Coding rules violations cleaned
[u/mrichter/AliRoot.git] / TFluka / TFluka.cxx
CommitLineData
03ca248b 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
803d1ab0 16/* $Id$ */
03ca248b 17
eae0fe66 18#include <Riostream.h>
b9d0a01d 19
6d4d27f2 20#include "TClonesArray.h"
03ca248b 21#include "TFluka.h"
b9d0a01d 22#include "TCallf77.h" //For the fortran calls
23#include "Fdblprc.h" //(DBLPRC) fluka common
b9d0a01d 24#include "Fepisor.h" //(EPISOR) fluka common
fa3d1cc7 25#include "Ffinuc.h" //(FINUC) fluka common
26#include "Fiounit.h" //(IOUNIT) fluka common
27#include "Fpaprop.h" //(PAPROP) fluka common
f9cb2fec 28#include "Fpart.h" //(PART) fluka common
fa3d1cc7 29#include "Ftrackr.h" //(TRACKR) fluka common
6d4d27f2 30#include "Fpaprop.h" //(PAPROP) fluka common
fa3d1cc7 31#include "Ffheavy.h" //(FHEAVY) fluka common
b9d0a01d 32
fa3d1cc7 33#include "TVirtualMC.h"
bf3aa28e 34#include "TG4GeometryManager.h" //For the geometry management
35#include "TG4DetConstruction.h" //For the detector construction
36
37#include "FGeometryInit.hh"
fa3d1cc7 38#include "TLorentzVector.h"
6d4d27f2 39#include "FlukaVolume.h"
bf3aa28e 40
b9d0a01d 41// Fluka methods that may be needed.
42#ifndef WIN32
43# define flukam flukam_
44# define fluka_openinp fluka_openinp_
45# define fluka_closeinp fluka_closeinp_
f9cb2fec 46# define mcihad mcihad_
47# define mpdgha mpdgha_
b9d0a01d 48#else
49# define flukam FLUKAM
50# define fluka_openinp FLUKA_OPENINP
51# define fluka_closeinp FLUKA_CLOSEINP
f9cb2fec 52# define mcihad MCIHAD
53# define mpdgha MPDGHA
b9d0a01d 54#endif
55
56extern "C"
57{
58 //
59 // Prototypes for FLUKA functions
60 //
61 void type_of_call flukam(const int&);
62 void type_of_call fluka_openinp(const int&, DEFCHARA);
63 void type_of_call fluka_closeinp(const int&);
f9cb2fec 64 int type_of_call mcihad(const int&);
65 int type_of_call mpdgha(const int&);
b9d0a01d 66}
67
68//
69// Class implementation for ROOT
70//
03ca248b 71ClassImp(TFluka)
b9d0a01d 72
73//
bf3aa28e 74//----------------------------------------------------------------------------
75// TFluka constructors and destructors.
b9d0a01d 76//____________________________________________________________________________
77TFluka::TFluka()
78 :TVirtualMC(),
79 fVerbosityLevel(0),
1de0a072 80 sInputFileName(""),
27b2f7fe 81 fDetector(0),
82 fCurrentFlukaRegion(-1)
b9d0a01d 83{
84 //
85 // Default constructor
86 //
87}
88
22229ba5 89TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported)
90 :TVirtualMC("TFluka",title, isRootGeometrySupported),
b9d0a01d 91 fVerbosityLevel(verbosity),
1de0a072 92 sInputFileName(""),
24969d13 93 fTrackIsEntering(0),
94 fTrackIsExiting(0),
fbf08100 95 fTrackIsNew(0),
27b2f7fe 96 fDetector(0),
97 fCurrentFlukaRegion(-1)
b9d0a01d 98{
99 if (fVerbosityLevel >=3)
100 cout << "==> TFluka::TFluka(" << title << ") constructor called." << endl;
101
bf3aa28e 102
103 // create geometry manager
104 if (fVerbosityLevel >=2)
105 cout << "\t* Creating G4 Geometry manager..." << endl;
106 fGeometryManager = new TG4GeometryManager();
107 if (fVerbosityLevel >=2)
108 cout << "\t* Creating G4 Detector..." << endl;
109 fDetector = new TG4DetConstruction();
110 FGeometryInit* geominit = FGeometryInit::GetInstance();
111 if (geominit)
112 geominit->setDetConstruction(fDetector);
113 else {
114 cerr << "ERROR: Could not create FGeometryInit!" << endl;
115 cerr << " Exiting!!!" << endl;
116 abort();
117 }
118
b9d0a01d 119 if (fVerbosityLevel >=3)
120 cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl;
6d4d27f2 121
122 fVolumeMediaMap = new TClonesArray("FlukaVolume",1000);
123 fNVolumes = 0;
124 fMediaByRegion = 0;
b9d0a01d 125}
126
bf3aa28e 127TFluka::~TFluka() {
128 if (fVerbosityLevel >=3)
129 cout << "==> TFluka::~TFluka() destructor called." << endl;
130
131 delete fGeometryManager;
6d4d27f2 132 fVolumeMediaMap->Delete();
133 delete fVolumeMediaMap;
134
bf3aa28e 135
136 if (fVerbosityLevel >=3)
137 cout << "<== TFluka::~TFluka() destructor called." << endl;
138}
139
140//
141//_____________________________________________________________________________
142// TFluka control methods
b9d0a01d 143//____________________________________________________________________________
144void TFluka::Init() {
1de0a072 145
6364fb0a 146 FGeometryInit* geominit = FGeometryInit::GetInstance();
b9d0a01d 147 if (fVerbosityLevel >=3)
148 cout << "==> TFluka::Init() called." << endl;
149
6364fb0a 150 cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
151 geominit->Init();
152 // now we have G4 geometry created and we have to patch alice.inp
153 // with the material mapping file FlukaMat.inp
154 InitPhysics(); // prepare input file with the current physics settings
5929ad29 155 cout << "\t* InitPhysics() - Prepare input file was called" << endl;
1de0a072 156
