFLUKAoptical) {
829fb838 993// Cerenkov photon
4aba9d66 994// if (fVerbosityLevel >= 3)
995// printf("\n PDGFromId: Cerenkov Photon \n");
996 return 50000050;
829fb838 997 }
998// Error id
ece92b30 999 if (id == 0 || id < kFLUKAcodemin || id > kFLUKAcodemax) {
66e5eb54 1000 if (fVerbosityLevel >= 3)
a9923346 1001 printf("PDGFromId: Error id = 0 %5d %5d\n", id, fCaller);
4aba9d66 1002 return -1;
829fb838 1003 }
1004// Good id
f926898e 1005 if (id > 0) {
4aba9d66 1006 Int_t intfluka = GetFlukaIPTOKP(id);
1007 if (intfluka == 0) {
1008 if (fVerbosityLevel >= 3)
1009 printf("PDGFromId: Error intfluka = 0: %d\n", id);
1010 return -1;
1011 } else if (intfluka < 0) {
1012 if (fVerbosityLevel >= 3)
1013 printf("PDGFromId: Error intfluka < 0: %d\n", id);
1014 return -1;
1015 }
1016// if (fVerbosityLevel >= 3)
1017// printf("mpdgha called with %d %d \n", id, intfluka);
1018 return mpdgha(intfluka);
f926898e 1019 } else {
4aba9d66 1020 // ions and optical photons
1021 return idSpecial[id - kFLUKAcodemin];
829fb838 1022 }
829fb838 1023}
1024
bd3d5c8a 1025void TFluka::StopTrack()
1026{
1027 // Set stopping conditions
1028 // Works for photons and charged particles
1029 fStopped = kTRUE;
1030}
1031
829fb838 1032//_____________________________________________________________________________
1033// methods for physics management
1034//____________________________________________________________________________
1035//
1036// set methods
1037//
1038
1df5fa54 1039void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed)
829fb838 1040{
1041// Set process user flag for material imat
1042//
1df5fa54 1043//
1044// Update if already in the list
1045//
fb2cbbec 1046 TIter next(fUserConfig);
1df5fa54 1047 TFlukaConfigOption* proc;
1048 while((proc = (TFlukaConfigOption*)next()))
1049 {
4aba9d66 1050 if (proc->Medium() == imed) {
1051 proc->SetProcess(flagName, flagValue);
1052 return;
1053 }
1df5fa54 1054 }
fb2cbbec 1055 proc = new TFlukaConfigOption(imed);
1056 proc->SetProcess(flagName, flagValue);
1057 fUserConfig->Add(proc);
1058}
1059
1060//______________________________________________________________________________
1061Bool_t TFluka::SetProcess(const char* flagName, Int_t flagValue)
1062{
1063// Set process user flag
1df5fa54 1064//
1df5fa54 1065//
fb2cbbec 1066 SetProcess(flagName, flagValue, -1);
1df5fa54 1067 return kTRUE;
829fb838 1068}
1069
1070//______________________________________________________________________________
1071void TFluka::SetCut(const char* cutName, Double_t cutValue, Int_t imed)
1072{
1073// Set user cut value for material imed
1074//
fb2cbbec 1075 TIter next(fUserConfig);
1076 TFlukaConfigOption* proc;
1077 while((proc = (TFlukaConfigOption*)next()))
1078 {
4aba9d66 1079 if (proc->Medium() == imed) {
1080 proc->SetCut(cutName, cutValue);
1081 return;
1082 }
fb2cbbec 1083 }
1084
1085 proc = new TFlukaConfigOption(imed);
1086 proc->SetCut(cutName, cutValue);
1087 fUserConfig->Add(proc);
829fb838 1088}
1089
acf2e119 1090
1091//______________________________________________________________________________
1092void TFluka::SetModelParameter(const char* parName, Double_t parValue, Int_t imed)
1093{
1094// Set model parameter for material imed
1095//
1096 TIter next(fUserConfig);
1097 TFlukaConfigOption* proc;
1098 while((proc = (TFlukaConfigOption*)next()))
1099 {
4aba9d66 1100 if (proc->Medium() == imed) {
1101 proc->SetModelParameter(parName, parValue);
1102 return;
1103 }
acf2e119 1104 }
1105
1106 proc = new TFlukaConfigOption(imed);
1107 proc->SetModelParameter(parName, parValue);
1108 fUserConfig->Add(proc);
1109}
1110
829fb838 1111//______________________________________________________________________________
1112Bool_t TFluka::SetCut(const char* cutName, Double_t cutValue)
1113{
1114// Set user cut value
1115//
1df5fa54 1116//
fb2cbbec 1117 SetCut(cutName, cutValue, -1);
1118 return kTRUE;
829fb838 1119}
1120
f450e9d0 1121
6f1aaa8e 1122void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what)
b496f27c 1123{
1124//
f450e9d0 1125// Adds a user scoring option to the list
b496f27c 1126//
6f1aaa8e 1127 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr,outfile,what);
f450e9d0 1128 fUserScore->Add(opt);
1129}
1130//______________________________________________________________________________
6f1aaa8e 1131void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what,
1132 const char* det1, const char* det2, const char* det3)
f450e9d0 1133{
1134//
1135// Adds a user scoring option to the list
1136//
6f1aaa8e 1137 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr, outfile, what, det1, det2, det3);
b496f27c 1138 fUserScore->Add(opt);
1139}
b496f27c 1140
829fb838 1141//______________________________________________________________________________
1142Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t)
1143{
a9ea1616 1144 Warning("Xsec", "Not yet implemented.!\n"); return -1.;
829fb838 1145}
1146
1147
1148//______________________________________________________________________________
1149void TFluka::InitPhysics()
1150{
1151//
1152// Physics initialisation with preparation of FLUKA input cards
1153//
fb2cbbec 1154// Construct file names
1155 FILE *pFlukaVmcCoreInp, *pFlukaVmcFlukaMat, *pFlukaVmcInp;
1156 TString sFlukaVmcCoreInp = getenv("ALICE_ROOT");
1157 sFlukaVmcCoreInp +="/TFluka/input/";
1158 TString sFlukaVmcTmp = "flukaMat.inp";
1159 TString sFlukaVmcInp = GetInputFileName();
1160 sFlukaVmcCoreInp += GetCoreInputFileName();
1161
1162// Open files
1163 if ((pFlukaVmcCoreInp = fopen(sFlukaVmcCoreInp.Data(),"r")) == NULL) {
4aba9d66 1164 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcCoreInp.Data());
1165 exit(1);
fb2cbbec 1166 }
1167 if ((pFlukaVmcFlukaMat = fopen(sFlukaVmcTmp.Data(),"r")) == NULL) {
4aba9d66 1168 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcTmp.Data());
1169 exit(1);
fb2cbbec 1170 }
1171 if ((pFlukaVmcInp = fopen(sFlukaVmcInp.Data(),"w")) == NULL) {
4aba9d66 1172 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcInp.Data());
1173 exit(1);
fb2cbbec 1174 }
829fb838 1175
fb2cbbec 1176// Copy core input file
1177 Char_t sLine[255];
1178 Float_t fEventsPerRun;
829fb838 1179
fb2cbbec 1180 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
4aba9d66 1181 if (strncmp(sLine,"GEOEND",6) != 0)
1182 fprintf(pFlukaVmcInp,"%s",sLine); // copy until GEOEND card
1183 else {
1184 fprintf(pFlukaVmcInp,"GEOEND\n"); // add GEOEND card
1185 goto flukamat;
1186 }
fb2cbbec 1187 } // end of while until GEOEND card
1188
829fb838 1189
fb2cbbec 1190 flukamat:
1191 while ((fgets(sLine,255,pFlukaVmcFlukaMat)) != NULL) { // copy flukaMat.inp file
4aba9d66 1192 fprintf(pFlukaVmcInp,"%s\n",sLine);
fb2cbbec 1193 }
1194
1195 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
8fc475a1 1196 if (strncmp(sLine,"START",5) != 0)
4aba9d66 1197 fprintf(pFlukaVmcInp,"%s\n",sLine);
1198 else {
1199 sscanf(sLine+10,"%10f",&fEventsPerRun);
1200 goto fin;
1201 }
8fc475a1 1202 } //end of while until START card
fb2cbbec 1203
1204 fin:
829fb838 1205
