Update by Raphaelle
[u/mrichter/AliRoot.git] / TFluka / TFluka.cxx
CommitLineData
829fb838 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//
19// Realisation of the TVirtualMC interface for the FLUKA code
20// (See official web side http://www.fluka.org/).
21//
22// This implementation makes use of the TGeo geometry modeller.
23// User configuration is via automatic generation of FLUKA input cards.
24//
25// Authors:
26// A. Fasso
27// E. Futo
28// A. Gheata
29// A. Morsch
30//
31
32#include <Riostream.h>
37b09b91 33#include <TList.h>
829fb838 34
829fb838 35#include "TFluka.h"
a9ea1616 36#include "TFlukaCodes.h"
829fb838 37#include "TCallf77.h" //For the fortran calls
38#include "Fdblprc.h" //(DBLPRC) fluka common
81f1d030 39#include "Fsourcm.h" //(SOURCM) fluka common
40#include "Fgenstk.h" //(GENSTK) fluka common
829fb838 41#include "Fiounit.h" //(IOUNIT) fluka common
42#include "Fpaprop.h" //(PAPROP) fluka common
43#include "Fpart.h" //(PART) fluka common
44#include "Ftrackr.h" //(TRACKR) fluka common
45#include "Fpaprop.h" //(PAPROP) fluka common
46#include "Ffheavy.h" //(FHEAVY) fluka common
3a625972 47#include "Fopphst.h" //(OPPHST) fluka common
81f1d030 48#include "Fflkstk.h" //(FLKSTK) fluka common
07f5b33e 49#include "Fstepsz.h" //(STEPSZ) fluka common
7b203b6e 50#include "Fopphst.h" //(OPPHST) fluka common
a9ea1616 51#include "Fltclcm.h" //(LTCLCM) fluka common
f2a98602 52#include "Falldlt.h" //(ALLDLT) fluka common
829fb838 53
54#include "TVirtualMC.h"
3a625972 55#include "TMCProcess.h"
829fb838 56#include "TGeoManager.h"
57#include "TGeoMaterial.h"
58#include "TGeoMedium.h"
59#include "TFlukaMCGeometry.h"
6f5667d1 60#include "TGeoMCGeometry.h"
829fb838 61#include "TFlukaCerenkov.h"
1df5fa54 62#include "TFlukaConfigOption.h"
b496f27c 63#include "TFlukaScoringOption.h"
829fb838 64#include "TLorentzVector.h"
b496f27c 65#include "TArrayI.h"
a9ea1616 66#include "TArrayD.h"
78df7be0 67#include "TDatabasePDG.h"
4aba9d66 68#include "TStopwatch.h"
69
829fb838 70
71// Fluka methods that may be needed.
72#ifndef WIN32
73# define flukam flukam_
74# define fluka_openinp fluka_openinp_
8e5bf079 75# define fluka_openout fluka_openout_
829fb838 76# define fluka_closeinp fluka_closeinp_
77# define mcihad mcihad_
78# define mpdgha mpdgha_
2047b055 79# define newplo newplo_
4aba9d66 80# define genout genout_
81# define flkend flkend_
829fb838 82#else
83# define flukam FLUKAM
84# define fluka_openinp FLUKA_OPENINP
8e5bf079 85# define fluka_openout FLUKA_OPENOUT
829fb838 86# define fluka_closeinp FLUKA_CLOSEINP
87# define mcihad MCIHAD
88# define mpdgha MPDGHA
eea53470 89# define newplo NEWPLO
4aba9d66 90# define genout GENOUT
91# define flkend FLKEND
829fb838 92#endif
93
94extern "C"
95{
96 //
97 // Prototypes for FLUKA functions
98 //
99 void type_of_call flukam(const int&);
eea53470 100 void type_of_call newplo();
4aba9d66 101 void type_of_call genout();
102 void type_of_call flkend();
829fb838 103 void type_of_call fluka_openinp(const int&, DEFCHARA);
8e5bf079 104 void type_of_call fluka_openout(const int&, DEFCHARA);
829fb838 105 void type_of_call fluka_closeinp(const int&);
106 int type_of_call mcihad(const int&);
107 int type_of_call mpdgha(const int&);
108}
109
110//
111// Class implementation for ROOT
112//
113ClassImp(TFluka)
114
115//
116//----------------------------------------------------------------------------
117// TFluka constructors and destructors.
118//______________________________________________________________________________
119TFluka::TFluka()
120 :TVirtualMC(),
121 fVerbosityLevel(0),
4aba9d66 122 fNEvent(0),
1df5fa54 123 fInputFileName(""),
4aba9d66 124 fCoreInputFileName(""),
125 fCaller(kNoCaller),
126 fIcode(kNoProcess),
127 fNewReg(-1),
128 fRull(0),
129 fXsco(0),
130 fYsco(0),
131 fZsco(0),
132 fTrackIsEntering(kFALSE),
133 fTrackIsExiting(kFALSE),
134 fTrackIsNew(kFALSE),
135 fFieldFlag(kTRUE),
4aba9d66 136 fDummyBoundary(kFALSE),
137 fStopped(kFALSE),
138 fStopEvent(kFALSE),
139 fStopRun(kFALSE),
5125d6e5 140 fPrimaryElectronIndex(-1),
4aba9d66 141 fMaterials(0),
142 fNVolumes(0),
143 fCurrentFlukaRegion(-1),
144 fNCerenkov(0),
145 fGeom(0),
146 fMCGeo(0),
fb2cbbec 147 fUserConfig(0),
1df5fa54 148 fUserScore(0)
829fb838 149{
150 //
151 // Default constructor
152 //
82a3f706 153 for (Int_t i = 0; i < 4; i++) fPint[i] = 0.;
829fb838 154}
155
156//______________________________________________________________________________
157TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported)
158 :TVirtualMC("TFluka",title, isRootGeometrySupported),
159 fVerbosityLevel(verbosity),
4aba9d66 160 fNEvent(0),
829fb838 161 fInputFileName(""),
4aba9d66 162 fCoreInputFileName(""),
163 fCaller(kNoCaller),
164 fIcode(kNoProcess),
165 fNewReg(-1),
166 fRull(0),
167 fXsco(0),
168 fYsco(0),
169 fZsco(0),
170 fTrackIsEntering(kFALSE),
171 fTrackIsExiting(kFALSE),
172 fTrackIsNew(kFALSE),
173 fFieldFlag(kTRUE),
4aba9d66 174 fDummyBoundary(kFALSE),
175 fStopped(kFALSE),
176 fStopEvent(kFALSE),
177 fStopRun(kFALSE),
5125d6e5 178 fPrimaryElectronIndex(-1),
4aba9d66 179 fMaterials(0),
180 fNVolumes(0),
181 fCurrentFlukaRegion(-1),
182 fNCerenkov(0),
183 fGeom(0),
184 fMCGeo(0),
fb2cbbec 185 fUserConfig(new TObjArray(100)),
1df5fa54 186 fUserScore(new TObjArray(100))
829fb838 187{
188 // create geometry interface
82a3f706 189 for (Int_t i = 0; i < 4; i++) fPint[i] = 0.;
190
7f13be31 191 if (fVerbosityLevel >=3)
192 cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl;
193 SetCoreInputFileName();
194 SetInputFileName();
11e4ab84 195 fMCGeo = new TGeoMCGeometry("MCGeo", "TGeo Implementation of VirtualMCGeometry", kFALSE);
fb2cbbec 196 fGeom = new TFlukaMCGeometry("geom", "FLUKA VMC Geometry");
829fb838 197 if (verbosity > 2) fGeom->SetDebugMode(kTRUE);
8e5bf079 198 PrintHeader();
829fb838 199}
200
201//______________________________________________________________________________
4aba9d66 202TFluka::~TFluka()
203{
204 // Destructor
1df5fa54 205 if (fVerbosityLevel >=3)
4aba9d66 206 cout << "<== TFluka::~TFluka() destructor called." << endl;
207 if (fMaterials) delete [] fMaterials;
1df5fa54 208
eac7af60 209// delete fGeom;
210// delete fMCGeo;
1df5fa54 211
fb2cbbec 212 if (fUserConfig) {
4aba9d66 213 fUserConfig->Delete();
214 delete fUserConfig;
1df5fa54 215 }
6d184c54 216
217 if (fUserScore) {
4aba9d66 218 fUserScore->Delete();
219 delete fUserScore;
6d184c54 220 }
829fb838 221}
222
223//
224//______________________________________________________________________________
225// TFluka control methods
226//______________________________________________________________________________
227void TFluka::Init() {
228//
229// Geometry initialisation
230//
231 if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl;
232
233 if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry");
234 fApplication->ConstructGeometry();
d59acfe7 235 if (!gGeoManager->IsClosed()) {
236 TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First();
237 gGeoManager->SetTopVolume(top);
238 gGeoManager->CloseGeometry("di");
239 } else {
240 TGeoNodeCache *cache = gGeoManager->GetCache();
241 if (!cache->HasIdArray()) {
a9ea1616 242 Warning("Init", "Node ID tracking must be enabled with TFluka: enabling...\n");
d59acfe7 243 cache->BuildIdArray();
244 }
245 }
829fb838 246 fNVolumes = fGeom->NofVolumes();
247 fGeom->CreateFlukaMatFile("flukaMat.inp");
248 if (fVerbosityLevel >=3) {
249 printf("== Number of volumes: %i\n ==", fNVolumes);
250 cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
6d184c54 251 }
881cb248 252
253 fApplication->InitGeometry();
661663fa 254 fApplication->ConstructOpGeometry();
78df7be0 255 //
256 // Add ions to PDG Data base
257 //
258 AddParticlesToPdgDataBase();
a9923346 259 //
829fb838 260}
261
262
263//______________________________________________________________________________
264void TFluka::FinishGeometry() {
265//
266// Build-up table with region to medium correspondance
267//
268 if (fVerbosityLevel >=3) {
269 cout << "==> TFluka::FinishGeometry() called." << endl;
2753cb27 270 printf("----FinishGeometry - applying misalignment if any\n");
829fb838 271 cout << "<== TFluka::FinishGeometry() called." << endl;
272 }
2753cb27 273 TVirtualMCApplication::Instance()->MisalignGeometry();
829fb838 274}
275
276//______________________________________________________________________________
277void TFluka::BuildPhysics() {
278//
279// Prepare FLUKA input files and call FLUKA physics initialisation
280//
281
282 if (fVerbosityLevel >=3)
4aba9d66 283 cout << "==> TFluka::BuildPhysics() called." << endl;
6d184c54 284
285
286 if (fVerbosityLevel >=3) {
4aba9d66 287 TList *medlist = gGeoManager->GetListOfMedia();
288 TIter next(medlist);
289 TGeoMedium* med = 0x0;
290 TGeoMaterial* mat = 0x0;
291 Int_t ic = 0;
292
293 while((med = (TGeoMedium*)next()))
294 {
295 mat = med->GetMaterial();
296 printf("Medium %5d %12s %5d %5d\n", ic, (med->GetName()), med->GetId(), mat->GetIndex());
297 ic++;
298 }
6d184c54 299 }
300
d23f4fcd 301
6d184c54 302 // Prepare input file with the current physics settings
303
829fb838 304 InitPhysics();
b8a8a88c 305// Open fortran files
829fb838 306 const char* fname = fInputFileName;
307 fluka_openinp(lunin, PASSCHARA(fname));
8e5bf079 308 fluka_openout(11, PASSCHARA("fluka.out"));
b8a8a88c 309// Read input cards
4aba9d66 310 cout << "==> TFluka::BuildPhysics() Read input cards." << endl;
311 TStopwatch timer;
312 timer.Start();
b8a8a88c 313 GLOBAL.lfdrtr = true;
829fb838 314 flukam(1);
4aba9d66 315 cout << "<== TFluka::BuildPhysics() Read input cards End"
316 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
b8a8a88c 317// Close input file
829fb838 318 fluka_closeinp(lunin);
b8a8a88c 319// Finish geometry
829fb838 320 FinishGeometry();
829fb838 321}
322
323//______________________________________________________________________________
324void TFluka::ProcessEvent() {
325//
326// Process one event
327//
b496f27c 328 if (fStopRun) {
4aba9d66 329 Warning("ProcessEvent", "User Run Abortion: No more events handled !\n");
330 fNEvent += 1;
331 return;
b496f27c 332 }
333
334 if (fVerbosityLevel >=3)
4aba9d66 335 cout << "==> TFluka::ProcessEvent() called." << endl;
b496f27c 336 fApplication->GeneratePrimaries();
81f1d030 337 SOURCM.lsouit = true;
b496f27c 338 flukam(1);
339 if (fVerbosityLevel >=3)
4aba9d66 340 cout << "<== TFluka::ProcessEvent() called." << endl;
b496f27c 341 //
342 // Increase event number
343 //
344 fNEvent += 1;
829fb838 345}
346
347//______________________________________________________________________________
348Bool_t TFluka::ProcessRun(Int_t nevent) {
349//
350// Run steering
351//
4678abb9 352
829fb838 353 if (fVerbosityLevel >=3)
354 cout << "==> TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 355 << endl;
829fb838 356
357 if (fVerbosityLevel >=2) {
358 cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl;
359 cout << "\t* Calling flukam again..." << endl;
360 }
361
829fb838 362 Int_t todo = TMath::Abs(nevent);
363 for (Int_t ev = 0; ev < todo; ev++) {
4aba9d66 364 TStopwatch timer;
365 timer.Start();
829fb838 366 fApplication->BeginEvent();
367 ProcessEvent();
368 fApplication->FinishEvent();
4aba9d66 369 cout << "Event: "<< ev
370 << Form(" R:%.2fs C:%.2fs", timer.RealTime(),timer.CpuTime()) << endl;
829fb838 371 }
372
373 if (fVerbosityLevel >=3)
374 cout << "<== TFluka::ProcessRun(" << nevent << ") called."