f450e9d0 1206
1207// Pass information to configuration objects
829fb838 1208
fb2cbbec 1209 Float_t fLastMaterial = fGeom->GetLastMaterialIndex();
1210 TFlukaConfigOption::SetStaticInfo(pFlukaVmcInp, 3, fLastMaterial, fGeom);
1211
1212 TIter next(fUserConfig);
1213 TFlukaConfigOption* proc;
f450e9d0 1214 while((proc = dynamic_cast<TFlukaConfigOption*> (next()))) proc->WriteFlukaInputCards();
1215//
1216// Process Fluka specific scoring options
1217//
1218 TFlukaScoringOption::SetStaticInfo(pFlukaVmcInp, fGeom);
0bb2c369 1219 Float_t loginp = -49.0;
f450e9d0 1220 Int_t inp = 0;
1221 Int_t nscore = fUserScore->GetEntries();
1222
a9ea1616 1223 TFlukaScoringOption *mopo = 0;
1224 TFlukaScoringOption *mopi = 0;
fb2cbbec 1225
f450e9d0 1226 for (Int_t isc = 0; isc < nscore; isc++)
1227 {
4aba9d66 1228 mopo = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isc));
1229 char* fileName = mopo->GetFileName();
1230 Int_t size = strlen(fileName);
1231 Float_t lun = -1.;
f450e9d0 1232//
1233// Check if new output file has to be opened
4aba9d66 1234 for (Int_t isci = 0; isci < isc; isci++) {
1235
1236
1237 mopi = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isci));
1238 if(strncmp(mopi->GetFileName(), fileName, size)==0) {
1239 //
1240 // No, the file already exists
1241 lun = mopi->GetLun();
1242 mopo->SetLun(lun);
1243 break;
1244 }
1245 } // inner loop
1246
1247 if (lun == -1.) {
1248 // Open new output file
1249 inp++;
1250 mopo->SetLun(loginp + inp);
1251 mopo->WriteOpenFlukaFile();
1252 }
1253 mopo->WriteFlukaInputCards();
f450e9d0 1254 }
b8a8a88c 1255
1256// Add RANDOMIZ card
1257 fprintf(pFlukaVmcInp,"RANDOMIZ %10.1f%10.0f\n", 1., Float_t(gRandom->GetSeed()));
8fc475a1 1258// Add START and STOP card
1259 fprintf(pFlukaVmcInp,"START %10.1f\n",fEventsPerRun);
f450e9d0 1260 fprintf(pFlukaVmcInp,"STOP \n");
829fb838 1261
1262
1263// Close files
3b8c325d 1264 fclose(pFlukaVmcCoreInp);
1265 fclose(pFlukaVmcFlukaMat);
1266 fclose(pFlukaVmcInp);
fb2cbbec 1267
1268
1269//
1270// Initialisation needed for Cerenkov photon production and transport
1271 TObjArray *matList = GetFlukaMaterials();
1272 Int_t nmaterial = matList->GetEntriesFast();
9968e86c 1273 fMaterials = new Int_t[nmaterial+25];
fb2cbbec 1274
1275 for (Int_t im = 0; im < nmaterial; im++)
1276 {
4aba9d66 1277 TGeoMaterial* material = dynamic_cast<TGeoMaterial*> (matList->At(im));
1278 Int_t idmat = material->GetIndex();
1279 fMaterials[idmat] = im;
fb2cbbec 1280 }
829fb838 1281} // end of InitPhysics
1282
1283
1284//______________________________________________________________________________
07f5b33e 1285void TFluka::SetMaxStep(Double_t step)
829fb838 1286{
07f5b33e 1287// Set the maximum step size
4aba9d66 1288// if (step > 1.e4) return;
07f5b33e 1289
4aba9d66 1290// Int_t mreg=0, latt=0;
1291// fGeom->GetCurrentRegion(mreg, latt);
1292 Int_t mreg = fGeom->GetCurrentRegion();
9c0c08ce 1293 STEPSZ.stepmx[mreg - 1] = step;
829fb838 1294}
1295
2f09b80e 1296
1297Double_t TFluka::MaxStep() const
1298{
1299// Return the maximum for current medium
1300 Int_t mreg, latt;
1301 fGeom->GetCurrentRegion(mreg, latt);
1302 return (STEPSZ.stepmx[mreg - 1]);
1303}
1304
829fb838 1305//______________________________________________________________________________
1306void TFluka::SetMaxNStep(Int_t)
1307{
1308// SetMaxNStep is dummy procedure in TFluka !
1309 if (fVerbosityLevel >=3)
1310 cout << "SetMaxNStep is dummy procedure in TFluka !" << endl;
1311}
1312
1313//______________________________________________________________________________
1314void TFluka::SetUserDecay(Int_t)
1315{
1316// SetUserDecay is dummy procedure in TFluka !
1317 if (fVerbosityLevel >=3)
1318 cout << "SetUserDecay is dummy procedure in TFluka !" << endl;
1319}
1320
1321//
1322// dynamic properties
1323//
1324//______________________________________________________________________________
1325void TFluka::TrackPosition(TLorentzVector& position) const
1326{
1327// Return the current position in the master reference frame of the
1328// track being transported
1329// TRACKR.atrack = age of the particle
1330// TRACKR.xtrack = x-position of the last point
1331// TRACKR.ytrack = y-position of the last point
1332// TRACKR.ztrack = z-position of the last point
a9ea1616 1333 FlukaCallerCode_t caller = GetCaller();
1334 if (caller == kENDRAW || caller == kUSDRAW ||
1335 caller == kBXExiting || caller == kBXEntering ||
1336 caller == kUSTCKV) {
42b936d1 1337 position.SetX(GetXsco());
1338 position.SetY(GetYsco());
1339 position.SetZ(GetZsco());
1340 position.SetT(TRACKR.atrack);
829fb838 1341 }
5125d6e5 1342 else if (caller == kMGDRAW) {
1343 Int_t i = -1;
1344 if ((i = fPrimaryElectronIndex) > -1) {
1345 // Primary Electron Ionisation
1346 Double_t x, y, z;
1347 GetPrimaryElectronPosition(i, x, y, z);
1348 position.SetX(x);
1349 position.SetY(y);
1350 position.SetZ(z);
1351 position.SetT(TRACKR.atrack);
1352 } else {
1353 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1354 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1355 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1356 position.SetT(TRACKR.atrack);
1357 }
829fb838 1358 }
a9ea1616 1359 else if (caller == kSODRAW) {
42b936d1 1360 Int_t ist = FLKSTK.npflka;
1361 position.SetX(FLKSTK.xflk[ist]);
1362 position.SetY(FLKSTK.yflk[ist]);
1363 position.SetZ(FLKSTK.zflk[ist]);
1364 position.SetT(FLKSTK.agestk[ist]);
a9ea1616 1365 } else if (caller == kMGResumedTrack) {
42b936d1 1366 position.SetX(TRACKR.spausr[0]);
1367 position.SetY(TRACKR.spausr[1]);
1368 position.SetZ(TRACKR.spausr[2]);
1369 position.SetT(TRACKR.spausr[3]);
829fb838 1370 }
1371 else
42b936d1 1372 Warning("TrackPosition","position not available");
829fb838 1373}
1374
1375//______________________________________________________________________________
1376void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const
1377{
1378// Return the current position in the master reference frame of the
1379// track being transported
1380// TRACKR.atrack = age of the particle
1381// TRACKR.xtrack = x-position of the last point
1382// TRACKR.ytrack = y-position of the last point
1383// TRACKR.ztrack = z-position of the last point
a9ea1616 1384 FlukaCallerCode_t caller = GetCaller();
1385 if (caller == kENDRAW || caller == kUSDRAW ||
1386 caller == kBXExiting || caller == kBXEntering ||
1387 caller == kUSTCKV) {
5125d6e5 1388 x = GetXsco();
1389 y = GetYsco();
1390 z = GetZsco();
829fb838 1391 }
42b936d1 1392 else if (caller == kMGDRAW) {
5125d6e5 1393 Int_t i = -1;
1394 if ((i = fPrimaryElectronIndex) > -1) {
1395 GetPrimaryElectronPosition(i, x, y, z);
1396 } else {
1397 x = TRACKR.xtrack[TRACKR.ntrack];
1398 y = TRACKR.ytrack[TRACKR.ntrack];
1399 z = TRACKR.ztrack[TRACKR.ntrack];
1400 }
829fb838 1401 }
42b936d1 1402 else if (caller == kSODRAW) {
1403 Int_t ist = FLKSTK.npflka;
1404 x = FLKSTK.xflk[ist];
1405 y = FLKSTK.yflk[ist];
1406 z = FLKSTK.zflk[ist];
1407 }
a9ea1616 1408 else if (caller == kMGResumedTrack) {
42b936d1 1409 x = TRACKR.spausr[0];
1410 y = TRACKR.spausr[1];
1411 z = TRACKR.spausr[2];
5d80a015 1412 }
829fb838 1413 else
42b936d1 1414 Warning("TrackPosition","position not available");
829fb838 1415}
1416
1417//______________________________________________________________________________
1418void TFluka::TrackMomentum(TLorentzVector& momentum) const
1419{
1420// Return the direction and the momentum (GeV/c) of the track
1421// currently being transported
1422// TRACKR.ptrack = momentum of the particle (not always defined, if
1423// < 0 must be obtained from etrack)
1424// TRACKR.cx,y,ztrck = direction cosines of the current particle
1425// TRACKR.etrack = total energy of the particle
1426// TRACKR.jtrack = identity number of the particle
1427// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1428 FlukaCallerCode_t caller = GetCaller();
1429 FlukaProcessCode_t icode = GetIcode();
1430
82a3f706 1431 if (caller != kEEDRAW &&
1432 caller != kMGResumedTrack &&
1433 caller != kSODRAW &&
1434 caller != kUSDRAW &&
a9ea1616 1435 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
42b936d1 1436 if (TRACKR.ptrack >= 0) {
1437 momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck);
1438 momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck);
1439 momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck);
1440 momentum.SetE(TRACKR.etrack);
1441 return;
1442 }
1443 else {
1444 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
1445 momentum.SetPx(p*TRACKR.cxtrck);
1446 momentum.SetPy(p*TRACKR.cytrck);
1447 momentum.SetPz(p*TRACKR.cztrck);
1448 momentum.SetE(TRACKR.etrack);
1449 return;
1450 }
a9ea1616 1451 } else if (caller == kMGResumedTrack) {
42b936d1 1452 momentum.SetPx(TRACKR.spausr[4]);
1453 momentum.SetPy(TRACKR.spausr[5]);
1454 momentum.SetPz(TRACKR.spausr[6]);
1455 momentum.SetE (TRACKR.spausr[7]);
1456 return;
a9ea1616 1457 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1458 momentum.SetPx(0.);
1459 momentum.SetPy(0.);
1460 momentum.SetPz(0.);
1461 momentum.SetE(TrackMass());
42b936d1 1462
1463 } else if (caller == kSODRAW) {
1464 Int_t ist = FLKSTK.npflka;
1465 Double_t p = FLKSTK.pmoflk[ist];
1466 Int_t ifl = FLKSTK.iloflk[ist];
1467 Double_t m = PAPROP.am[ifl + 6];
1468 Double_t e = TMath::Sqrt(p * p + m * m);
1469 momentum.SetPx(p * FLKSTK.txflk[ist]);
1470 momentum.SetPy(p * FLKSTK.tyflk[ist]);
1471 momentum.SetPz(p * FLKSTK.tzflk[ist]);
1472 momentum.SetE(e);
82a3f706 1473 } else if (caller == kUSDRAW) {
1474 if (icode == 208 || icode == 210 || icode == 212 || icode == 219) {
1475 momentum.SetPx(fPint[0]);
1476 momentum.SetPy(fPint[1]);
1477 momentum.SetPz(fPint[2]);
1478 momentum.SetE(fPint[3]);
1479 } else {
1480 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
1481 momentum.SetPx(p*TRACKR.cxtrck);
1482 momentum.SetPy(p*TRACKR.cytrck);
1483 momentum.SetPz(p*TRACKR.cztrck);
1484 momentum.SetE(TRACKR.etrack);
1485 }
829fb838 1486 }
1487 else
1488 Warning("TrackMomentum","momentum not available");
1489}
1490
1491//______________________________________________________________________________
1492void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const
1493{
1494// Return the direction and the momentum (GeV/c) of the track
1495// currently being transported
1496// TRACKR.ptrack = momentum of the particle (not always defined, if
1497// < 0 must be obtained from etrack)
1498// TRACKR.cx,y,ztrck = direction cosines of the current particle
1499// TRACKR.etrack = total energy of the particle
1500// TRACKR.jtrack = identity number of the particle
1501// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1502 FlukaCallerCode_t caller = GetCaller();
1503 FlukaProcessCode_t icode = GetIcode();
42b936d1 1504 if (caller != kEEDRAW &&
1505 caller != kMGResumedTrack &&
1506 caller != kSODRAW &&
82a3f706 1507 caller != kUSDRAW &&
a9ea1616 1508 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
829fb838 1509 if (TRACKR.ptrack >= 0) {
1510 px = TRACKR.ptrack*TRACKR.cxtrck;
1511 py = TRACKR.ptrack*TRACKR.cytrck;
1512 pz = TRACKR.ptrack*TRACKR.cztrck;
a9ea1616 1513 e = TRACKR.etrack;
829fb838 1514 return;
1515 }
1516 else {
ece92b30 1517 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
829fb838 1518 px = p*TRACKR.cxtrck;
1519 py = p*TRACKR.cytrck;
1520 pz = p*TRACKR.cztrck;
a9ea1616 1521 e = TRACKR.etrack;
829fb838 1522 return;
1523 }
a9ea1616 1524 } else if (caller == kMGResumedTrack) {
5d80a015 1525 px = TRACKR.spausr[4];
1526 py = TRACKR.spausr[5];
1527 pz = TRACKR.spausr[6];
1528 e = TRACKR.spausr[7];
0773d0ac 1529 return;
a9ea1616 1530 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1531 px = 0.;
1532 py = 0.;
1533 pz = 0.;
1534 e = TrackMass();
42b936d1 1535 } else if (caller == kSODRAW) {
1536 Int_t ist = FLKSTK.npflka;
1537 Double_t p = FLKSTK.pmoflk[ist];
1538 Int_t ifl = FLKSTK.iloflk[ist];
1539 Double_t m = PAPROP.am[ifl + 6];
1540 e = TMath::Sqrt(p * p + m * m);
1541 px = p * FLKSTK.txflk[ist];
1542 py = p * FLKSTK.tyflk[ist];
1543 pz = p * FLKSTK.tzflk[ist];
82a3f706 1544 } else if (caller == kUSDRAW) {
1545 if (icode == 208 || icode == 210 || icode == 212 || icode == 219) {
1546 px = fPint[0];
1547 py = fPint[1];
1548 pz = fPint[2];
1549 e = fPint[3];
1550 } else {
1551 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
1552 px = p*TRACKR.cxtrck;
1553 py = p*TRACKR.cytrck;
1554 pz = p*TRACKR.cztrck;
1555 e = TRACKR.etrack;
1556 }
829fb838 1557 }
1558 else
42b936d1 1559 Warning("TrackMomentum","momentum not available");
829fb838 1560}
1561
1562//______________________________________________________________________________
1563Double_t TFluka::TrackStep() const
1564{
1565// Return the length in centimeters of the current step
1566// TRACKR.ctrack = total curved path
42b936d1 1567 FlukaCallerCode_t caller = GetCaller();
1568 if (caller == kBXEntering || caller == kBXExiting ||
1569 caller == kENDRAW || caller == kUSDRAW ||
1570 caller == kUSTCKV || caller == kMGResumedTrack ||
1571 caller == kSODRAW)
1572 return 0.0;
a9ea1616 1573 else if (caller == kMGDRAW)
829fb838 1574 return TRACKR.ctrack;
669cede4 1575 else {
1576 Warning("TrackStep", "track step not available");
1577 return 0.0;
1578 }
829fb838 1579}
1580
1581//______________________________________________________________________________
1582Double_t TFluka::TrackLength() const
1583{
1584// TRACKR.cmtrck = cumulative curved path since particle birth
a9ea1616 1585 FlukaCallerCode_t caller = GetCaller();
1586 if (caller == kBXEntering || caller == kBXExiting ||
1587 caller == kENDRAW || caller == kUSDRAW || caller == kMGDRAW ||
1588 caller == kUSTCKV)
829fb838 1589 return TRACKR.cmtrck;
a9ea1616 1590 else if (caller == kMGResumedTrack)
5d80a015 1591 return TRACKR.spausr[8];
82a3f706 1592 else if (caller == kSODRAW)
1593 return 0.0;
669cede4 1594 else {
82a3f706 1595 Warning("TrackLength", "track length not available for caller %5d \n", caller);
669cede4 1596 return 0.0;
1597 }
829fb838 1598}
1599
1600//______________________________________________________________________________