4aba9d66 375 << endl;
376
eea53470 377 // Write fluka specific scoring output
4aba9d66 378 genout();
eea53470 379 newplo();
4aba9d66 380 flkend();
eea53470 381
829fb838 382 return kTRUE;
383}
384
385//_____________________________________________________________________________
386// methods for building/management of geometry
387
388// functions from GCONS
389//____________________________________________________________________________
390void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
4aba9d66 391 Float_t &dens, Float_t &radl, Float_t &absl,
392 Float_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 393//
394 TGeoMaterial *mat;
395 TIter next (gGeoManager->GetListOfMaterials());
396 while ((mat = (TGeoMaterial*)next())) {
397 if (mat->GetUniqueID() == (UInt_t)imat) break;
398 }
399 if (!mat) {
400 Error("Gfmate", "no material with index %i found", imat);
401 return;
402 }
403 sprintf(name, "%s", mat->GetName());
404 a = mat->GetA();
405 z = mat->GetZ();
406 dens = mat->GetDensity();
407 radl = mat->GetRadLen();
408 absl = mat->GetIntLen();
409}
410
411//______________________________________________________________________________
412void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z,
4aba9d66 413 Double_t &dens, Double_t &radl, Double_t &absl,
414 Double_t* /*ubuf*/, Int_t& /*nbuf*/) {
829fb838 415//
416 TGeoMaterial *mat;
417 TIter next (gGeoManager->GetListOfMaterials());
418 while ((mat = (TGeoMaterial*)next())) {
419 if (mat->GetUniqueID() == (UInt_t)imat) break;
420 }
421 if (!mat) {
422 Error("Gfmate", "no material with index %i found", imat);
423 return;
424 }
425 sprintf(name, "%s", mat->GetName());
426 a = mat->GetA();
427 z = mat->GetZ();
428 dens = mat->GetDensity();
429 radl = mat->GetRadLen();
430 absl = mat->GetIntLen();
431}
432
433// detector composition
434//______________________________________________________________________________
435void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 436 Double_t z, Double_t dens, Double_t radl, Double_t absl,
437 Float_t* buf, Int_t nwbuf) {
829fb838 438//
439 Double_t* dbuf = fGeom->CreateDoubleArray(buf, nwbuf);
440 Material(kmat, name, a, z, dens, radl, absl, dbuf, nwbuf);
441 delete [] dbuf;
442}
443
444//______________________________________________________________________________
445void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
4aba9d66 446 Double_t z, Double_t dens, Double_t radl, Double_t absl,
447 Double_t* /*buf*/, Int_t /*nwbuf*/) {
829fb838 448//
fb2cbbec 449// Define a material
829fb838 450 TGeoMaterial *mat;
451 kmat = gGeoManager->GetListOfMaterials()->GetSize();
452 if ((z-Int_t(z)) > 1E-3) {
453 mat = fGeom->GetMakeWrongMaterial(z);
454 if (mat) {
455 mat->SetRadLen(radl,absl);
456 mat->SetUniqueID(kmat);
457 return;
458 }
459 }
460 gGeoManager->Material(name, a, z, dens, kmat, radl, absl);
461}
462
463//______________________________________________________________________________
464void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a,
4aba9d66 465 Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) {
829fb838 466//
fb2cbbec 467// Define a material mixture
468//
829fb838 469 Double_t* da = fGeom->CreateDoubleArray(a, TMath::Abs(nlmat));
470 Double_t* dz = fGeom->CreateDoubleArray(z, TMath::Abs(nlmat));
471 Double_t* dwmat = fGeom->CreateDoubleArray(wmat, TMath::Abs(nlmat));
472
473 Mixture(kmat, name, da, dz, dens, nlmat, dwmat);
474 for (Int_t i=0; i<nlmat; i++) {
475 a[i] = da[i]; z[i] = dz[i]; wmat[i] = dwmat[i];
476 }
477
478 delete [] da;
479 delete [] dz;
480 delete [] dwmat;
481}
482
483//______________________________________________________________________________
484void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a,
4aba9d66 485 Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) {
829fb838 486//
487 // Defines mixture OR COMPOUND IMAT as composed by
488 // THE BASIC NLMAT materials defined by arrays A,Z and WMAT
489 //
490 // If NLMAT > 0 then wmat contains the proportion by
491 // weights of each basic material in the mixture.
492 //
493 // If nlmat < 0 then WMAT contains the number of atoms
494 // of a given kind into the molecule of the COMPOUND
495 // In this case, WMAT in output is changed to relative
496 // weigths.
497 //
a8e4986c 498 printf("Mixture %5d %10s %5d \n", kmat, name, nlmat);
499
829fb838 500 Int_t i,j;
501 if (nlmat < 0) {
502 nlmat = - nlmat;
503 Double_t amol = 0;
504 for (i=0;i<nlmat;i++) {
505 amol += a[i]*wmat[i];
506 }
507 for (i=0;i<nlmat;i++) {
508 wmat[i] *= a[i]/amol;
509 }
510 }
511 kmat = gGeoManager->GetListOfMaterials()->GetSize();
512 // Check if we have elements with fractional Z
513 TGeoMaterial *mat = 0;
514 TGeoMixture *mix = 0;
515 Bool_t mixnew = kFALSE;
516 for (i=0; i<nlmat; i++) {
517 if (z[i]-Int_t(z[i]) < 1E-3) continue;
518 // We have found an element with fractional Z -> loop mixtures to look for it
519 for (j=0; j<kmat; j++) {
520 mat = (TGeoMaterial*)gGeoManager->GetListOfMaterials()->At(j);
521 if (!mat) break;
522 if (!mat->IsMixture()) continue;
523 mix = (TGeoMixture*)mat;
524 if (TMath::Abs(z[i]-mix->GetZ()) >1E-3) continue;
829fb838 525 mixnew = kTRUE;
526 break;
527 }
528 if (!mixnew) Warning("Mixture","%s : cannot find component %i with fractional Z=%f\n", name, i, z[i]);
529 break;
530 }
531 if (mixnew) {
532 Int_t nlmatnew = nlmat+mix->GetNelements()-1;
533 Double_t *anew = new Double_t[nlmatnew];
534 Double_t *znew = new Double_t[nlmatnew];
535 Double_t *wmatnew = new Double_t[nlmatnew];
536 Int_t ind=0;
537 for (j=0; j<nlmat; j++) {
538 if (j==i) continue;
539 anew[ind] = a[j];
540 znew[ind] = z[j];
541 wmatnew[ind] = wmat[j];
542 ind++;
543 }
544 for (j=0; j<mix->GetNelements(); j++) {
545 anew[ind] = mix->GetAmixt()[j];
546 znew[ind] = mix->GetZmixt()[j];
547 wmatnew[ind] = wmat[i]*mix->GetWmixt()[j];
548 ind++;
549 }
550 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
551 delete [] anew;
552 delete [] znew;
553 delete [] wmatnew;
554 return;
555 }
556 // Now we need to compact identical elements within the mixture
557 // First check if this happens
558 mixnew = kFALSE;
559 for (i=0; i<nlmat-1; i++) {
560 for (j=i+1; j<nlmat; j++) {
561 if (z[i] == z[j]) {
562 mixnew = kTRUE;
563 break;
564 }
565 }
566 if (mixnew) break;
567 }
568 if (mixnew) {
569 Int_t nlmatnew = 0;
570 Double_t *anew = new Double_t[nlmat];
571 Double_t *znew = new Double_t[nlmat];
572 memset(znew, 0, nlmat*sizeof(Double_t));
573 Double_t *wmatnew = new Double_t[nlmat];
574 Bool_t skipi;
575 for (i=0; i<nlmat; i++) {
576 skipi = kFALSE;
577 for (j=0; j<nlmatnew; j++) {
578 if (z[i] == z[j]) {
579 wmatnew[j] += wmat[i];
580 skipi = kTRUE;
581 break;
582 }
583 }
584 if (skipi) continue;
585 anew[nlmatnew] = a[i];
586 znew[nlmatnew] = z[i];
587 wmatnew[nlmatnew] = wmat[i];
588 nlmatnew++;
589 }
590 Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew);
591 delete [] anew;
592 delete [] znew;
593 delete [] wmatnew;
594 return;
595 }
a8e4986c 596 printf("Mixture (2) %5d %10s %5d \n", kmat, name, nlmat);
597 gGeoManager->Mixture(name, a, z, dens, nlmat, wmat, kmat);
829fb838 598}
599
600//______________________________________________________________________________
601void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 602 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
603 Double_t stemax, Double_t deemax, Double_t epsil,
604 Double_t stmin, Float_t* ubuf, Int_t nbuf) {
b2129742 605 // Define a medium
606 //
829fb838 607 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
608 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 609 epsil, stmin, ubuf, nbuf);
829fb838 610}
611
612//______________________________________________________________________________
613void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
4aba9d66 614 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
615 Double_t stemax, Double_t deemax, Double_t epsil,
616 Double_t stmin, Double_t* ubuf, Int_t nbuf) {
b2129742 617 // Define a medium
618 //
829fb838 619 kmed = gGeoManager->GetListOfMedia()->GetSize()+1;
620 fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
4aba9d66 621 epsil, stmin, ubuf, nbuf);
829fb838 622}
623
624//______________________________________________________________________________
625void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
4aba9d66 626 Double_t thetaY, Double_t phiY, Double_t thetaZ,
627 Double_t phiZ) {
628//
829fb838 629 krot = gGeoManager->GetListOfMatrices()->GetEntriesFast();
630 fMCGeo->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ);
631}
632
633//______________________________________________________________________________
634void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) {
635//
636//
7b203b6e 637//
829fb838 638 Bool_t process = kFALSE;
acf2e119 639 Bool_t modelp = kFALSE;
640
829fb838 641 if (strncmp(param, "DCAY", 4) == 0 ||
642 strncmp(param, "PAIR", 4) == 0 ||
643 strncmp(param, "COMP", 4) == 0 ||
644 strncmp(param, "PHOT", 4) == 0 ||
645 strncmp(param, "PFIS", 4) == 0 ||
646 strncmp(param, "DRAY", 4) == 0 ||
647 strncmp(param, "ANNI", 4) == 0 ||
648 strncmp(param, "BREM", 4) == 0 ||
649 strncmp(param, "MUNU", 4) == 0 ||
650 strncmp(param, "CKOV", 4) == 0 ||
651 strncmp(param, "HADR", 4) == 0 ||
652 strncmp(param, "LOSS", 4) == 0 ||
653 strncmp(param, "MULS", 4) == 0 ||
ea262cc6 654 strncmp(param, "RAYL", 4) == 0)
829fb838 655 {
656 process = kTRUE;
657 }
81f1d030 658
acf2e119 659 if (strncmp(param, "PRIMIO_N", 8) == 0 ||
660 strncmp(param, "PRIMIO_E", 8) == 0)
661 {
662 modelp = kTRUE;
663 }
664
829fb838 665 if (process) {
acf2e119 666 // Process switch
81f1d030 667 SetProcess(param, Int_t (parval), itmed);
acf2e119 668 } else if (modelp) {
669 // Model parameters
670 SetModelParameter(param, parval, itmed);
829fb838 671 } else {
acf2e119 672 // Cuts
81f1d030 673 SetCut(param, parval, itmed);
829fb838 674 }
acf2e119 675
676
829fb838 677}
678
679// functions from GGEOM
680//_____________________________________________________________________________
681void TFluka::Gsatt(const char *name, const char *att, Int_t val)
682{
6f5667d1 683 // Set visualisation attributes for one volume
829fb838 684 char vname[5];
685 fGeom->Vname(name,vname);
686 char vatt[5];
687 fGeom->Vname(att,vatt);
688 gGeoManager->SetVolumeAttribute(vname, vatt, val);
689}
690
691//______________________________________________________________________________
692Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 693 Float_t *upar, Int_t np) {
829fb838 694//
695 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
696}
697
698//______________________________________________________________________________
699Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
4aba9d66 700 Double_t *upar, Int_t np) {
829fb838 701//
702 return fMCGeo->Gsvolu(name, shape, nmed, upar, np);
703}
704
705//______________________________________________________________________________
706void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv,
4aba9d66 707 Int_t iaxis) {
829fb838 708//
709 fMCGeo->Gsdvn(name, mother, ndiv, iaxis);
710}
711
712//______________________________________________________________________________
713void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
4aba9d66 714 Int_t iaxis, Double_t c0i, Int_t numed) {
829fb838 715//
716 fMCGeo->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed);
717}
718
719//______________________________________________________________________________
720void TFluka::Gsdvt(const char *name, const char *mother, Double_t step,
4aba9d66 721 Int_t iaxis, Int_t numed, Int_t ndvmx) {
722//
829fb838 723 fMCGeo->Gsdvt(name, mother, step, iaxis, numed, ndvmx);
724}
725
726//______________________________________________________________________________
727void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step,
4aba9d66 728 Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) {
829fb838 729//
730 fMCGeo->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx);
731}
732
733//______________________________________________________________________________
734void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) {
735//
736// Nothing to do with TGeo
737}
738
739//______________________________________________________________________________
740void TFluka::Gspos(const char *name, Int_t nr, const char *mother,
4aba9d66 741 Double_t x, Double_t y, Double_t z, Int_t irot,
742 const char *konly) {
829fb838 743//
744 fMCGeo->Gspos(name, nr, mother, x, y, z, irot, konly);
745}
746
747//______________________________________________________________________________
748void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 749 Double_t x, Double_t y, Double_t z, Int_t irot,
750 const char *konly, Float_t *upar, Int_t np) {
829fb838 751 //
752 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
753}
754
755//______________________________________________________________________________
756void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
4aba9d66 757 Double_t x, Double_t y, Double_t z, Int_t irot,
758 const char *konly, Double_t *upar, Int_t np) {
829fb838 759 //
760 fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
761}
762
763//______________________________________________________________________________
764void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) {
765//
766// Nothing to do with TGeo
767}
768
a9ea1616 769//______________________________________________________________________
770Bool_t TFluka::GetTransformation(const TString &volumePath,TGeoHMatrix &mat)
771{
772 // Returns the Transformation matrix between the volume specified
773 // by the path volumePath and the Top or mater volume. The format
774 // of the path volumePath is as follows (assuming ALIC is the Top volume)
775 // "/ALIC_1/DDIP_1/S05I_2/S05H_1/S05G_3". Here ALIC is the top most
776 // or master volume which has only 1 instance of. Of all of the daughter
777 // volumes of ALICE, DDIP volume copy #1 is indicated. Similarly for
778 // the daughter volume of DDIP is S05I copy #2 and so on.