1601Double_t TFluka::TrackTime() const
1602{
1603// Return the current time of flight of the track being transported
1604// TRACKR.atrack = age of the particle
a9ea1616 1605 FlukaCallerCode_t caller = GetCaller();
1606 if (caller == kBXEntering || caller == kBXExiting ||
1607 caller == kENDRAW || caller == kUSDRAW || caller == kMGDRAW ||
1608 caller == kUSTCKV)
829fb838 1609 return TRACKR.atrack;
a9ea1616 1610 else if (caller == kMGResumedTrack)
5d80a015 1611 return TRACKR.spausr[3];
42b936d1 1612 else if (caller == kSODRAW) {
1613 return (FLKSTK.agestk[FLKSTK.npflka]);
1614 }
669cede4 1615 else {
1616 Warning("TrackTime", "track time not available");
1617 return 0.0;
1618 }
829fb838 1619}
1620
1621//______________________________________________________________________________
1622Double_t TFluka::Edep() const
1623{
1624// Energy deposition
1625// if TRACKR.ntrack = 0, TRACKR.mtrack = 0:
1626// -->local energy deposition (the value and the point are not recorded in TRACKR)
1627// but in the variable "rull" of the procedure "endraw.cxx"
1628// if TRACKR.ntrack > 0, TRACKR.mtrack = 0:
1629// -->no energy loss along the track
1630// if TRACKR.ntrack > 0, TRACKR.mtrack > 0:
1631// -->energy loss distributed along the track
07f5b33e 1632// TRACKR.dtrack = energy deposition of the jth deposition event
829fb838 1633
1634 // If coming from bxdraw we have 2 steps of 0 length and 0 edep
669cede4 1635 // If coming from usdraw we just signal particle production - no edep
1636 // If just first time after resuming, no edep for the primary
a9ea1616 1637 FlukaCallerCode_t caller = GetCaller();
ada781c7 1638
a9ea1616 1639 if (caller == kBXExiting || caller == kBXEntering ||
42b936d1 1640 caller == kUSDRAW || caller == kMGResumedTrack ||
1641 caller == kSODRAW)
1642 return 0.0;
829fb838 1643 Double_t sum = 0;
5125d6e5 1644 Int_t i = -1;
09cdde8a 1645
ada781c7 1646 // Material with primary ionisation activated but number of primary electrons nprim = 0
1647 if (fPrimaryElectronIndex == -2) return 0.0;
1648 // nprim > 0
5125d6e5 1649 if ((i = fPrimaryElectronIndex) > -1) {
1650 // Primary ionisation
ada781c7 1651 sum = GetPrimaryElectronKineticEnergy(i);
1652 if (sum > 100.) {
1653 printf("edep > 100. %d %d %f \n", i, ALLDLT.nalldl, sum);
1654 }
1655 return sum;
5125d6e5 1656 } else {
1657 // Normal ionisation
1658 if (TRACKR.mtrack > 1) printf("Edep: %6d\n", TRACKR.mtrack);
1659
1660 for ( Int_t j=0;j<TRACKR.mtrack;j++) {
1661 sum +=TRACKR.dtrack[j];
1662 }
1663 if (TRACKR.ntrack == 0 && TRACKR.mtrack == 0)
1664 return fRull + sum;
1665 else {
1666 return sum;
1667 }
829fb838 1668 }
1669}
1670
1671//______________________________________________________________________________
18e0cabb 1672Int_t TFluka::CorrectFlukaId() const
1673{
1674 // since we don't put photons and e- created bellow transport cut on the vmc stack
1675 // and there is a call to endraw for energy deposition for each of them
1676 // and they have the track number of their parent, but different identity (pdg)
4aba9d66 1677 // so we want to assign also their parent identity.
cc7af78a 1678
a9923346 1679 if( (IsTrackStop())
18e0cabb 1680 && TRACKR.ispusr[mkbmx2 - 4] == TRACKR.ispusr[mkbmx2 - 1]
1681 && TRACKR.jtrack != TRACKR.ispusr[mkbmx2 - 3] ) {
1682 if (fVerbosityLevel >=3)
1683 cout << "CorrectFlukaId() for icode=" << GetIcode()
1684 << " track=" << TRACKR.ispusr[mkbmx2 - 1]
1685 << " current PDG=" << PDGFromId(TRACKR.jtrack)
1686 << " assign parent PDG=" << PDGFromId(TRACKR.ispusr[mkbmx2 - 3]) << endl;
1687 return TRACKR.ispusr[mkbmx2 - 3]; // assign parent identity
1688 }
13858fbd 1689 if (TRACKR.jtrack <= 64){
cc7af78a 1690 return TRACKR.jtrack;
1691 } else {
1692 return TRACKR.j0trck;
1693 }
18e0cabb 1694}
1695
1696
1697//______________________________________________________________________________
829fb838 1698Int_t TFluka::TrackPid() const
1699{
1700// Return the id of the particle transported
1701// TRACKR.jtrack = identity number of the particle
a9ea1616 1702 FlukaCallerCode_t caller = GetCaller();
42b936d1 1703 if (caller != kEEDRAW && caller != kSODRAW) {
18e0cabb 1704 return PDGFromId( CorrectFlukaId() );
f926898e 1705 }
42b936d1 1706 else if (caller == kSODRAW) {
1707 return PDGFromId(FLKSTK.iloflk[FLKSTK.npflka]);
1708 }
829fb838 1709 else
1710 return -1000;
1711}
1712
1713//______________________________________________________________________________
1714Double_t TFluka::TrackCharge() const
1715{
1716// Return charge of the track currently transported
1717// PAPROP.ichrge = electric charge of the particle
1718// TRACKR.jtrack = identity number of the particle
13858fbd 1719
a9ea1616 1720 FlukaCallerCode_t caller = GetCaller();
42b936d1 1721 if (caller != kEEDRAW && caller != kSODRAW)
1722 return PAPROP.ichrge[CorrectFlukaId() + 6];
1723 else if (caller == kSODRAW) {
1724 Int_t ifl = PDGFromId(FLKSTK.iloflk[FLKSTK.npflka]);
1725 return PAPROP.ichrge[ifl + 6];
1726 }
829fb838 1727 else
1728 return -1000.0;
1729}
1730
1731//______________________________________________________________________________
1732Double_t TFluka::TrackMass() const
1733{
1734// PAPROP.am = particle mass in GeV
1735// TRACKR.jtrack = identity number of the particle
a9ea1616 1736 FlukaCallerCode_t caller = GetCaller();
42b936d1 1737 if (caller != kEEDRAW && caller != kSODRAW)
18e0cabb 1738 return PAPROP.am[CorrectFlukaId()+6];
42b936d1 1739 else if (caller == kSODRAW) {
82a3f706 1740 Int_t ifl = FLKSTK.iloflk[FLKSTK.npflka];
42b936d1 1741 return PAPROP.am[ifl + 6];
1742 }
829fb838 1743 else
1744 return -1000.0;
1745}
1746
1747//______________________________________________________________________________
1748Double_t TFluka::Etot() const
1749{
1750// TRACKR.etrack = total energy of the particle
a9ea1616 1751 FlukaCallerCode_t caller = GetCaller();
42b936d1 1752 if (caller != kEEDRAW && caller != kSODRAW)
829fb838 1753 return TRACKR.etrack;
42b936d1 1754 else if (caller == kSODRAW) {
1755 Int_t ist = FLKSTK.npflka;
1756 Double_t p = FLKSTK.pmoflk[ist];
1757 Int_t ifl = FLKSTK.iloflk[ist];
1758 Double_t m = PAPROP.am[ifl + 6];
1759 Double_t e = TMath::Sqrt(p * p + m * m);
1760 return e;
1761 }
829fb838 1762 else
1763 return -1000.0;
1764}
1765
1766//
1767// track status
1768//
1769//______________________________________________________________________________
1770Bool_t TFluka::IsNewTrack() const
1771{
1772// Return true for the first call of Stepping()
1773 return fTrackIsNew;
1774}
1775
0dabe425 1776void TFluka::SetTrackIsNew(Bool_t flag)
1777{
1778// Return true for the first call of Stepping()
1779 fTrackIsNew = flag;
1780
1781}
1782
1783
829fb838 1784//______________________________________________________________________________
1785Bool_t TFluka::IsTrackInside() const
1786{
1787// True if the track is not at the boundary of the current volume
1788// In Fluka a step is always inside one kind of material
1789// If the step would go behind the region of one material,
1790// it will be shortened to reach only the boundary.