779 // Inputs:
780 // TString& volumePath The volume path to the specific volume
781 // for which you want the matrix. Volume name
782 // hierarchy is separated by "/" while the
783 // copy number is appended using a "_".
784 // Outputs:
785 // TGeoHMatrix &mat A matrix with its values set to those
786 // appropriate to the Local to Master transformation
787 // Return:
788 // A logical value if kFALSE then an error occurred and no change to
789 // mat was made.
790
791 // We have to preserve the modeler state
792 return fMCGeo->GetTransformation(volumePath, mat);
793}
794
795//______________________________________________________________________
796Bool_t TFluka::GetShape(const TString &volumePath,TString &shapeType,
797 TArrayD &par)
798{
799 // Returns the shape and its parameters for the volume specified
800 // by volumeName.
801 // Inputs:
802 // TString& volumeName The volume name
803 // Outputs:
804 // TString &shapeType Shape type
805 // TArrayD &par A TArrayD of parameters with all of the
806 // parameters of the specified shape.
807 // Return:
808 // A logical indicating whether there was an error in getting this
809 // information
810 return fMCGeo->GetShape(volumePath, shapeType, par);
811}
812
813//______________________________________________________________________
814Bool_t TFluka::GetMaterial(const TString &volumeName,
815 TString &name,Int_t &imat,
816 Double_t &a,Double_t &z,Double_t &dens,
817 Double_t &radl,Double_t &inter,TArrayD &par)
818{
819 // Returns the Material and its parameters for the volume specified
820 // by volumeName.
821 // Note, Geant3 stores and uses mixtures as an element with an effective
822 // Z and A. Consequently, if the parameter Z is not integer, then
823 // this material represents some sort of mixture.
824 // Inputs:
825 // TString& volumeName The volume name
826 // Outputs:
827 // TSrting &name Material name
828 // Int_t &imat Material index number
829 // Double_t &a Average Atomic mass of material
830 // Double_t &z Average Atomic number of material
831 // Double_t &dens Density of material [g/cm^3]
832 // Double_t &radl Average radiation length of material [cm]
833 // Double_t &inter Average interaction length of material [cm]
834 // TArrayD &par A TArrayD of user defined parameters.
835 // Return:
836 // kTRUE if no errors
837 return fMCGeo->GetMaterial(volumeName,name,imat,a,z,dens,radl,inter,par);
838}
839
840//______________________________________________________________________
841Bool_t TFluka::GetMedium(const TString &volumeName,TString &name,
842 Int_t &imed,Int_t &nmat,Int_t &isvol,Int_t &ifield,
843 Double_t &fieldm,Double_t &tmaxfd,Double_t &stemax,
844 Double_t &deemax,Double_t &epsil, Double_t &stmin,
845 TArrayD &par)
846{
847 // Returns the Medium and its parameters for the volume specified
848 // by volumeName.
849 // Inputs:
850 // TString& volumeName The volume name.
851 // Outputs:
852 // TString &name Medium name
853 // Int_t &nmat Material number defined for this medium
854 // Int_t &imed The medium index number
855 // Int_t &isvol volume number defined for this medium
856 // Int_t &iflield Magnetic field flag
857 // Double_t &fieldm Magnetic field strength
858 // Double_t &tmaxfd Maximum angle of deflection per step
859 // Double_t &stemax Maximum step size
860 // Double_t &deemax Maximum fraction of energy allowed to be lost
861 // to continuous process.
862 // Double_t &epsil Boundary crossing precision
863 // Double_t &stmin Minimum step size allowed
864 // TArrayD &par A TArrayD of user parameters with all of the
865 // parameters of the specified medium.
866 // Return:
867 // kTRUE if there where no errors
868 return fMCGeo->GetMedium(volumeName,name,imed,nmat,isvol,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin,par);
869}
870
829fb838 871//______________________________________________________________________________
872void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 873 Float_t* absco, Float_t* effic, Float_t* rindex) {
829fb838 874//
875// Set Cerenkov properties for medium itmed
876//
877// npckov: number of sampling points
878// ppckov: energy values
879// absco: absorption length
880// effic: quantum efficiency
881// rindex: refraction index
882//
883//
884//
885// Create object holding Cerenkov properties
b6a89226 886//
887
829fb838 888 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex);
889//
890// Pass object to medium
891 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
892 medium->SetCerenkovProperties(cerenkovProperties);
893}
894
b2be0e73 895void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov,
4aba9d66 896 Float_t* absco, Float_t* effic, Float_t* rindex, Float_t* rfl) {
b2be0e73 897//
898// Set Cerenkov properties for medium itmed
899//
900// npckov: number of sampling points
901// ppckov: energy values
902// absco: absorption length
903// effic: quantum efficiency
904// rindex: refraction index
905// rfl: reflectivity for boundary to medium itmed
906//
907//
908// Create object holding Cerenkov properties
909//
910 TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex, rfl);
911//
912// Pass object to medium
913 TGeoMedium* medium = gGeoManager->GetMedium(itmed);
914 medium->SetCerenkovProperties(cerenkovProperties);
915}
916
917
829fb838 918//______________________________________________________________________________
b6a89226 919void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov,
920 Double_t *absco, Double_t *effic, Double_t *rindex) {
921//
922// Set Cerenkov properties for medium itmed
829fb838 923//
b6a89226 924// npckov: number of sampling points
925// ppckov: energy values
926// absco: absorption length
927// effic: quantum efficiency
928// rindex: refraction index
929//
930
931//
932// Double_t version
933 Float_t* fppckov = CreateFloatArray(ppckov, npckov);
934 Float_t* fabsco = CreateFloatArray(absco, npckov);
935 Float_t* feffic = CreateFloatArray(effic, npckov);
936 Float_t* frindex = CreateFloatArray(rindex, npckov);
937
938 SetCerenkov(itmed, npckov, fppckov, fabsco, feffic, frindex);
939
940 delete [] fppckov;
941 delete [] fabsco;
942 delete [] feffic;
943 delete [] frindex;
829fb838 944}
b2be0e73 945
b6a89226 946void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Double_t* ppckov,
947 Double_t* absco, Double_t* effic, Double_t* rindex, Double_t* rfl) {
b2be0e73 948//
b6a89226 949// Set Cerenkov properties for medium itmed
950//
951// npckov: number of sampling points
952// ppckov: energy values
953// absco: absorption length
954// effic: quantum efficiency
955// rindex: refraction index
956// rfl: reflectivity for boundary to medium itmed
957//
958
959//
960// // Double_t version
961 Float_t* fppckov = CreateFloatArray(ppckov, npckov);
962 Float_t* fabsco = CreateFloatArray(absco, npckov);
963 Float_t* feffic = CreateFloatArray(effic, npckov);
964 Float_t* frindex = CreateFloatArray(rindex, npckov);
965 Float_t* frfl = CreateFloatArray(rfl, npckov);
966
967 SetCerenkov(itmed, npckov, fppckov, fabsco, feffic, frindex, frfl);
968
969 delete [] fppckov;
970 delete [] fabsco;
971 delete [] feffic;
972 delete [] frindex;
973 delete [] frfl;
b2be0e73 974}
975
829fb838 976// Euclid
977//______________________________________________________________________________
978void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/,
979 Int_t /*number*/, Int_t /*nlevel*/) {
980//
981// Not with TGeo
a9ea1616 982 Warning("WriteEuclid", "Not implemented !");
829fb838 983}
984
985
986
987//_____________________________________________________________________________
988// methods needed by the stepping
989//____________________________________________________________________________
990
991Int_t TFluka::GetMedium() const {
992//
993// Get the medium number for the current fluka region
994//
ab2afdda 995 if (gGeoManager->IsOutside()) {
996 return (-1);
997 } else {
998 return (fGeom->GetMedium()); // this I need to check due to remapping !!!
999 }
829fb838 1000}
1001
a9ea1616 1002//____________________________________________________________________________
1003Int_t TFluka::GetDummyRegion() const
1004{
1005// Returns index of the dummy region.
1006 return fGeom->GetDummyRegion();
1007}
829fb838 1008
a9ea1616 1009//____________________________________________________________________________
1010Int_t TFluka::GetDummyLattice() const
1011{
1012// Returns index of the dummy lattice.
1013 return fGeom->GetDummyLattice();
1014}
829fb838 1015
1016//____________________________________________________________________________
1017// particle table usage
1018// ID <--> PDG transformations
1019//_____________________________________________________________________________
1020Int_t TFluka::IdFromPDG(Int_t pdg) const
1021{
1022 //
1023 // Return Fluka code from PDG and pseudo ENDF code
1024
1025 // Catch the feedback photons
a9ea1616 1026 if (pdg == 50000051) return (kFLUKAoptical);
829fb838 1027 // MCIHAD() goes from pdg to fluka internal.