1791// Therefore IsTrackInside() is always true.
a9ea1616 1792 FlukaCallerCode_t caller = GetCaller();
1793 if (caller == kBXEntering || caller == kBXExiting)
829fb838 1794 return 0;
1795 else
1796 return 1;
1797}
1798
1799//______________________________________________________________________________
1800Bool_t TFluka::IsTrackEntering() const
1801{
1802// True if this is the first step of the track in the current volume
1803
a9ea1616 1804 FlukaCallerCode_t caller = GetCaller();
1805 if (caller == kBXEntering)
829fb838 1806 return 1;
1807 else return 0;
1808}
1809
1810//______________________________________________________________________________
1811Bool_t TFluka::IsTrackExiting() const
1812{
1813// True if track is exiting volume
1814//
a9ea1616 1815 FlukaCallerCode_t caller = GetCaller();
1816 if (caller == kBXExiting)
829fb838 1817 return 1;
1818 else return 0;
1819}
1820
1821//______________________________________________________________________________
1822Bool_t TFluka::IsTrackOut() const
1823{
1824// True if the track is out of the setup
1825// means escape
a9ea1616 1826 FlukaProcessCode_t icode = GetIcode();
1827
1828 if (icode == kKASKADescape ||
1829 icode == kEMFSCOescape ||
1830 icode == kKASNEUescape ||
1831 icode == kKASHEAescape ||
1832 icode == kKASOPHescape)
1833 return 1;
829fb838 1834 else return 0;
1835}
1836
1837//______________________________________________________________________________
1838Bool_t TFluka::IsTrackDisappeared() const
1839{
a9ea1616 1840// All inelastic interactions and decays
829fb838 1841// fIcode from usdraw
a9ea1616 1842 FlukaProcessCode_t icode = GetIcode();
1843 if (icode == kKASKADinelint || // inelastic interaction
1844 icode == kKASKADdecay || // particle decay
1845 icode == kKASKADdray || // delta ray generation by hadron
1846 icode == kKASKADpair || // direct pair production
1847 icode == kKASKADbrems || // bremsstrahlung (muon)
1848 icode == kEMFSCObrems || // bremsstrahlung (electron)
1849 icode == kEMFSCOmoller || // Moller scattering
1850 icode == kEMFSCObhabha || // Bhaba scattering
1851 icode == kEMFSCOanniflight || // in-flight annihilation
1852 icode == kEMFSCOannirest || // annihilation at rest
1853 icode == kEMFSCOpair || // pair production
1854 icode == kEMFSCOcompton || // Compton scattering
1855 icode == kEMFSCOphotoel || // Photoelectric effect
1856 icode == kKASNEUhadronic || // hadronic interaction
2047b055 1857 icode == kKASHEAdray // delta-ray
0dabe425 1858 ) return 1;
829fb838 1859 else return 0;
1860}
1861
1862//______________________________________________________________________________
1863Bool_t TFluka::IsTrackStop() const
1864{
1865// True if the track energy has fallen below the threshold
1866// means stopped by signal or below energy threshold
a9ea1616 1867 FlukaProcessCode_t icode = GetIcode();
18e0cabb 1868 if (icode == kKASKADstopping || // stopping particle
1869 icode == kKASKADtimekill || // time kill
1870 icode == kEMFSCOstopping1 || // below user-defined cut-off
1871 icode == kEMFSCOstopping2 || // below user cut-off
1872 icode == kEMFSCOtimekill || // time kill
1873 icode == kKASNEUstopping || // neutron below threshold
1874 icode == kKASNEUtimekill || // time kill
1875 icode == kKASHEAtimekill || // time kill
1876 icode == kKASOPHtimekill) return 1; // time kill
829fb838 1877 else return 0;
1878}
1879
1880//______________________________________________________________________________
1881Bool_t TFluka::IsTrackAlive() const
1882{
1883// means not disappeared or not out
ea262cc6 1884 if (IsTrackDisappeared() || IsTrackOut() ) return 0;
1885 else return 1;
829fb838 1886}
1887
1888//
1889// secondaries
1890//
1891
1892//______________________________________________________________________________
1893Int_t TFluka::NSecondaries() const
1894
1895{
1896// Number of secondary particles generated in the current step
81f1d030 1897// GENSTK.np = number of secondaries except light and heavy ions
829fb838 1898// FHEAVY.npheav = number of secondaries for light and heavy secondary ions
a9ea1616 1899 FlukaCallerCode_t caller = GetCaller();
1900 if (caller == kUSDRAW) // valid only after usdraw
4aba9d66 1901 return GENSTK.np + FHEAVY.npheav;
a9ea1616 1902 else if (caller == kUSTCKV) {
4aba9d66 1903 // Cerenkov Photon production
1904 return fNCerenkov;
7b203b6e 1905 }
829fb838 1906 return 0;
1907} // end of NSecondaries
1908
1909//______________________________________________________________________________
1910void TFluka::GetSecondary(Int_t isec, Int_t& particleId,
4aba9d66 1911 TLorentzVector& position, TLorentzVector& momentum)
829fb838 1912{
1913// Copy particles from secondary stack to vmc stack
1914//
1915
a9ea1616 1916 FlukaCallerCode_t caller = GetCaller();
1917 if (caller == kUSDRAW) { // valid only after usdraw
4aba9d66 1918 if (GENSTK.np > 0) {
1919 // Hadronic interaction
1920 if (isec >= 0 && isec < GENSTK.np) {
1921 particleId = PDGFromId(GENSTK.kpart[isec]);
1922 position.SetX(fXsco);
1923 position.SetY(fYsco);
1924 position.SetZ(fZsco);
1925 position.SetT(TRACKR.atrack);
1926 momentum.SetPx(GENSTK.plr[isec]*GENSTK.cxr[isec]);
1927 momentum.SetPy(GENSTK.plr[isec]*GENSTK.cyr[isec]);
1928 momentum.SetPz(GENSTK.plr[isec]*GENSTK.czr[isec]);
1929 momentum.SetE(GENSTK.tki[isec] + PAPROP.am[GENSTK.kpart[isec]+6]);
1930 }
1931 else if (isec >= GENSTK.np && isec < GENSTK.np + FHEAVY.npheav) {
1932 Int_t jsec = isec - GENSTK.np;
1933 particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!!
1934 position.SetX(fXsco);
1935 position.SetY(fYsco);
1936 position.SetZ(fZsco);
1937 position.SetT(TRACKR.atrack);
1938 momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]);
1939 momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]);
1940 momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]);
1941 if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6)
1942 momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]);
1943 else if (FHEAVY.tkheav[jsec] > 6)
1944 momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!!
1945 }
1946 else
1947 Warning("GetSecondary","isec out of range");
1948 }
a9ea1616 1949 } else if (caller == kUSTCKV) {
4aba9d66 1950 Int_t index = OPPHST.lstopp - isec;
1951 position.SetX(OPPHST.xoptph[index]);
1952 position.SetY(OPPHST.yoptph[index]);
1953 position.SetZ(OPPHST.zoptph[index]);
1954 position.SetT(OPPHST.agopph[index]);
1955 Double_t p = OPPHST.poptph[index];
1956
1957 momentum.SetPx(p * OPPHST.txopph[index]);
1958 momentum.SetPy(p * OPPHST.tyopph[index]);
1959 momentum.SetPz(p * OPPHST.tzopph[index]);
1960 momentum.SetE(p);
829fb838 1961 }
1962 else
4aba9d66 1963 Warning("GetSecondary","no secondaries available");
7b203b6e 1964
829fb838 1965} // end of GetSecondary
1966
7b203b6e 1967
829fb838 1968//______________________________________________________________________________
1969TMCProcess TFluka::ProdProcess(Int_t) const
1970
1971{
1972// Name of the process that has produced the secondary particles
1973// in the current step
0dabe425 1974
a9ea1616 1975 Int_t mugamma = (TRACKR.jtrack == kFLUKAphoton ||
4aba9d66 1976 TRACKR.jtrack == kFLUKAmuplus ||
1977 TRACKR.jtrack == kFLUKAmuminus);
a9ea1616 1978 FlukaProcessCode_t icode = GetIcode();
1979
1980 if (icode == kKASKADdecay) return kPDecay;
1981 else if (icode == kKASKADpair || icode == kEMFSCOpair) return kPPair;
1982 else if (icode == kEMFSCOcompton) return kPCompton;
1983 else if (icode == kEMFSCOphotoel) return kPPhotoelectric;
1984 else if (icode == kKASKADbrems || icode == kEMFSCObrems) return kPBrem;
1985 else if (icode == kKASKADdray || icode == kKASHEAdray) return kPDeltaRay;
1986 else if (icode == kEMFSCOmoller || icode == kEMFSCObhabha) return kPDeltaRay;
1987 else if (icode == kEMFSCOanniflight || icode == kEMFSCOannirest) return kPAnnihilation;
1988 else if (icode == kKASKADinelint) {
4aba9d66 1989 if (!mugamma) return kPHadronic;
1990 else if (TRACKR.jtrack == kFLUKAphoton) return kPPhotoFission;
1991 else return kPMuonNuclear;
829fb838 1992 }
a9ea1616 1993 else if (icode == kEMFSCOrayleigh) return kPRayleigh;
829fb838 1994// Fluka codes 100, 300 and 400 still to be investigasted
a9ea1616 1995 else return kPNoProcess;
829fb838 1996}
1997
829fb838 1998
b496f27c 1999Int_t TFluka::StepProcesses(TArrayI &proc) const
2000{
2001 //
2002 // Return processes active in the current step
2003 //
e71bcde8 2004 FlukaProcessCode_t icode = GetIcode();
2005 FlukaCallerCode_t caller = GetCaller();
2006
b496f27c 2007 proc.Set(1);
2008 TMCProcess iproc;
82a3f706 2009 if (caller == kBXEntering || caller == kBXExiting || caller == kEEDRAW) {
e71bcde8 2010 iproc = kPTransportation;
2011 } else {
2012 switch (icode) {
2013 case kEMFSCO:
82a3f706 2014 if (Edep() > 0.) {
2015 iproc = kPEnergyLoss;
2016 } else {
2017 iproc = kPTransportation;
2018 }
e71bcde8 2019 break;
2020 case kKASKADtimekill:
2021 case kEMFSCOtimekill:
2022 case kKASNEUtimekill:
2023 case kKASHEAtimekill:
2024 case kKASOPHtimekill:
2025 iproc = kPTOFlimit;
2026 break;
2027 case kKASKADstopping:
2028 case kKASKADescape:
2029 case kEMFSCOstopping1:
2030 case kEMFSCOstopping2:
2031 case kEMFSCOescape:
2032 case kKASNEUstopping:
2033 case kKASNEUescape:
2034 case kKASHEAescape:
2035 case kKASOPHescape:
2036 iproc = kPStop;
2037 break;
2038 case kKASOPHabsorption:
2039 iproc = kPLightAbsorption;
2040 break;
2041 case kKASOPHrefraction:
2042 iproc = kPLightRefraction;
2043 case kEMFSCOlocaldep :
2044 iproc = kPPhotoelectric;
2045 break;
2046 default:
2047 iproc = ProdProcess(0);
2048 }
b496f27c 2049 }
e71bcde8 2050
07f5b33e 2051 proc[0] = iproc;
b496f27c 2052 return 1;
2053}
829fb838 2054//______________________________________________________________________________
2055Int_t TFluka::VolId2Mate(Int_t id) const
2056{
2057//
2058// Returns the material number for a given volume ID
2059//
2060 return fMCGeo->VolId2Mate(id);
2061}
2062
2063//______________________________________________________________________________
2064const char* TFluka::VolName(Int_t id) const
2065{
2066//
2067// Returns the volume name for a given volume ID
2068//
2069 return fMCGeo->VolName(id);
2070}
2071
a8e4986c 2072Int_t TFluka::MediumId(const Text_t* mediumName) const
2073{
2074 //
2075 // Return the unique medium id for medium with name mediumName
2076 TList *medlist = gGeoManager->GetListOfMedia();
2077 TGeoMedium* med = (TGeoMedium*) medlist->FindObject(mediumName);
2078 if (med) {
2079 return (med->GetId());
2080 } else {
2081 return (-1);
2082 }
2083}
2084
829fb838 2085//______________________________________________________________________________
2086Int_t TFluka::VolId(const Text_t* volName) const
2087{
2088//
2089// Converts from volume name to volume ID.