1028 Int_t intfluka = mcihad(pdg);
1029 // KPTOIP array goes from internal to official
1030 return GetFlukaKPTOIP(intfluka);
1031}
1032
1033//______________________________________________________________________________
1034Int_t TFluka::PDGFromId(Int_t id) const
1035{
1036 //
1037 // Return PDG code and pseudo ENDF code from Fluka code
f926898e 1038 // Alpha He3 Triton Deuteron gen. ion opt. photon
13858fbd 1039 Int_t idSpecial[6] = {GetIonPdg(2,4), GetIonPdg(2, 3), GetIonPdg(1,3), GetIonPdg(1,2), GetIonPdg(0,0), 50000050};
829fb838 1040 // IPTOKP array goes from official to internal
1041
a9ea1616 1042 if (id == kFLUKAoptical) {
829fb838 1043// Cerenkov photon
4aba9d66 1044// if (fVerbosityLevel >= 3)
1045// printf("\n PDGFromId: Cerenkov Photon \n");
1046 return 50000050;
829fb838 1047 }
1048// Error id
ece92b30 1049 if (id == 0 || id < kFLUKAcodemin || id > kFLUKAcodemax) {
66e5eb54 1050 if (fVerbosityLevel >= 3)
a9923346 1051 printf("PDGFromId: Error id = 0 %5d %5d\n", id, fCaller);
4aba9d66 1052 return -1;
829fb838 1053 }
1054// Good id
f926898e 1055 if (id > 0) {
4aba9d66 1056 Int_t intfluka = GetFlukaIPTOKP(id);
1057 if (intfluka == 0) {
1058 if (fVerbosityLevel >= 3)
1059 printf("PDGFromId: Error intfluka = 0: %d\n", id);
1060 return -1;
1061 } else if (intfluka < 0) {
1062 if (fVerbosityLevel >= 3)
1063 printf("PDGFromId: Error intfluka < 0: %d\n", id);
1064 return -1;
1065 }
1066// if (fVerbosityLevel >= 3)
1067// printf("mpdgha called with %d %d \n", id, intfluka);
1068 return mpdgha(intfluka);
f926898e 1069 } else {
4aba9d66 1070 // ions and optical photons
1071 return idSpecial[id - kFLUKAcodemin];
829fb838 1072 }
829fb838 1073}
1074
bd3d5c8a 1075void TFluka::StopTrack()
1076{
1077 // Set stopping conditions
1078 // Works for photons and charged particles
1079 fStopped = kTRUE;
1080}
1081
829fb838 1082//_____________________________________________________________________________
1083// methods for physics management
1084//____________________________________________________________________________
1085//
1086// set methods
1087//
1088
1df5fa54 1089void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed)
829fb838 1090{
1091// Set process user flag for material imat
1092//
1df5fa54 1093//
1094// Update if already in the list
1095//
fb2cbbec 1096 TIter next(fUserConfig);
1df5fa54 1097 TFlukaConfigOption* proc;
1098 while((proc = (TFlukaConfigOption*)next()))
1099 {
4aba9d66 1100 if (proc->Medium() == imed) {
1101 proc->SetProcess(flagName, flagValue);
1102 return;
1103 }
1df5fa54 1104 }
fb2cbbec 1105 proc = new TFlukaConfigOption(imed);
1106 proc->SetProcess(flagName, flagValue);
1107 fUserConfig->Add(proc);
1108}
1109
1110//______________________________________________________________________________
1111Bool_t TFluka::SetProcess(const char* flagName, Int_t flagValue)
1112{
1113// Set process user flag
1df5fa54 1114//
1df5fa54 1115//
fb2cbbec 1116 SetProcess(flagName, flagValue, -1);
1df5fa54 1117 return kTRUE;
829fb838 1118}
1119
1120//______________________________________________________________________________
1121void TFluka::SetCut(const char* cutName, Double_t cutValue, Int_t imed)
1122{
1123// Set user cut value for material imed
1124//
fb2cbbec 1125 TIter next(fUserConfig);
1126 TFlukaConfigOption* proc;
1127 while((proc = (TFlukaConfigOption*)next()))
1128 {
4aba9d66 1129 if (proc->Medium() == imed) {
1130 proc->SetCut(cutName, cutValue);
1131 return;
1132 }
fb2cbbec 1133 }
1134
1135 proc = new TFlukaConfigOption(imed);
1136 proc->SetCut(cutName, cutValue);
1137 fUserConfig->Add(proc);
829fb838 1138}
1139
acf2e119 1140
1141//______________________________________________________________________________
1142void TFluka::SetModelParameter(const char* parName, Double_t parValue, Int_t imed)
1143{
1144// Set model parameter for material imed
1145//
1146 TIter next(fUserConfig);
1147 TFlukaConfigOption* proc;
1148 while((proc = (TFlukaConfigOption*)next()))
1149 {
4aba9d66 1150 if (proc->Medium() == imed) {
1151 proc->SetModelParameter(parName, parValue);
1152 return;
1153 }
acf2e119 1154 }
1155
1156 proc = new TFlukaConfigOption(imed);
1157 proc->SetModelParameter(parName, parValue);
1158 fUserConfig->Add(proc);
1159}
1160
829fb838 1161//______________________________________________________________________________
1162Bool_t TFluka::SetCut(const char* cutName, Double_t cutValue)
1163{
1164// Set user cut value
1165//
1df5fa54 1166//
fb2cbbec 1167 SetCut(cutName, cutValue, -1);
1168 return kTRUE;
829fb838 1169}
1170
f450e9d0 1171
6f1aaa8e 1172void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what)
b496f27c 1173{
1174//
f450e9d0 1175// Adds a user scoring option to the list
b496f27c 1176//
6f1aaa8e 1177 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr,outfile,what);
f450e9d0 1178 fUserScore->Add(opt);
1179}
1180//______________________________________________________________________________
6f1aaa8e 1181void TFluka::SetUserScoring(const char* option, const char* sdum, Int_t npr, char* outfile, Float_t* what,
1182 const char* det1, const char* det2, const char* det3)
f450e9d0 1183{
1184//
1185// Adds a user scoring option to the list
1186//
6f1aaa8e 1187 TFlukaScoringOption* opt = new TFlukaScoringOption(option, sdum, npr, outfile, what, det1, det2, det3);
b496f27c 1188 fUserScore->Add(opt);
1189}
b496f27c 1190
829fb838 1191//______________________________________________________________________________
1192Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t)
1193{
a9ea1616 1194 Warning("Xsec", "Not yet implemented.!\n"); return -1.;
829fb838 1195}
1196
1197
1198//______________________________________________________________________________
1199void TFluka::InitPhysics()
1200{
1201//
1202// Physics initialisation with preparation of FLUKA input cards
1203//
fb2cbbec 1204// Construct file names
1205 FILE *pFlukaVmcCoreInp, *pFlukaVmcFlukaMat, *pFlukaVmcInp;
1206 TString sFlukaVmcCoreInp = getenv("ALICE_ROOT");
1207 sFlukaVmcCoreInp +="/TFluka/input/";
1208 TString sFlukaVmcTmp = "flukaMat.inp";
1209 TString sFlukaVmcInp = GetInputFileName();
1210 sFlukaVmcCoreInp += GetCoreInputFileName();
1211
1212// Open files
1213 if ((pFlukaVmcCoreInp = fopen(sFlukaVmcCoreInp.Data(),"r")) == NULL) {
4aba9d66 1214 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcCoreInp.Data());
1215 exit(1);
fb2cbbec 1216 }
1217 if ((pFlukaVmcFlukaMat = fopen(sFlukaVmcTmp.Data(),"r")) == NULL) {
4aba9d66 1218 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcTmp.Data());
1219 exit(1);
fb2cbbec 1220 }
1221 if ((pFlukaVmcInp = fopen(sFlukaVmcInp.Data(),"w")) == NULL) {
4aba9d66 1222 Warning("InitPhysics", "\nCannot open file %s\n",sFlukaVmcInp.Data());
1223 exit(1);
fb2cbbec 1224 }
829fb838 1225
fb2cbbec 1226// Copy core input file
1227 Char_t sLine[255];
1228 Float_t fEventsPerRun;
829fb838 1229
fb2cbbec 1230 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
4aba9d66 1231 if (strncmp(sLine,"GEOEND",6) != 0)
1232 fprintf(pFlukaVmcInp,"%s",sLine); // copy until GEOEND card
1233 else {
1234 fprintf(pFlukaVmcInp,"GEOEND\n"); // add GEOEND card
1235 goto flukamat;
1236 }
fb2cbbec 1237 } // end of while until GEOEND card
1238
829fb838 1239
fb2cbbec 1240 flukamat:
1241 while ((fgets(sLine,255,pFlukaVmcFlukaMat)) != NULL) { // copy flukaMat.inp file
4aba9d66 1242 fprintf(pFlukaVmcInp,"%s\n",sLine);
fb2cbbec 1243 }
1244
1245 while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) {
8fc475a1 1246 if (strncmp(sLine,"START",5) != 0)
4aba9d66 1247 fprintf(pFlukaVmcInp,"%s\n",sLine);
1248 else {
1249 sscanf(sLine+10,"%10f",&fEventsPerRun);
1250 goto fin;
1251 }
8fc475a1 1252 } //end of while until START card
fb2cbbec 1253
1254 fin:
829fb838 1255
f450e9d0 1256
1257// Pass information to configuration objects
829fb838 1258
fb2cbbec 1259 Float_t fLastMaterial = fGeom->GetLastMaterialIndex();
1260 TFlukaConfigOption::SetStaticInfo(pFlukaVmcInp, 3, fLastMaterial, fGeom);
1261
1262 TIter next(fUserConfig);
1263 TFlukaConfigOption* proc;
f450e9d0 1264 while((proc = dynamic_cast<TFlukaConfigOption*> (next()))) proc->WriteFlukaInputCards();
1265//
1266// Process Fluka specific scoring options
1267//
1268 TFlukaScoringOption::SetStaticInfo(pFlukaVmcInp, fGeom);
0bb2c369 1269 Float_t loginp = -49.0;
f450e9d0 1270 Int_t inp = 0;
1271 Int_t nscore = fUserScore->GetEntries();
1272
a9ea1616 1273 TFlukaScoringOption *mopo = 0;
1274 TFlukaScoringOption *mopi = 0;
fb2cbbec 1275
f450e9d0 1276 for (Int_t isc = 0; isc < nscore; isc++)
1277 {
4aba9d66 1278 mopo = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isc));
1279 char* fileName = mopo->GetFileName();
1280 Int_t size = strlen(fileName);
1281 Float_t lun = -1.;
f450e9d0 1282//
1283// Check if new output file has to be opened
4aba9d66 1284 for (Int_t isci = 0; isci < isc; isci++) {
1285
1286
1287 mopi = dynamic_cast<TFlukaScoringOption*> (fUserScore->At(isci));
1288 if(strncmp(mopi->GetFileName(), fileName, size)==0) {
1289 //
1290 // No, the file already exists
1291 lun = mopi->GetLun();
1292 mopo->SetLun(lun);
1293 break;
1294 }
1295 } // inner loop
1296
1297 if (lun == -1.) {
1298 // Open new output file
1299 inp++;
1300 mopo->SetLun(loginp + inp);
1301 mopo->WriteOpenFlukaFile();
1302 }
1303 mopo->WriteFlukaInputCards();
f450e9d0 1304 }
b8a8a88c 1305
1306// Add RANDOMIZ card
1307 fprintf(pFlukaVmcInp,"RANDOMIZ %10.1f%10.0f\n", 1., Float_t(gRandom->GetSeed()));
8fc475a1 1308// Add START and STOP card
1309 fprintf(pFlukaVmcInp,"START %10.1f\n",fEventsPerRun);
f450e9d0 1310 fprintf(pFlukaVmcInp,"STOP \n");
829fb838 1311
1312
1313// Close files
3b8c325d 1314 fclose(pFlukaVmcCoreInp);
1315 fclose(pFlukaVmcFlukaMat);
1316 fclose(pFlukaVmcInp);
fb2cbbec 1317
1318
1319//
1320// Initialisation needed for Cerenkov photon production and transport
1321 TObjArray *matList = GetFlukaMaterials();
1322 Int_t nmaterial = matList->GetEntriesFast();
9968e86c 1323 fMaterials = new Int_t[nmaterial+25];
fb2cbbec 1324
1325 for (Int_t im = 0; im < nmaterial; im++)
1326 {
4aba9d66 1327 TGeoMaterial* material = dynamic_cast<TGeoMaterial*> (matList->At(im));
1328 Int_t idmat = material->GetIndex();
1329 fMaterials[idmat] = im;
fb2cbbec 1330 }
829fb838 1331} // end of InitPhysics
1332
1333
1334//______________________________________________________________________________
07f5b33e 1335void TFluka::SetMaxStep(Double_t step)
829fb838 1336{
07f5b33e 1337// Set the maximum step size
4aba9d66 1338// if (step > 1.e4) return;
07f5b33e 1339
4aba9d66 1340// Int_t mreg=0, latt=0;
1341// fGeom->GetCurrentRegion(mreg, latt);
1342 Int_t mreg = fGeom->GetCurrentRegion();
9c0c08ce 1343 STEPSZ.stepmx[mreg - 1] = step;
829fb838 1344}
1345
2f09b80e 1346
1347Double_t TFluka::MaxStep() const
1348{
1349// Return the maximum for current medium
1350 Int_t mreg, latt;
1351 fGeom->GetCurrentRegion(mreg, latt);
1352 return (STEPSZ.stepmx[mreg - 1]);
1353}
1354
829fb838 1355//______________________________________________________________________________
1356void TFluka::SetMaxNStep(Int_t)
1357{
1358// SetMaxNStep is dummy procedure in TFluka !
1359 if (fVerbosityLevel >=3)
1360 cout << "SetMaxNStep is dummy procedure in TFluka !" << endl;
1361}
1362
1363//______________________________________________________________________________
1364void TFluka::SetUserDecay(Int_t)
1365{
1366// SetUserDecay is dummy procedure in TFluka !