2090// Time consuming. (Only used during set-up)
2091// Could be replaced by hash-table
2092//
09cd6497 2093 char sname[20];
2094 Int_t len;
2095 strncpy(sname, volName, len = strlen(volName));
2096 sname[len] = 0;
2097 while (sname[len - 1] == ' ') sname[--len] = 0;
2098 return fMCGeo->VolId(sname);
829fb838 2099}
2100
2101//______________________________________________________________________________
2102Int_t TFluka::CurrentVolID(Int_t& copyNo) const
2103{
2104//
2105// Return the logical id and copy number corresponding to the current fluka region
2106//
2107 if (gGeoManager->IsOutside()) return 0;
2108 TGeoNode *node = gGeoManager->GetCurrentNode();
2109 copyNo = node->GetNumber();
2110 Int_t id = node->GetVolume()->GetNumber();
2111 return id;
2112}
2113
2114//______________________________________________________________________________
2115Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const
2116{
2117//
2118// Return the logical id and copy number of off'th mother
2119// corresponding to the current fluka region
2120//
2121 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2122 if (off==0) return CurrentVolID(copyNo);
2123 TGeoNode *node = gGeoManager->GetMother(off);
2124 if (!node) return 0;
2125 copyNo = node->GetNumber();
2126 return node->GetVolume()->GetNumber();
2127}
2128
2129//______________________________________________________________________________
2130const char* TFluka::CurrentVolName() const
2131{
2132//
2133// Return the current volume name
2134//
4678abb9 2135 if (gGeoManager->IsOutside()) return "Outside FLUKA Geometry !";
829fb838 2136 return gGeoManager->GetCurrentVolume()->GetName();
2137}
2138
2139//______________________________________________________________________________
2140const char* TFluka::CurrentVolOffName(Int_t off) const
2141{
2142//
2143// Return the volume name of the off'th mother of the current volume
2144//
2145 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2146 if (off==0) return CurrentVolName();
2147 TGeoNode *node = gGeoManager->GetMother(off);
2148 if (!node) return 0;
2149 return node->GetVolume()->GetName();
2150}
2151
d59acfe7 2152const char* TFluka::CurrentVolPath() {
2153 // Return the current volume path
2154 return gGeoManager->GetPath();
2155}
829fb838 2156//______________________________________________________________________________
a60813de 2157Int_t TFluka::CurrentMaterial(Float_t & a, Float_t & z,
4aba9d66 2158 Float_t & dens, Float_t & radl, Float_t & absl) const
829fb838 2159{
2160//
a60813de 2161// Return the current medium number and material properties
829fb838 2162//
2163 Int_t copy;
2164 Int_t id = TFluka::CurrentVolID(copy);
2165 Int_t med = TFluka::VolId2Mate(id);
a60813de 2166 TGeoVolume* vol = gGeoManager->GetCurrentVolume();
2167 TGeoMaterial* mat = vol->GetMaterial();
2168 a = mat->GetA();
2169 z = mat->GetZ();
2170 dens = mat->GetDensity();
2171 radl = mat->GetRadLen();
2172 absl = mat->GetIntLen();
2173
829fb838 2174 return med;
2175}
2176
2177//______________________________________________________________________________
2178void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
2179{
2180// Transforms a position from the world reference frame
2181// to the current volume reference frame.
2182//
2183// Geant3 desription:
2184// ==================
2185// Computes coordinates XD (in DRS)
2186// from known coordinates XM in MRS
2187// The local reference system can be initialized by
2188// - the tracking routines and GMTOD used in GUSTEP
2189// - a call to GMEDIA(XM,NUMED)
2190// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2191// (inverse routine is GDTOM)
2192//
2193// If IFLAG=1 convert coordinates
2194// IFLAG=2 convert direction cosinus
2195//
2196// ---
2197 Double_t xmL[3], xdL[3];
2198 Int_t i;
2199 for (i=0;i<3;i++) xmL[i]=xm[i];
2200 if (iflag == 1) gGeoManager->MasterToLocal(xmL,xdL);
2201 else gGeoManager->MasterToLocalVect(xmL,xdL);
2202 for (i=0;i<3;i++) xd[i] = xdL[i];
2203}
2204
2205//______________________________________________________________________________
2206void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
2207{
2047b055 2208//
2209// See Gmtod(Float_t*, Float_t*, Int_t)
2210//
829fb838 2211 if (iflag == 1) gGeoManager->MasterToLocal(xm,xd);
2212 else gGeoManager->MasterToLocalVect(xm,xd);
2213}
2214
2215//______________________________________________________________________________
2216void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
2217{
2218// Transforms a position from the current volume reference frame
2219// to the world reference frame.
2220//
2221// Geant3 desription:
2222// ==================
2223// Computes coordinates XM (Master Reference System
2224// knowing the coordinates XD (Detector Ref System)
2225// The local reference system can be initialized by
2226// - the tracking routines and GDTOM used in GUSTEP
2227// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2228// (inverse routine is GMTOD)
2229//
2230// If IFLAG=1 convert coordinates
2231// IFLAG=2 convert direction cosinus
2232//
2233// ---
2234 Double_t xmL[3], xdL[3];
2235 Int_t i;
2236 for (i=0;i<3;i++) xdL[i] = xd[i];
2237 if (iflag == 1) gGeoManager->LocalToMaster(xdL,xmL);
2238 else gGeoManager->LocalToMasterVect(xdL,xmL);
2239 for (i=0;i<3;i++) xm[i]=xmL[i];
2240}
2241
2242//______________________________________________________________________________
2243void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
2244{
2047b055 2245//
2246// See Gdtom(Float_t*, Float_t*, Int_t)
2247//
829fb838 2248 if (iflag == 1) gGeoManager->LocalToMaster(xd,xm);
2249 else gGeoManager->LocalToMasterVect(xd,xm);
2250}
2251
2252//______________________________________________________________________________
2253TObjArray *TFluka::GetFlukaMaterials()
2254{
2047b055 2255//
2256// Get array of Fluka materials
829fb838 2257 return fGeom->GetMatList();
2258}
2259
2260//______________________________________________________________________________
a9ea1616 2261void TFluka::SetMreg(Int_t l, Int_t lttc)
829fb838 2262{
2263// Set current fluka region
2264 fCurrentFlukaRegion = l;
a9ea1616 2265 fGeom->SetMreg(l,lttc);
829fb838 2266}
2267
2268
b496f27c 2269
2270
4aba9d66 2271//______________________________________________________________________________
b496f27c 2272TString TFluka::ParticleName(Int_t pdg) const
2273{
2274 // Return particle name for particle with pdg code pdg.
2275 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2276 return TString((CHPPRP.btype[ifluka - kFLUKAcodemin]), 8);
b496f27c 2277}
2278
2279
4aba9d66 2280//______________________________________________________________________________
b496f27c 2281Double_t TFluka::ParticleMass(Int_t pdg) const
2282{
2283 // Return particle mass for particle with pdg code pdg.
2284 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2285 return (PAPROP.am[ifluka - kFLUKAcodemin]);
2286}
2287
4aba9d66 2288//______________________________________________________________________________
ece92b30 2289Double_t TFluka::ParticleMassFPC(Int_t fpc) const
2290{
2291 // Return particle mass for particle with Fluka particle code fpc
2292 return (PAPROP.am[fpc - kFLUKAcodemin]);
b496f27c 2293}
2294
4aba9d66 2295//______________________________________________________________________________
b496f27c 2296Double_t TFluka::ParticleCharge(Int_t pdg) const
2297{
2298 // Return particle charge for particle with pdg code pdg.
2299 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2300 return Double_t(PAPROP.ichrge[ifluka - kFLUKAcodemin]);
b496f27c 2301}
2302
4aba9d66 2303//______________________________________________________________________________
b496f27c 2304Double_t TFluka::ParticleLifeTime(Int_t pdg) const
2305{
2306 // Return particle lifetime for particle with pdg code pdg.
2307 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2308 return (PAPROP.tmnlf[ifluka - kFLUKAcodemin]);
b496f27c 2309}
2310
4aba9d66 2311//______________________________________________________________________________
b496f27c 2312void TFluka::Gfpart(Int_t pdg, char* name, Int_t& type, Float_t& mass, Float_t& charge, Float_t& tlife)
2313{
2314 // Retrieve particle properties for particle with pdg code pdg.
2315
2316 strcpy(name, ParticleName(pdg).Data());
2317 type = ParticleMCType(pdg);
2318 mass = ParticleMass(pdg);
2319 charge = ParticleCharge(pdg);
2320 tlife = ParticleLifeTime(pdg);
2321}
2322
4aba9d66 2323//______________________________________________________________________________
8e5bf079 2324void TFluka::PrintHeader()
2325{
2326 //
2327 // Print a header
2328 printf("\n");
2329 printf("\n");
2330 printf("------------------------------------------------------------------------------\n");
2331 printf("- You are using the TFluka Virtual Monte Carlo Interface to FLUKA. -\n");
2332 printf("- Please see the file fluka.out for FLUKA output and licensing information. -\n");
2333 printf("------------------------------------------------------------------------------\n");
2334 printf("\n");
2335 printf("\n");
2336}
2337
b496f27c 2338
81f1d030 2339#define pshckp pshckp_
2340#define ustckv ustckv_
3a625972 2341
2342
2343extern "C" {
81f1d030 2344 void pshckp(Double_t & px, Double_t & py, Double_t & pz, Double_t & e,
4aba9d66 2345 Double_t & vx, Double_t & vy, Double_t & vz, Double_t & tof,
2346 Double_t & polx, Double_t & poly, Double_t & polz, Double_t & wgt, Int_t& ntr)
81f1d030 2347 {
2348 //
2349 // Pushes one cerenkov photon to the stack
2350 //
2351
2352 TFluka* fluka = (TFluka*) gMC;
2353 TVirtualMCStack* cppstack = fluka->GetStack();
2354 Int_t parent = TRACKR.ispusr[mkbmx2-1];
2355 cppstack->PushTrack(0, parent, 50000050,
4aba9d66 2356 px, py, pz, e,
2357 vx, vy, vz, tof,
2358 polx, poly, polz,
2359 kPCerenkov, ntr, wgt, 0);
2360 if (fluka->GetVerbosityLevel() >= 3)
2361 printf("pshckp: track=%d parent=%d lattc=%d %s\n", ntr, parent, TRACKR.lt1trk, fluka->CurrentVolName());
81f1d030 2362 }
2363
2364 void ustckv(Int_t & nphot, Int_t & mreg, Double_t & x, Double_t & y, Double_t & z)
7b203b6e 2365 {
4aba9d66 2366 //
2367 // Calls stepping in order to signal cerenkov production
2368 //
2369 TFluka *fluka = (TFluka*)gMC;
2370 fluka->SetMreg(mreg, TRACKR.lt1trk); //LTCLCM.mlatm1);
2371 fluka->SetXsco(x);
2372 fluka->SetYsco(y);
2373 fluka->SetZsco(z);
2374 fluka->SetNCerenkov(nphot);
2375 fluka->SetCaller(kUSTCKV);
2376 if (fluka->GetVerbosityLevel() >= 3)
2377 printf("ustckv: %10d mreg=%d lattc=%d newlat=%d (%f, %f, %f) edep=%f vol=%s\n",
2378 nphot, mreg, TRACKR.lt1trk, LTCLCM.newlat, x, y, z, fluka->Edep(), fluka->CurrentVolName());
2379
2380 // check region lattice consistency (debug Ernesto)
2381 // *****************************************************
2382 Int_t nodeId;
2383 Int_t volId = fluka->CurrentVolID(nodeId);
2384 Int_t crtlttc = gGeoManager->GetCurrentNodeId()+1;
2385
2386 if( mreg != volId && !gGeoManager->IsOutside() ) {
2387 cout << " ustckv: track=" << TRACKR.ispusr[mkbmx2-1] << " pdg=" << fluka->PDGFromId(TRACKR.jtrack)
2388 << " icode=" << fluka->GetIcode() << " gNstep=" << fluka->GetNstep() << endl
2389 << " fluka mreg=" << mreg << " mlttc=" << TRACKR.lt1trk << endl
2390 << " TGeo volId=" << volId << " crtlttc=" << crtlttc << endl
2391 << " common TRACKR lt1trk=" << TRACKR.lt1trk << " lt2trk=" << TRACKR.lt2trk << endl
2392 << " common LTCLCM newlat=" << LTCLCM.newlat << " mlatld=" << LTCLCM.mlatld << endl
2393 << " mlatm1=" << LTCLCM.mlatm1 << " mltsen=" << LTCLCM.mltsen << endl
2394 << " mltsm1=" << LTCLCM.mltsm1 << " mlattc=" << LTCLCM.mlattc << endl;
2395 if( TRACKR.lt1trk == crtlttc ) cout << " *************************************************************" << endl;
2396 }
2397 // *****************************************************
2398
2399
2400
2401 (TVirtualMCApplication::Instance())->Stepping();
7b203b6e 2402 }
3a625972 2403}
a9ea1616 2404
4aba9d66 2405//______________________________________________________________________________
78df7be0 2406void TFluka::AddParticlesToPdgDataBase() const
2407{
2408
2409//
2410// Add particles to the PDG data base
2411
2412 TDatabasePDG *pdgDB = TDatabasePDG::Instance();
2413
78df7be0 2414 const Double_t kAu2Gev = 0.9314943228;
2415 const Double_t khSlash = 1.0545726663e-27;
2416 const Double_t kErg2Gev = 1/1.6021773349e-3;
2417 const Double_t khShGev = khSlash*kErg2Gev;
2418 const Double_t kYear2Sec = 3600*24*365.25;
2419//
2420// Ions
2421//
78df7be0 2422 pdgDB->AddParticle("Deuteron","Deuteron",2*kAu2Gev+8.071e-3,kTRUE,
13858fbd 2423 0,3,"Ion",GetIonPdg(1,2));
78df7be0 2424 pdgDB->AddParticle("Triton","Triton",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2425 khShGev/(12.33*kYear2Sec),3,"Ion",GetIonPdg(1,3));
78df7be0 2426 pdgDB->AddParticle("Alpha","Alpha",4*kAu2Gev+2.424e-3,kTRUE,
13858fbd 2427 khShGev/(12.33*kYear2Sec),6,"Ion",GetIonPdg(2,4));
78df7be0 2428 pdgDB->AddParticle("HE3","HE3",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2429 0,6,"Ion",GetIonPdg(2,3));
78df7be0 2430}
2431
4aba9d66 2432//
2433// Info about primary ionization electrons
2434//
2435
2436//______________________________________________________________________________
2437Int_t TFluka::GetNPrimaryElectrons()
f2a98602 2438{
2439 // Get number of primary electrons
2440 return ALLDLT.nalldl;
2441}
2442
4aba9d66 2443//______________________________________________________________________________
5125d6e5 2444Double_t TFluka::GetPrimaryElectronKineticEnergy(Int_t i) const
f2a98602 2445{
2446 // Returns kinetic energy of primary electron i
5125d6e5 2447
2448 Double_t ekin = -1.;
ea262cc6 2449
f2a98602 2450 if (i >= 0 && i < ALLDLT.nalldl) {
6c854012 2451 ekin = ALLDLT.talldl[i];
f2a98602 2452 } else {
4aba9d66 2453 Warning("GetPrimaryElectronKineticEnergy",
2454 "Primary electron index out of range %d %d \n",
2455 i, ALLDLT.nalldl);
f2a98602 2456 }
f0734960 2457 return ekin;
f2a98602 2458}
5125d6e5 2459
2460void TFluka::GetPrimaryElectronPosition(Int_t i, Double_t& x, Double_t& y, Double_t& z) const
2461{
2462 // Returns position of primary electron i
2463 if (i >= 0 && i < ALLDLT.nalldl) {
6c854012 2464 x = ALLDLT.xalldl[i];
2465 y = ALLDLT.yalldl[i];
2466 z = ALLDLT.zalldl[i];
5125d6e5 2467 return;
2468 } else {
2469 Warning("GetPrimaryElectronPosition",
2470 "Primary electron index out of range %d %d \n",
2471 i, ALLDLT.nalldl);
2472 return;
2473 }
2474 return;
2475}
2476
13858fbd 2477Int_t TFluka::GetIonPdg(Int_t z, Int_t a, Int_t i) const
2478{
2479// Acording to
2480// http://cepa.fnal.gov/psm/stdhep/pdg/montecarlorpp-2006.pdf
5125d6e5 2481
13858fbd 2482 return 1000000000 + 10*1000*z + 10*a + i;
2483}
2484
ea262cc6 2485void TFluka::PrimaryIonisationStepping(Int_t nprim)
2486{
2487// Call Stepping for primary ionisation electrons
2488 Int_t i;
2489// Protection against nprim > mxalld
2490
2491// Multiple steps for nprim > 0
2492 if (nprim > 0) {
2493 for (i = 0; i < nprim; i++) {
2494 SetCurrentPrimaryElectronIndex(i);
2495 (TVirtualMCApplication::Instance())->Stepping();
2496 if (i == 0) SetTrackIsNew(kFALSE);
2497 }
2498 } else {
2499 // No primary electron ionisation
2500 // Call Stepping anyway but flag nprim = 0 as index = -2
2501 SetCurrentPrimaryElectronIndex(-2);
2502 (TVirtualMCApplication::Instance())->Stepping();
2503 }
2504 // Reset the index
2505 SetCurrentPrimaryElectronIndex(-1);
2506}