1367 if (fVerbosityLevel >=3)
1368 cout << "SetUserDecay is dummy procedure in TFluka !" << endl;
1369}
1370
1371//
1372// dynamic properties
1373//
1374//______________________________________________________________________________
1375void TFluka::TrackPosition(TLorentzVector& position) const
1376{
1377// Return the current position in the master reference frame of the
1378// track being transported
1379// TRACKR.atrack = age of the particle
1380// TRACKR.xtrack = x-position of the last point
1381// TRACKR.ytrack = y-position of the last point
1382// TRACKR.ztrack = z-position of the last point
a9ea1616 1383 FlukaCallerCode_t caller = GetCaller();
1384 if (caller == kENDRAW || caller == kUSDRAW ||
1385 caller == kBXExiting || caller == kBXEntering ||
1386 caller == kUSTCKV) {
42b936d1 1387 position.SetX(GetXsco());
1388 position.SetY(GetYsco());
1389 position.SetZ(GetZsco());
1390 position.SetT(TRACKR.atrack);
829fb838 1391 }
5125d6e5 1392 else if (caller == kMGDRAW) {
1393 Int_t i = -1;
1394 if ((i = fPrimaryElectronIndex) > -1) {
1395 // Primary Electron Ionisation
1396 Double_t x, y, z;
1397 GetPrimaryElectronPosition(i, x, y, z);
1398 position.SetX(x);
1399 position.SetY(y);
1400 position.SetZ(z);
1401 position.SetT(TRACKR.atrack);
1402 } else {
1403 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1404 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1405 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1406 position.SetT(TRACKR.atrack);
1407 }
829fb838 1408 }
a9ea1616 1409 else if (caller == kSODRAW) {
42b936d1 1410 Int_t ist = FLKSTK.npflka;
1411 position.SetX(FLKSTK.xflk[ist]);
1412 position.SetY(FLKSTK.yflk[ist]);
1413 position.SetZ(FLKSTK.zflk[ist]);
1414 position.SetT(FLKSTK.agestk[ist]);
a9ea1616 1415 } else if (caller == kMGResumedTrack) {
42b936d1 1416 position.SetX(TRACKR.spausr[0]);
1417 position.SetY(TRACKR.spausr[1]);
1418 position.SetZ(TRACKR.spausr[2]);
1419 position.SetT(TRACKR.spausr[3]);
829fb838 1420 }
1421 else
42b936d1 1422 Warning("TrackPosition","position not available");
829fb838 1423}
1424
1425//______________________________________________________________________________
1426void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const
1427{
1428// Return the current position in the master reference frame of the
1429// track being transported
1430// TRACKR.atrack = age of the particle
1431// TRACKR.xtrack = x-position of the last point
1432// TRACKR.ytrack = y-position of the last point
1433// TRACKR.ztrack = z-position of the last point
a9ea1616 1434 FlukaCallerCode_t caller = GetCaller();
1435 if (caller == kENDRAW || caller == kUSDRAW ||
1436 caller == kBXExiting || caller == kBXEntering ||
1437 caller == kUSTCKV) {
5125d6e5 1438 x = GetXsco();
1439 y = GetYsco();
1440 z = GetZsco();
829fb838 1441 }
42b936d1 1442 else if (caller == kMGDRAW) {
5125d6e5 1443 Int_t i = -1;
1444 if ((i = fPrimaryElectronIndex) > -1) {
1445 GetPrimaryElectronPosition(i, x, y, z);
1446 } else {
1447 x = TRACKR.xtrack[TRACKR.ntrack];
1448 y = TRACKR.ytrack[TRACKR.ntrack];
1449 z = TRACKR.ztrack[TRACKR.ntrack];
1450 }
829fb838 1451 }
42b936d1 1452 else if (caller == kSODRAW) {
1453 Int_t ist = FLKSTK.npflka;
1454 x = FLKSTK.xflk[ist];
1455 y = FLKSTK.yflk[ist];
1456 z = FLKSTK.zflk[ist];
1457 }
a9ea1616 1458 else if (caller == kMGResumedTrack) {
42b936d1 1459 x = TRACKR.spausr[0];
1460 y = TRACKR.spausr[1];
1461 z = TRACKR.spausr[2];
5d80a015 1462 }
829fb838 1463 else
42b936d1 1464 Warning("TrackPosition","position not available");
829fb838 1465}
1466
1467//______________________________________________________________________________
1468void TFluka::TrackMomentum(TLorentzVector& momentum) const
1469{
1470// Return the direction and the momentum (GeV/c) of the track
1471// currently being transported
1472// TRACKR.ptrack = momentum of the particle (not always defined, if
1473// < 0 must be obtained from etrack)
1474// TRACKR.cx,y,ztrck = direction cosines of the current particle
1475// TRACKR.etrack = total energy of the particle
1476// TRACKR.jtrack = identity number of the particle
1477// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1478 FlukaCallerCode_t caller = GetCaller();
1479 FlukaProcessCode_t icode = GetIcode();
1480
82a3f706 1481 if (caller != kEEDRAW &&
1482 caller != kMGResumedTrack &&
1483 caller != kSODRAW &&
1484 caller != kUSDRAW &&
a9ea1616 1485 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
42b936d1 1486 if (TRACKR.ptrack >= 0) {
1487 momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck);
1488 momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck);
1489 momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck);
1490 momentum.SetE(TRACKR.etrack);
1491 return;
1492 }
1493 else {
1494 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
1495 momentum.SetPx(p*TRACKR.cxtrck);
1496 momentum.SetPy(p*TRACKR.cytrck);
1497 momentum.SetPz(p*TRACKR.cztrck);
1498 momentum.SetE(TRACKR.etrack);
1499 return;
1500 }
a9ea1616 1501 } else if (caller == kMGResumedTrack) {
42b936d1 1502 momentum.SetPx(TRACKR.spausr[4]);
1503 momentum.SetPy(TRACKR.spausr[5]);
1504 momentum.SetPz(TRACKR.spausr[6]);
1505 momentum.SetE (TRACKR.spausr[7]);
1506 return;
a9ea1616 1507 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1508 momentum.SetPx(0.);
1509 momentum.SetPy(0.);
1510 momentum.SetPz(0.);
1511 momentum.SetE(TrackMass());
42b936d1 1512
1513 } else if (caller == kSODRAW) {
1514 Int_t ist = FLKSTK.npflka;
1515 Double_t p = FLKSTK.pmoflk[ist];
1516 Int_t ifl = FLKSTK.iloflk[ist];
1517 Double_t m = PAPROP.am[ifl + 6];
1518 Double_t e = TMath::Sqrt(p * p + m * m);
1519 momentum.SetPx(p * FLKSTK.txflk[ist]);
1520 momentum.SetPy(p * FLKSTK.tyflk[ist]);
1521 momentum.SetPz(p * FLKSTK.tzflk[ist]);
1522 momentum.SetE(e);
82a3f706 1523 } else if (caller == kUSDRAW) {
6df2c1cc 1524 if (icode == kEMFSCObrems ||
1525 icode == kEMFSCOmoller ||
1526 icode == kEMFSCObhabha ||
1527 icode == kEMFSCOcompton )
1528 {
82a3f706 1529 momentum.SetPx(fPint[0]);
1530 momentum.SetPy(fPint[1]);
1531 momentum.SetPz(fPint[2]);
1532 momentum.SetE(fPint[3]);
6df2c1cc 1533 } else if (icode == kKASKADdray ||
1534 icode == kKASKADbrems ||
1535 icode == kKASKADpair) {
1536 momentum.SetPx(GENSTK.plr[0] * GENSTK.cxr[0]);
1537 momentum.SetPy(GENSTK.plr[0] * GENSTK.cyr[0]);
1538 momentum.SetPz(GENSTK.plr[0] * GENSTK.czr[0]);
1539 momentum.SetE (GENSTK.tki[0] + PAPROP.am[GENSTK.kpart[0]+6]);
82a3f706 1540 } else {
6df2c1cc 1541 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack
1542 - ParticleMassFPC(TRACKR.jtrack)
1543 * ParticleMassFPC(TRACKR.jtrack));
82a3f706 1544 momentum.SetPx(p*TRACKR.cxtrck);
1545 momentum.SetPy(p*TRACKR.cytrck);
1546 momentum.SetPz(p*TRACKR.cztrck);
1547 momentum.SetE(TRACKR.etrack);
1548 }
829fb838 1549 }
1550 else
1551 Warning("TrackMomentum","momentum not available");
1552}
1553
1554//______________________________________________________________________________
1555void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const
1556{
1557// Return the direction and the momentum (GeV/c) of the track
1558// currently being transported
1559// TRACKR.ptrack = momentum of the particle (not always defined, if
1560// < 0 must be obtained from etrack)
1561// TRACKR.cx,y,ztrck = direction cosines of the current particle
1562// TRACKR.etrack = total energy of the particle
1563// TRACKR.jtrack = identity number of the particle
1564// PAPROP.am[TRACKR.jtrack] = particle mass in gev
a9ea1616 1565 FlukaCallerCode_t caller = GetCaller();
1566 FlukaProcessCode_t icode = GetIcode();
42b936d1 1567 if (caller != kEEDRAW &&
1568 caller != kMGResumedTrack &&
1569 caller != kSODRAW &&
82a3f706 1570 caller != kUSDRAW &&
a9ea1616 1571 (caller != kENDRAW || (icode != kEMFSCOstopping1 && icode != kEMFSCOstopping2))) {
829fb838 1572 if (TRACKR.ptrack >= 0) {
1573 px = TRACKR.ptrack*TRACKR.cxtrck;
1574 py = TRACKR.ptrack*TRACKR.cytrck;
1575 pz = TRACKR.ptrack*TRACKR.cztrck;
a9ea1616 1576 e = TRACKR.etrack;
829fb838 1577 return;
1578 }
1579 else {
ece92b30 1580 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
829fb838 1581 px = p*TRACKR.cxtrck;
1582 py = p*TRACKR.cytrck;
1583 pz = p*TRACKR.cztrck;
a9ea1616 1584 e = TRACKR.etrack;
829fb838 1585 return;
1586 }
a9ea1616 1587 } else if (caller == kMGResumedTrack) {
5d80a015 1588 px = TRACKR.spausr[4];
1589 py = TRACKR.spausr[5];
1590 pz = TRACKR.spausr[6];
1591 e = TRACKR.spausr[7];
0773d0ac 1592 return;
a9ea1616 1593 } else if (caller == kENDRAW && (icode == kEMFSCOstopping1 || icode == kEMFSCOstopping2)) {
1594 px = 0.;
1595 py = 0.;
1596 pz = 0.;
1597 e = TrackMass();
42b936d1 1598 } else if (caller == kSODRAW) {
1599 Int_t ist = FLKSTK.npflka;
1600 Double_t p = FLKSTK.pmoflk[ist];
1601 Int_t ifl = FLKSTK.iloflk[ist];
1602 Double_t m = PAPROP.am[ifl + 6];
1603 e = TMath::Sqrt(p * p + m * m);
1604 px = p * FLKSTK.txflk[ist];
1605 py = p * FLKSTK.tyflk[ist];
1606 pz = p * FLKSTK.tzflk[ist];
82a3f706 1607 } else if (caller == kUSDRAW) {
6df2c1cc 1608 if (icode == kEMFSCObrems ||
1609 icode == kEMFSCOmoller ||
1610 icode == kEMFSCObhabha ||
1611 icode == kEMFSCOcompton )
1612 {
82a3f706 1613 px = fPint[0];
1614 py = fPint[1];
1615 pz = fPint[2];
1616 e = fPint[3];
6df2c1cc 1617 } else if (icode == kKASKADdray ||
1618 icode == kKASKADbrems ||
1619 icode == kKASKADpair) {
1620 px = GENSTK.plr[0] * GENSTK.cxr[0];
1621 py = GENSTK.plr[0] * GENSTK.cyr[0];
1622 pz = GENSTK.plr[0] * GENSTK.czr[0];
1623 e = GENSTK.tki[0] + PAPROP.am[GENSTK.kpart[0]+6];
82a3f706 1624 } else {
1625 Double_t p = sqrt(TRACKR.etrack * TRACKR.etrack - ParticleMassFPC(TRACKR.jtrack) * ParticleMassFPC(TRACKR.jtrack));
1626 px = p*TRACKR.cxtrck;
1627 py = p*TRACKR.cytrck;
1628 pz = p*TRACKR.cztrck;
1629 e = TRACKR.etrack;
1630 }
829fb838 1631 }
1632 else
42b936d1 1633 Warning("TrackMomentum","momentum not available");
829fb838 1634}
1635
1636//______________________________________________________________________________
1637Double_t TFluka::TrackStep() const
1638{
1639// Return the length in centimeters of the current step
1640// TRACKR.ctrack = total curved path
42b936d1 1641 FlukaCallerCode_t caller = GetCaller();
1642 if (caller == kBXEntering || caller == kBXExiting ||
1643 caller == kENDRAW || caller == kUSDRAW ||
1644 caller == kUSTCKV || caller == kMGResumedTrack ||
1645 caller == kSODRAW)
1646 return 0.0;
a9ea1616 1647 else if (caller == kMGDRAW)
829fb838 1648 return TRACKR.ctrack;
669cede4 1649 else {
1650 Warning("TrackStep", "track step not available");
1651 return 0.0;
1652 }
829fb838 1653}
1654
1655//______________________________________________________________________________
1656Double_t TFluka::TrackLength() const
1657{
1658// TRACKR.cmtrck = cumulative curved path since particle birth
a9ea1616 1659 FlukaCallerCode_t caller = GetCaller();
1660 if (caller == kBXEntering || caller == kBXExiting ||
1661 caller == kENDRAW || caller == kUSDRAW || caller == kMGDRAW ||
1662 caller == kUSTCKV)
829fb838 1663 return TRACKR.cmtrck;
a9ea1616 1664 else if (caller == kMGResumedTrack)
5d80a015 1665 return TRACKR.spausr[8];
82a3f706 1666 else if (caller == kSODRAW)
1667 return 0.0;
669cede4 1668 else {
82a3f706 1669 Warning("TrackLength", "track length not available for caller %5d \n", caller);
669cede4 1670 return 0.0;
1671 }
829fb838 1672}
1673
1674//______________________________________________________________________________
1675Double_t TFluka::TrackTime() const
1676{
1677// Return the current time of flight of the track being transported
1678// TRACKR.atrack = age of the particle
a9ea1616 1679 FlukaCallerCode_t caller = GetCaller();
1680 if (caller == kBXEntering || caller == kBXExiting ||
1681 caller == kENDRAW || caller == kUSDRAW || caller == kMGDRAW ||
1682 caller == kUSTCKV)
829fb838 1683 return TRACKR.atrack;
a9ea1616 1684 else if (caller == kMGResumedTrack)
5d80a015 1685 return TRACKR.spausr[3];
42b936d1 1686 else if (caller == kSODRAW) {
1687 return (FLKSTK.agestk[FLKSTK.npflka]);
1688 }
669cede4 1689 else {
1690 Warning("TrackTime", "track time not available");
1691 return 0.0;
1692 }
829fb838 1693}
1694
1695//______________________________________________________________________________
1696Double_t TFluka::Edep() const
1697{
1698// Energy deposition
1699// if TRACKR.ntrack = 0, TRACKR.mtrack = 0:
1700// -->local energy deposition (the value and the point are not recorded in TRACKR)
1701// but in the variable "rull" of the procedure "endraw.cxx"
1702// if TRACKR.ntrack > 0, TRACKR.mtrack = 0:
1703// -->no energy loss along the track
1704// if TRACKR.ntrack > 0, TRACKR.mtrack > 0:
1705// -->energy loss distributed along the track
07f5b33e 1706// TRACKR.dtrack = energy deposition of the jth deposition event
829fb838 1707
1708 // If coming from bxdraw we have 2 steps of 0 length and 0 edep
669cede4 1709 // If coming from usdraw we just signal particle production - no edep
1710 // If just first time after resuming, no edep for the primary
a9ea1616 1711 FlukaCallerCode_t caller = GetCaller();
ada781c7 1712
a9ea1616 1713 if (caller == kBXExiting || caller == kBXEntering ||
42b936d1 1714 caller == kUSDRAW || caller == kMGResumedTrack ||
1715 caller == kSODRAW)
1716 return 0.0;
829fb838 1717 Double_t sum = 0;
5125d6e5 1718 Int_t i = -1;
09cdde8a 1719
ada781c7 1720 // Material with primary ionisation activated but number of primary electrons nprim = 0
1721 if (fPrimaryElectronIndex == -2) return 0.0;
1722 // nprim > 0
5125d6e5 1723 if ((i = fPrimaryElectronIndex) > -1) {
1724 // Primary ionisation
ada781c7 1725 sum = GetPrimaryElectronKineticEnergy(i);
1726 if (sum > 100.) {
1727 printf("edep > 100. %d %d %f \n", i, ALLDLT.nalldl, sum);
1728 }
1729 return sum;
5125d6e5 1730 } else {
1731 // Normal ionisation
1732 if (TRACKR.mtrack > 1) printf("Edep: %6d\n", TRACKR.mtrack);
1733
1734 for ( Int_t j=0;j<TRACKR.mtrack;j++) {
1735 sum +=TRACKR.dtrack[j];
1736 }
1737 if (TRACKR.ntrack == 0 && TRACKR.mtrack == 0)
1738 return fRull + sum;
1739 else {
1740 return sum;
1741 }
829fb838 1742 }
1743}
1744
1745//______________________________________________________________________________
18e0cabb 1746Int_t TFluka::CorrectFlukaId() const
1747{
1748 // since we don't put photons and e- created bellow transport cut on the vmc stack
1749 // and there is a call to endraw for energy deposition for each of them
1750 // and they have the track number of their parent, but different identity (pdg)
4aba9d66 1751 // so we want to assign also their parent identity.
cc7af78a 1752
a9923346 1753 if( (IsTrackStop())
18e0cabb 1754 && TRACKR.ispusr[mkbmx2 - 4] == TRACKR.ispusr[mkbmx2 - 1]
1755 && TRACKR.jtrack != TRACKR.ispusr[mkbmx2 - 3] ) {
1756 if (fVerbosityLevel >=3)
1757 cout << "CorrectFlukaId() for icode=" << GetIcode()
1758 << " track=" << TRACKR.ispusr[mkbmx2 - 1]
1759 << " current PDG=" << PDGFromId(TRACKR.jtrack)
1760 << " assign parent PDG=" << PDGFromId(TRACKR.ispusr[mkbmx2 - 3]) << endl;
1761 return TRACKR.ispusr[mkbmx2 - 3]; // assign parent identity
1762 }
13858fbd 1763 if (TRACKR.jtrack <= 64){
cc7af78a 1764 return TRACKR.jtrack;
1765 } else {
1766 return TRACKR.j0trck;
1767 }
18e0cabb 1768}
1769
1770
1771//______________________________________________________________________________
829fb838 1772Int_t TFluka::TrackPid() const
1773{
1774// Return the id of the particle transported
1775// TRACKR.jtrack = identity number of the particle
a9ea1616 1776 FlukaCallerCode_t caller = GetCaller();
42b936d1 1777 if (caller != kEEDRAW && caller != kSODRAW) {
18e0cabb 1778 return PDGFromId( CorrectFlukaId() );
f926898e 1779 }
42b936d1 1780 else if (caller == kSODRAW) {
1781 return PDGFromId(FLKSTK.iloflk[FLKSTK.npflka]);
1782 }
829fb838 1783 else
1784 return -1000;
1785}
1786
1787//______________________________________________________________________________
1788Double_t TFluka::TrackCharge() const
1789{
1790// Return charge of the track currently transported
1791// PAPROP.ichrge = electric charge of the particle
1792// TRACKR.jtrack = identity number of the particle
13858fbd 1793
a9ea1616 1794 FlukaCallerCode_t caller = GetCaller();
42b936d1 1795 if (caller != kEEDRAW && caller != kSODRAW)
1796 return PAPROP.ichrge[CorrectFlukaId() + 6];
1797 else if (caller == kSODRAW) {
1798 Int_t ifl = PDGFromId(FLKSTK.iloflk[FLKSTK.npflka]);
1799 return PAPROP.ichrge[ifl + 6];
1800 }
829fb838 1801 else
1802 return -1000.0;
1803}
1804
1805//______________________________________________________________________________
1806Double_t TFluka::TrackMass() const
1807{
1808// PAPROP.am = particle mass in GeV
1809// TRACKR.jtrack = identity number of the particle
a9ea1616 1810 FlukaCallerCode_t caller = GetCaller();
42b936d1 1811 if (caller != kEEDRAW && caller != kSODRAW)
18e0cabb 1812 return PAPROP.am[CorrectFlukaId()+6];
42b936d1 1813 else if (caller == kSODRAW) {
82a3f706 1814 Int_t ifl = FLKSTK.iloflk[FLKSTK.npflka];
42b936d1 1815 return PAPROP.am[ifl + 6];
1816 }
829fb838 1817 else
1818 return -1000.0;
1819}
1820
1821//______________________________________________________________________________
1822Double_t TFluka::Etot() const
1823{
1824// TRACKR.etrack = total energy of the particle
6df2c1cc 1825 FlukaCallerCode_t caller = GetCaller();
1826 FlukaProcessCode_t icode = GetIcode();
1827 if (caller != kEEDRAW && caller != kSODRAW && caller != kUSDRAW)
1828 {
1829 return TRACKR.etrack;
1830 } else if (caller == kUSDRAW) {
1831 if (icode == kEMFSCObrems ||
1832 icode == kEMFSCOmoller ||
1833 icode == kEMFSCObhabha ||
1834 icode == kEMFSCOcompton ) {
1835 return fPint[3];
1836 }
1837 else if (icode == kKASKADdray ||
1838 icode == kKASKADbrems ||
1839 icode == kKASKADpair) {
1840 return (GENSTK.tki[0] + PAPROP.am[GENSTK.kpart[0]+6]);
1841 }
1842 }
42b936d1 1843 else if (caller == kSODRAW) {
1844 Int_t ist = FLKSTK.npflka;
1845 Double_t p = FLKSTK.pmoflk[ist];
1846 Int_t ifl = FLKSTK.iloflk[ist];
1847 Double_t m = PAPROP.am[ifl + 6];
1848 Double_t e = TMath::Sqrt(p * p + m * m);
1849 return e;
1850 }
6df2c1cc 1851
1852 return -1000.0;
829fb838 1853}
1854
1855//
1856// track status
1857//
1858//______________________________________________________________________________
1859Bool_t TFluka::IsNewTrack() const
1860{
1861// Return true for the first call of Stepping()
1862 return fTrackIsNew;
1863}
1864
0dabe425 1865void TFluka::SetTrackIsNew(Bool_t flag)
1866{
1867// Return true for the first call of Stepping()
1868 fTrackIsNew = flag;
1869
1870}
1871
1872
829fb838 1873//______________________________________________________________________________
1874Bool_t TFluka::IsTrackInside() const
1875{
1876// True if the track is not at the boundary of the current volume
1877// In Fluka a step is always inside one kind of material
1878// If the step would go behind the region of one material,
1879// it will be shortened to reach only the boundary.
1880// Therefore IsTrackInside() is always true.
a9ea1616 1881 FlukaCallerCode_t caller = GetCaller();
1882 if (caller == kBXEntering || caller == kBXExiting)
829fb838 1883 return 0;
1884 else
1885 return 1;
1886}
1887
1888//______________________________________________________________________________
1889Bool_t TFluka::IsTrackEntering() const
1890{
1891// True if this is the first step of the track in the current volume
1892
a9ea1616 1893 FlukaCallerCode_t caller = GetCaller();
1894 if (caller == kBXEntering)
829fb838 1895 return 1;
1896 else return 0;
1897}
1898
1899//______________________________________________________________________________
1900Bool_t TFluka::IsTrackExiting() const
1901{
1902// True if track is exiting volume
1903//
a9ea1616 1904 FlukaCallerCode_t caller = GetCaller();
1905 if (caller == kBXExiting)
829fb838 1906 return 1;
1907 else return 0;
1908}
1909
1910//______________________________________________________________________________
1911Bool_t TFluka::IsTrackOut() const
1912{
1913// True if the track is out of the setup
1914// means escape
a9ea1616 1915 FlukaProcessCode_t icode = GetIcode();
1916
1917 if (icode == kKASKADescape ||
1918 icode == kEMFSCOescape ||
1919 icode == kKASNEUescape ||
1920 icode == kKASHEAescape ||
1921 icode == kKASOPHescape)
1922 return 1;
829fb838 1923 else return 0;
1924}
1925
1926//______________________________________________________________________________
1927Bool_t TFluka::IsTrackDisappeared() const
1928{
a9ea1616 1929// All inelastic interactions and decays
829fb838 1930// fIcode from usdraw
a9ea1616 1931 FlukaProcessCode_t icode = GetIcode();
1932 if (icode == kKASKADinelint || // inelastic interaction
1933 icode == kKASKADdecay || // particle decay
1934 icode == kKASKADdray || // delta ray generation by hadron
1935 icode == kKASKADpair || // direct pair production
1936 icode == kKASKADbrems || // bremsstrahlung (muon)
1937 icode == kEMFSCObrems || // bremsstrahlung (electron)
1938 icode == kEMFSCOmoller || // Moller scattering
1939 icode == kEMFSCObhabha || // Bhaba scattering
1940 icode == kEMFSCOanniflight || // in-flight annihilation
1941 icode == kEMFSCOannirest || // annihilation at rest
1942 icode == kEMFSCOpair || // pair production
1943 icode == kEMFSCOcompton || // Compton scattering
1944 icode == kEMFSCOphotoel || // Photoelectric effect
1945 icode == kKASNEUhadronic || // hadronic interaction
2047b055 1946 icode == kKASHEAdray // delta-ray
0dabe425 1947 ) return 1;
829fb838 1948 else return 0;
1949}
1950
1951//______________________________________________________________________________
1952Bool_t TFluka::IsTrackStop() const
1953{
1954// True if the track energy has fallen below the threshold
1955// means stopped by signal or below energy threshold
a9ea1616 1956 FlukaProcessCode_t icode = GetIcode();
18e0cabb 1957 if (icode == kKASKADstopping || // stopping particle
1958 icode == kKASKADtimekill || // time kill
1959 icode == kEMFSCOstopping1 || // below user-defined cut-off
1960 icode == kEMFSCOstopping2 || // below user cut-off
1961 icode == kEMFSCOtimekill || // time kill
1962 icode == kKASNEUstopping || // neutron below threshold
1963 icode == kKASNEUtimekill || // time kill
1964 icode == kKASHEAtimekill || // time kill
1965 icode == kKASOPHtimekill) return 1; // time kill
829fb838 1966 else return 0;
1967}
1968
1969//______________________________________________________________________________
1970Bool_t TFluka::IsTrackAlive() const
1971{
1972// means not disappeared or not out
ea262cc6 1973 if (IsTrackDisappeared() || IsTrackOut() ) return 0;
1974 else return 1;
829fb838 1975}
1976
1977//
1978// secondaries
1979//
1980
1981//______________________________________________________________________________
1982Int_t TFluka::NSecondaries() const
1983
1984{
1985// Number of secondary particles generated in the current step
81f1d030 1986// GENSTK.np = number of secondaries except light and heavy ions
829fb838 1987// FHEAVY.npheav = number of secondaries for light and heavy secondary ions
a9ea1616 1988 FlukaCallerCode_t caller = GetCaller();
1989 if (caller == kUSDRAW) // valid only after usdraw
4aba9d66 1990 return GENSTK.np + FHEAVY.npheav;
a9ea1616 1991 else if (caller == kUSTCKV) {
4aba9d66 1992 // Cerenkov Photon production
1993 return fNCerenkov;
7b203b6e 1994 }
829fb838 1995 return 0;
1996} // end of NSecondaries
1997
1998//______________________________________________________________________________
1999void TFluka::GetSecondary(Int_t isec, Int_t& particleId,
4aba9d66 2000 TLorentzVector& position, TLorentzVector& momentum)
829fb838 2001{
2002// Copy particles from secondary stack to vmc stack
2003//
2004
a9ea1616 2005 FlukaCallerCode_t caller = GetCaller();
2006 if (caller == kUSDRAW) { // valid only after usdraw
4aba9d66 2007 if (GENSTK.np > 0) {
2008 // Hadronic interaction
2009 if (isec >= 0 && isec < GENSTK.np) {
2010 particleId = PDGFromId(GENSTK.kpart[isec]);
2011 position.SetX(fXsco);
2012 position.SetY(fYsco);
2013 position.SetZ(fZsco);
2014 position.SetT(TRACKR.atrack);
2015 momentum.SetPx(GENSTK.plr[isec]*GENSTK.cxr[isec]);
2016 momentum.SetPy(GENSTK.plr[isec]*GENSTK.cyr[isec]);
2017 momentum.SetPz(GENSTK.plr[isec]*GENSTK.czr[isec]);
2018 momentum.SetE(GENSTK.tki[isec] + PAPROP.am[GENSTK.kpart[isec]+6]);
2019 }
2020 else if (isec >= GENSTK.np && isec < GENSTK.np + FHEAVY.npheav) {
2021 Int_t jsec = isec - GENSTK.np;
2022 particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!!
2023 position.SetX(fXsco);
2024 position.SetY(fYsco);
2025 position.SetZ(fZsco);
2026 position.SetT(TRACKR.atrack);
2027 momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]);
2028 momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]);
2029 momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]);
2030 if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6)
2031 momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]);
2032 else if (FHEAVY.tkheav[jsec] > 6)
2033 momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!!
2034 }
2035 else
2036 Warning("GetSecondary","isec out of range");
2037 }
a9ea1616 2038 } else if (caller == kUSTCKV) {
4aba9d66 2039 Int_t index = OPPHST.lstopp - isec;
2040 position.SetX(OPPHST.xoptph[index]);
2041 position.SetY(OPPHST.yoptph[index]);
2042 position.SetZ(OPPHST.zoptph[index]);
2043 position.SetT(OPPHST.agopph[index]);
2044 Double_t p = OPPHST.poptph[index];
2045
2046 momentum.SetPx(p * OPPHST.txopph[index]);
2047 momentum.SetPy(p * OPPHST.tyopph[index]);
2048 momentum.SetPz(p * OPPHST.tzopph[index]);
2049 momentum.SetE(p);
829fb838 2050 }
2051 else
4aba9d66 2052 Warning("GetSecondary","no secondaries available");
7b203b6e 2053
829fb838 2054} // end of GetSecondary
2055
7b203b6e 2056
829fb838 2057//______________________________________________________________________________
2058TMCProcess TFluka::ProdProcess(Int_t) const
2059
2060{
2061// Name of the process that has produced the secondary particles
2062// in the current step
0dabe425 2063
a9ea1616 2064 Int_t mugamma = (TRACKR.jtrack == kFLUKAphoton ||
4aba9d66 2065 TRACKR.jtrack == kFLUKAmuplus ||
2066 TRACKR.jtrack == kFLUKAmuminus);
a9ea1616 2067 FlukaProcessCode_t icode = GetIcode();
2068
2069 if (icode == kKASKADdecay) return kPDecay;
2070 else if (icode == kKASKADpair || icode == kEMFSCOpair) return kPPair;
2071 else if (icode == kEMFSCOcompton) return kPCompton;
2072 else if (icode == kEMFSCOphotoel) return kPPhotoelectric;
2073 else if (icode == kKASKADbrems || icode == kEMFSCObrems) return kPBrem;
2074 else if (icode == kKASKADdray || icode == kKASHEAdray) return kPDeltaRay;
2075 else if (icode == kEMFSCOmoller || icode == kEMFSCObhabha) return kPDeltaRay;
2076 else if (icode == kEMFSCOanniflight || icode == kEMFSCOannirest) return kPAnnihilation;
2077 else if (icode == kKASKADinelint) {
4aba9d66 2078 if (!mugamma) return kPHadronic;
2079 else if (TRACKR.jtrack == kFLUKAphoton) return kPPhotoFission;
2080 else return kPMuonNuclear;
829fb838 2081 }
a9ea1616 2082 else if (icode == kEMFSCOrayleigh) return kPRayleigh;
829fb838 2083// Fluka codes 100, 300 and 400 still to be investigasted
a9ea1616 2084 else return kPNoProcess;
829fb838 2085}
2086
829fb838 2087
b496f27c 2088Int_t TFluka::StepProcesses(TArrayI &proc) const
2089{
2090 //
2091 // Return processes active in the current step
2092 //
e71bcde8 2093 FlukaProcessCode_t icode = GetIcode();
2094 FlukaCallerCode_t caller = GetCaller();
2095
b496f27c 2096 proc.Set(1);
2097 TMCProcess iproc;
87ad3c3e 2098 if (caller == kBXEntering || caller == kBXExiting || caller == kEEDRAW || caller == kSODRAW) {
e71bcde8 2099 iproc = kPTransportation;
87ad3c3e 2100 }
2101 else if (caller == kUSTCKV) {
2102 iproc = kPCerenkov;
e71bcde8 2103 } else {
2104 switch (icode) {
2105 case kEMFSCO:
82a3f706 2106 if (Edep() > 0.) {
2107 iproc = kPEnergyLoss;
2108 } else {
2109 iproc = kPTransportation;
2110 }
e71bcde8 2111 break;
6df2c1cc 2112 case kKASKAD:
2113 if (Edep() > 0.) {
2114 iproc = kPEnergyLoss;
2115 } else {
2116 iproc = kPTransportation;
2117 }
2118 break;
87ad3c3e 2119 case kKASHEA:
2120 case kKASNEU:
2121 case kKASOPH:
2122 case kKASKADescape:
2123 case kEMFSCOescape:
2124 case kKASNEUescape:
2125 case kKASHEAescape:
2126 case kKASOPHescape:
2127 iproc = kPTransportation;
2128 break;
e71bcde8 2129 case kKASKADtimekill:
2130 case kEMFSCOtimekill:
2131 case kKASNEUtimekill:
2132 case kKASHEAtimekill:
2133 case kKASOPHtimekill:
2134 iproc = kPTOFlimit;
2135 break;
2136 case kKASKADstopping:
e71bcde8 2137 case kEMFSCOstopping1:
2138 case kEMFSCOstopping2:
e71bcde8 2139 case kKASNEUstopping:
e71bcde8 2140 iproc = kPStop;
2141 break;
2142 case kKASOPHabsorption:
2143 iproc = kPLightAbsorption;
2144 break;
2145 case kKASOPHrefraction:
2146 iproc = kPLightRefraction;
87ad3c3e 2147 break;
e71bcde8 2148 case kEMFSCOlocaldep :
2149 iproc = kPPhotoelectric;
2150 break;
2151 default:
2152 iproc = ProdProcess(0);
2153 }
b496f27c 2154 }
e71bcde8 2155
07f5b33e 2156 proc[0] = iproc;
b496f27c 2157 return 1;
2158}
829fb838 2159//______________________________________________________________________________
2160Int_t TFluka::VolId2Mate(Int_t id) const
2161{
2162//
2163// Returns the material number for a given volume ID
2164//
2165 return fMCGeo->VolId2Mate(id);
2166}
2167
2168//______________________________________________________________________________
2169const char* TFluka::VolName(Int_t id) const
2170{
2171//
2172// Returns the volume name for a given volume ID
2173//
2174 return fMCGeo->VolName(id);
2175}
2176
a8e4986c 2177Int_t TFluka::MediumId(const Text_t* mediumName) const
2178{
2179 //
2180 // Return the unique medium id for medium with name mediumName
2181 TList *medlist = gGeoManager->GetListOfMedia();
2182 TGeoMedium* med = (TGeoMedium*) medlist->FindObject(mediumName);
2183 if (med) {
2184 return (med->GetId());
2185 } else {
2186 return (-1);
2187 }
2188}
2189
829fb838 2190//______________________________________________________________________________
2191Int_t TFluka::VolId(const Text_t* volName) const
2192{
2193//
2194// Converts from volume name to volume ID.
2195// Time consuming. (Only used during set-up)
2196// Could be replaced by hash-table
2197//
09cd6497 2198 char sname[20];
2199 Int_t len;
2200 strncpy(sname, volName, len = strlen(volName));
2201 sname[len] = 0;
2202 while (sname[len - 1] == ' ') sname[--len] = 0;
2203 return fMCGeo->VolId(sname);
829fb838 2204}
2205
2206//______________________________________________________________________________
2207Int_t TFluka::CurrentVolID(Int_t& copyNo) const
2208{
2209//
2210// Return the logical id and copy number corresponding to the current fluka region
2211//
2212 if (gGeoManager->IsOutside()) return 0;
2213 TGeoNode *node = gGeoManager->GetCurrentNode();
2214 copyNo = node->GetNumber();
2215 Int_t id = node->GetVolume()->GetNumber();
2216 return id;
2217}
2218
2219//______________________________________________________________________________
2220Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const
2221{
2222//
2223// Return the logical id and copy number of off'th mother
2224// corresponding to the current fluka region
2225//
2226 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2227 if (off==0) return CurrentVolID(copyNo);
2228 TGeoNode *node = gGeoManager->GetMother(off);
2229 if (!node) return 0;
2230 copyNo = node->GetNumber();
2231 return node->GetVolume()->GetNumber();
2232}
2233
2234//______________________________________________________________________________
2235const char* TFluka::CurrentVolName() const
2236{
2237//
2238// Return the current volume name
2239//
ab2afdda 2240 if (gGeoManager->IsOutside()) return "OutOfWorld";
829fb838 2241 return gGeoManager->GetCurrentVolume()->GetName();
2242}
2243
2244//______________________________________________________________________________
2245const char* TFluka::CurrentVolOffName(Int_t off) const
2246{
2247//
2248// Return the volume name of the off'th mother of the current volume
2249//
2250 if (off<0 || off>gGeoManager->GetLevel()) return 0;
2251 if (off==0) return CurrentVolName();
2252 TGeoNode *node = gGeoManager->GetMother(off);
2253 if (!node) return 0;
2254 return node->GetVolume()->GetName();
2255}
2256
d59acfe7 2257const char* TFluka::CurrentVolPath() {
2258 // Return the current volume path
2259 return gGeoManager->GetPath();
2260}
829fb838 2261//______________________________________________________________________________
a60813de 2262Int_t TFluka::CurrentMaterial(Float_t & a, Float_t & z,
4aba9d66 2263 Float_t & dens, Float_t & radl, Float_t & absl) const
829fb838 2264{
2265//
a60813de 2266// Return the current medium number and material properties
829fb838 2267//
2268 Int_t copy;
2269 Int_t id = TFluka::CurrentVolID(copy);
2270 Int_t med = TFluka::VolId2Mate(id);
a60813de 2271 TGeoVolume* vol = gGeoManager->GetCurrentVolume();
2272 TGeoMaterial* mat = vol->GetMaterial();
2273 a = mat->GetA();
2274 z = mat->GetZ();
2275 dens = mat->GetDensity();
2276 radl = mat->GetRadLen();
2277 absl = mat->GetIntLen();
2278
829fb838 2279 return med;
2280}
2281
2282//______________________________________________________________________________
2283void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
2284{
2285// Transforms a position from the world reference frame
2286// to the current volume reference frame.
2287//
2288// Geant3 desription:
2289// ==================
2290// Computes coordinates XD (in DRS)
2291// from known coordinates XM in MRS
2292// The local reference system can be initialized by
2293// - the tracking routines and GMTOD used in GUSTEP
2294// - a call to GMEDIA(XM,NUMED)
2295// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2296// (inverse routine is GDTOM)
2297//
2298// If IFLAG=1 convert coordinates
2299// IFLAG=2 convert direction cosinus
2300//
2301// ---
2302 Double_t xmL[3], xdL[3];
2303 Int_t i;
2304 for (i=0;i<3;i++) xmL[i]=xm[i];
2305 if (iflag == 1) gGeoManager->MasterToLocal(xmL,xdL);
2306 else gGeoManager->MasterToLocalVect(xmL,xdL);
2307 for (i=0;i<3;i++) xd[i] = xdL[i];
2308}
2309
2310//______________________________________________________________________________
2311void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
2312{
2047b055 2313//
2314// See Gmtod(Float_t*, Float_t*, Int_t)
2315//
829fb838 2316 if (iflag == 1) gGeoManager->MasterToLocal(xm,xd);
2317 else gGeoManager->MasterToLocalVect(xm,xd);
2318}
2319
2320//______________________________________________________________________________
2321void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
2322{
2323// Transforms a position from the current volume reference frame
2324// to the world reference frame.
2325//
2326// Geant3 desription:
2327// ==================
2328// Computes coordinates XM (Master Reference System
2329// knowing the coordinates XD (Detector Ref System)
2330// The local reference system can be initialized by
2331// - the tracking routines and GDTOM used in GUSTEP
2332// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2333// (inverse routine is GMTOD)
2334//
2335// If IFLAG=1 convert coordinates
2336// IFLAG=2 convert direction cosinus
2337//
2338// ---
2339 Double_t xmL[3], xdL[3];
2340 Int_t i;
2341 for (i=0;i<3;i++) xdL[i] = xd[i];
2342 if (iflag == 1) gGeoManager->LocalToMaster(xdL,xmL);
2343 else gGeoManager->LocalToMasterVect(xdL,xmL);
2344 for (i=0;i<3;i++) xm[i]=xmL[i];
2345}
2346
2347//______________________________________________________________________________
2348void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
2349{
2047b055 2350//
2351// See Gdtom(Float_t*, Float_t*, Int_t)
2352//
829fb838 2353 if (iflag == 1) gGeoManager->LocalToMaster(xd,xm);
2354 else gGeoManager->LocalToMasterVect(xd,xm);
2355}
2356
2357//______________________________________________________________________________
2358TObjArray *TFluka::GetFlukaMaterials()
2359{
2047b055 2360//
2361// Get array of Fluka materials
829fb838 2362 return fGeom->GetMatList();
2363}
2364
2365//______________________________________________________________________________
a9ea1616 2366void TFluka::SetMreg(Int_t l, Int_t lttc)
829fb838 2367{
2368// Set current fluka region
2369 fCurrentFlukaRegion = l;
a9ea1616 2370 fGeom->SetMreg(l,lttc);
829fb838 2371}
2372
2373
b496f27c 2374
2375
4aba9d66 2376//______________________________________________________________________________
b496f27c 2377TString TFluka::ParticleName(Int_t pdg) const
2378{
2379 // Return particle name for particle with pdg code pdg.
2380 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2381 return TString((CHPPRP.btype[ifluka - kFLUKAcodemin]), 8);
b496f27c 2382}
2383
2384
4aba9d66 2385//______________________________________________________________________________
b496f27c 2386Double_t TFluka::ParticleMass(Int_t pdg) const
2387{
2388 // Return particle mass for particle with pdg code pdg.
2389 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2390 return (PAPROP.am[ifluka - kFLUKAcodemin]);
2391}
2392
4aba9d66 2393//______________________________________________________________________________
ece92b30 2394Double_t TFluka::ParticleMassFPC(Int_t fpc) const
2395{
2396 // Return particle mass for particle with Fluka particle code fpc
2397 return (PAPROP.am[fpc - kFLUKAcodemin]);
b496f27c 2398}
2399
4aba9d66 2400//______________________________________________________________________________
b496f27c 2401Double_t TFluka::ParticleCharge(Int_t pdg) const
2402{
2403 // Return particle charge for particle with pdg code pdg.
2404 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2405 return Double_t(PAPROP.ichrge[ifluka - kFLUKAcodemin]);
b496f27c 2406}
2407
4aba9d66 2408//______________________________________________________________________________
b496f27c 2409Double_t TFluka::ParticleLifeTime(Int_t pdg) const
2410{
2411 // Return particle lifetime for particle with pdg code pdg.
2412 Int_t ifluka = IdFromPDG(pdg);
ece92b30 2413 return (PAPROP.tmnlf[ifluka - kFLUKAcodemin]);
b496f27c 2414}
2415
4aba9d66 2416//______________________________________________________________________________
b496f27c 2417void TFluka::Gfpart(Int_t pdg, char* name, Int_t& type, Float_t& mass, Float_t& charge, Float_t& tlife)
2418{
2419 // Retrieve particle properties for particle with pdg code pdg.
2420
2421 strcpy(name, ParticleName(pdg).Data());
2422 type = ParticleMCType(pdg);
2423 mass = ParticleMass(pdg);
2424 charge = ParticleCharge(pdg);
2425 tlife = ParticleLifeTime(pdg);
2426}
2427
4aba9d66 2428//______________________________________________________________________________
8e5bf079 2429void TFluka::PrintHeader()
2430{
2431 //
2432 // Print a header
2433 printf("\n");
2434 printf("\n");
2435 printf("------------------------------------------------------------------------------\n");
2436 printf("- You are using the TFluka Virtual Monte Carlo Interface to FLUKA. -\n");
2437 printf("- Please see the file fluka.out for FLUKA output and licensing information. -\n");
2438 printf("------------------------------------------------------------------------------\n");
2439 printf("\n");
2440 printf("\n");
2441}
2442
b496f27c 2443
81f1d030 2444#define pshckp pshckp_
2445#define ustckv ustckv_
3a625972 2446
2447
2448extern "C" {
81f1d030 2449 void pshckp(Double_t & px, Double_t & py, Double_t & pz, Double_t & e,
4aba9d66 2450 Double_t & vx, Double_t & vy, Double_t & vz, Double_t & tof,
2451 Double_t & polx, Double_t & poly, Double_t & polz, Double_t & wgt, Int_t& ntr)
81f1d030 2452 {
2453 //
2454 // Pushes one cerenkov photon to the stack
2455 //
2456
2457 TFluka* fluka = (TFluka*) gMC;
2458 TVirtualMCStack* cppstack = fluka->GetStack();
2459 Int_t parent = TRACKR.ispusr[mkbmx2-1];
2460 cppstack->PushTrack(0, parent, 50000050,
4aba9d66 2461 px, py, pz, e,
2462 vx, vy, vz, tof,
2463 polx, poly, polz,
2464 kPCerenkov, ntr, wgt, 0);
2465 if (fluka->GetVerbosityLevel() >= 3)
2466 printf("pshckp: track=%d parent=%d lattc=%d %s\n", ntr, parent, TRACKR.lt1trk, fluka->CurrentVolName());
81f1d030 2467 }
2468
2469 void ustckv(Int_t & nphot, Int_t & mreg, Double_t & x, Double_t & y, Double_t & z)
7b203b6e 2470 {
4aba9d66 2471 //
2472 // Calls stepping in order to signal cerenkov production
2473 //
2474 TFluka *fluka = (TFluka*)gMC;
2475 fluka->SetMreg(mreg, TRACKR.lt1trk); //LTCLCM.mlatm1);
2476 fluka->SetXsco(x);
2477 fluka->SetYsco(y);
2478 fluka->SetZsco(z);
2479 fluka->SetNCerenkov(nphot);
2480 fluka->SetCaller(kUSTCKV);
2481 if (fluka->GetVerbosityLevel() >= 3)
2482 printf("ustckv: %10d mreg=%d lattc=%d newlat=%d (%f, %f, %f) edep=%f vol=%s\n",
2483 nphot, mreg, TRACKR.lt1trk, LTCLCM.newlat, x, y, z, fluka->Edep(), fluka->CurrentVolName());
2484
2485 // check region lattice consistency (debug Ernesto)
2486 // *****************************************************
2487 Int_t nodeId;
2488 Int_t volId = fluka->CurrentVolID(nodeId);
2489 Int_t crtlttc = gGeoManager->GetCurrentNodeId()+1;
2490
2491 if( mreg != volId && !gGeoManager->IsOutside() ) {
2492 cout << " ustckv: track=" << TRACKR.ispusr[mkbmx2-1] << " pdg=" << fluka->PDGFromId(TRACKR.jtrack)
2493 << " icode=" << fluka->GetIcode() << " gNstep=" << fluka->GetNstep() << endl
2494 << " fluka mreg=" << mreg << " mlttc=" << TRACKR.lt1trk << endl
2495 << " TGeo volId=" << volId << " crtlttc=" << crtlttc << endl
2496 << " common TRACKR lt1trk=" << TRACKR.lt1trk << " lt2trk=" << TRACKR.lt2trk << endl
2497 << " common LTCLCM newlat=" << LTCLCM.newlat << " mlatld=" << LTCLCM.mlatld << endl
2498 << " mlatm1=" << LTCLCM.mlatm1 << " mltsen=" << LTCLCM.mltsen << endl
2499 << " mltsm1=" << LTCLCM.mltsm1 << " mlattc=" << LTCLCM.mlattc << endl;
2500 if( TRACKR.lt1trk == crtlttc ) cout << " *************************************************************" << endl;
2501 }
2502 // *****************************************************
2503
2504
2505
2506 (TVirtualMCApplication::Instance())->Stepping();
7b203b6e 2507 }
3a625972 2508}
a9ea1616 2509
4aba9d66 2510//______________________________________________________________________________
78df7be0 2511void TFluka::AddParticlesToPdgDataBase() const
2512{
2513
2514//
2515// Add particles to the PDG data base
2516
2517 TDatabasePDG *pdgDB = TDatabasePDG::Instance();
2518
78df7be0 2519 const Double_t kAu2Gev = 0.9314943228;
2520 const Double_t khSlash = 1.0545726663e-27;
2521 const Double_t kErg2Gev = 1/1.6021773349e-3;
2522 const Double_t khShGev = khSlash*kErg2Gev;
2523 const Double_t kYear2Sec = 3600*24*365.25;
2524//
2525// Ions
2526//
78df7be0 2527 pdgDB->AddParticle("Deuteron","Deuteron",2*kAu2Gev+8.071e-3,kTRUE,
13858fbd 2528 0,3,"Ion",GetIonPdg(1,2));
78df7be0 2529 pdgDB->AddParticle("Triton","Triton",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2530 khShGev/(12.33*kYear2Sec),3,"Ion",GetIonPdg(1,3));
78df7be0 2531 pdgDB->AddParticle("Alpha","Alpha",4*kAu2Gev+2.424e-3,kTRUE,
13858fbd 2532 khShGev/(12.33*kYear2Sec),6,"Ion",GetIonPdg(2,4));
78df7be0 2533 pdgDB->AddParticle("HE3","HE3",3*kAu2Gev+14.931e-3,kFALSE,
13858fbd 2534 0,6,"Ion",GetIonPdg(2,3));
78df7be0 2535}
2536
4aba9d66 2537//
2538// Info about primary ionization electrons
2539//
2540
2541//______________________________________________________________________________
2542Int_t TFluka::GetNPrimaryElectrons()
f2a98602 2543{
2544 // Get number of primary electrons
2545 return ALLDLT.nalldl;
2546}
2547
4aba9d66 2548//______________________________________________________________________________
5125d6e5 2549Double_t TFluka::GetPrimaryElectronKineticEnergy(Int_t i) const
f2a98602 2550{
2551 // Returns kinetic energy of primary electron i
5125d6e5 2552
2553 Double_t ekin = -1.;
ea262cc6 2554
f2a98602 2555 if (i >= 0 && i < ALLDLT.nalldl) {
6c854012 2556 ekin = ALLDLT.talldl[i];
f2a98602 2557 } else {
4aba9d66 2558 Warning("GetPrimaryElectronKineticEnergy",
2559 "Primary electron index out of range %d %d \n",
2560 i, ALLDLT.nalldl);
f2a98602 2561 }
f0734960 2562 return ekin;
f2a98602 2563}
5125d6e5 2564
2565void TFluka::GetPrimaryElectronPosition(Int_t i, Double_t& x, Double_t& y, Double_t& z) const
2566{
2567 // Returns position of primary electron i
2568 if (i >= 0 && i < ALLDLT.nalldl) {
6c854012 2569 x = ALLDLT.xalldl[i];
2570 y = ALLDLT.yalldl[i];
2571 z = ALLDLT.zalldl[i];
5125d6e5 2572 return;
2573 } else {
2574 Warning("GetPrimaryElectronPosition",
2575 "Primary electron index out of range %d %d \n",
2576 i, ALLDLT.nalldl);
2577 return;
2578 }
2579 return;
2580}
2581
13858fbd 2582Int_t TFluka::GetIonPdg(Int_t z, Int_t a, Int_t i) const
2583{
2584// Acording to
2585// http://cepa.fnal.gov/psm/stdhep/pdg/montecarlorpp-2006.pdf
5125d6e5 2586
13858fbd 2587 return 1000000000 + 10*1000*z + 10*a + i;
2588}
2589
ea262cc6 2590void TFluka::PrimaryIonisationStepping(Int_t nprim)
2591{
2592// Call Stepping for primary ionisation electrons
2593 Int_t i;
2594// Protection against nprim > mxalld
2595
2596// Multiple steps for nprim > 0
2597 if (nprim > 0) {
2598 for (i = 0; i < nprim; i++) {
2599 SetCurrentPrimaryElectronIndex(i);
2600 (TVirtualMCApplication::Instance())->Stepping();
2601 if (i == 0) SetTrackIsNew(kFALSE);
2602 }
2603 } else {
2604 // No primary electron ionisation
2605 // Call Stepping anyway but flag nprim = 0 as index = -2
2606 SetCurrentPrimaryElectronIndex(-2);
2607 (TVirtualMCApplication::Instance())->Stepping();
2608 }
2609 // Reset the index
2610 SetCurrentPrimaryElectronIndex(-1);
2611}
b6a89226 2612
2613//______________________________________________________________________
2614Float_t* TFluka::CreateFloatArray(Double_t* array, Int_t size) const
2615{
2616// Converts Double_t* array to Float_t*,
2617// !! The new array has to be deleted by user.
2618// ---
2619
2620 Float_t* floatArray;
2621 if (size>0) {
2622 floatArray = new Float_t[size];
2623 for (Int_t i=0; i<size; i++)
2624 if (array[i] >= FLT_MAX )
2625 floatArray[i] = FLT_MAX/100.;
2626 else
2627 floatArray[i] = array[i];
2628 }
2629 else {
2630 //floatArray = 0;
2631 floatArray = new Float_t[1];
2632 }
2633 return floatArray;
2634}