b9d0a01d 157 if (fVerbosityLevel >=2)
158 cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F')
159 << ") in fluka..." << endl;
160 GLOBAL.lfdrtr = true;
161
162 if (fVerbosityLevel >=2)
1de0a072 163 cout << "\t* Opening file " << sInputFileName << endl;
164 const char* fname = sInputFileName;
b9d0a01d 165 fluka_openinp(lunin, PASSCHARA(fname));
166
167 if (fVerbosityLevel >=2)
168 cout << "\t* Calling flukam..." << endl;
bf3aa28e 169 flukam(1);
b9d0a01d 170
171 if (fVerbosityLevel >=2)
1de0a072 172 cout << "\t* Closing file " << sInputFileName << endl;
b9d0a01d 173 fluka_closeinp(lunin);
174
1de0a072 175 FinishGeometry();
176
b9d0a01d 177 if (fVerbosityLevel >=3)
178 cout << "<== TFluka::Init() called." << endl;
fa3d1cc7 179
b9d0a01d 180}
181
bf3aa28e 182void TFluka::FinishGeometry() {
6d4d27f2 183//
184// Build-up table with region to medium correspondance
185//
186 char tmp[5];
187
bf3aa28e 188 if (fVerbosityLevel >=3)
189 cout << "==> TFluka::FinishGeometry() called." << endl;
190
6d4d27f2 191// fGeometryManager->Ggclos();
bf3aa28e 192
6d4d27f2 193 FGeometryInit* flugg = FGeometryInit::GetInstance();
194
195 fMediaByRegion = new Int_t[fNVolumes+2];
196 for (Int_t i = 0; i < fNVolumes; i++)
197 {
198 FlukaVolume* vol = dynamic_cast<FlukaVolume*>((*fVolumeMediaMap)[i]);
199 TString volName = vol->GetName();
200 Int_t media = vol->GetMedium();
fee5ea25 201 if (fVerbosityLevel >= 3)
6d4d27f2 202 printf("Finish Geometry: volName, media %d %s %d \n", i, volName.Data(), media);
203 strcpy(tmp, volName.Data());
204 tmp[4] = '\0';
b0d8df96 205 flugg->SetMediumFromName(tmp, media, i+1);
206 fMediaByRegion[i] = media;
27b2f7fe 207 }
6d4d27f2 208
209 flugg->BuildMediaMap();
27b2f7fe 210
bf3aa28e 211 if (fVerbosityLevel >=3)
212 cout << "<== TFluka::FinishGeometry() called." << endl;
213}
214
215void TFluka::BuildPhysics() {
216 if (fVerbosityLevel >=3)
217 cout << "==> TFluka::BuildPhysics() called." << endl;
218
219
220 if (fVerbosityLevel >=3)
221 cout << "<== TFluka::BuildPhysics() called." << endl;
222}
223
b9d0a01d 224void TFluka::ProcessEvent() {
225 if (fVerbosityLevel >=3)
226 cout << "==> TFluka::ProcessEvent() called." << endl;
b0d8df96 227 fApplication->GeneratePrimaries();
228 EPISOR.lsouit = true;
229 flukam(1);
b9d0a01d 230 if (fVerbosityLevel >=3)
231 cout << "<== TFluka::ProcessEvent() called." << endl;
232}
233
bf3aa28e 234
b9d0a01d 235void TFluka::ProcessRun(Int_t nevent) {
236 if (fVerbosityLevel >=3)
237 cout << "==> TFluka::ProcessRun(" << nevent << ") called."
238 << endl;
239
240 if (fVerbosityLevel >=2) {
241 cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl;
242 cout << "\t* Calling flukam again..." << endl;
243 }
b0d8df96 244 fApplication->InitGeometry();
245 fApplication->BeginEvent();
246 ProcessEvent();
247 fApplication->FinishEvent();
b9d0a01d 248 if (fVerbosityLevel >=3)
249 cout << "<== TFluka::ProcessRun(" << nevent << ") called."
250 << endl;
b0d8df96 251
b9d0a01d 252}
253
bf3aa28e 254//_____________________________________________________________________________
255// methods for building/management of geometry
256//____________________________________________________________________________
257// functions from GCONS
258void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
259 Float_t &dens, Float_t &radl, Float_t &absl,
260 Float_t* ubuf, Int_t& nbuf) {
261//
262 fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf);
263}
264
265void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z,
266 Double_t &dens, Double_t &radl, Double_t &absl,
267 Double_t* ubuf, Int_t& nbuf) {
268//
269 fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf);
270}
271
272// detector composition
273void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
274 Double_t z, Double_t dens, Double_t radl, Double_t absl,
275 Float_t* buf, Int_t nwbuf) {
276//
277 fGeometryManager
278 ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf);
279}
280void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
281 Double_t z, Double_t dens, Double_t radl, Double_t absl,
282 Double_t* buf, Int_t nwbuf) {
283//
284 fGeometryManager
285 ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf);
286}
287
288void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a,
289 Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) {
290//
291 fGeometryManager
292 ->Mixture(kmat, name, a, z, dens, nlmat, wmat);
293}
294void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a,
295 Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) {
296//
297 fGeometryManager
298 ->Mixture(kmat, name, a, z, dens, nlmat, wmat);
299}
300
301void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
302 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
303 Double_t stemax, Double_t deemax, Double_t epsil,
304 Double_t stmin, Float_t* ubuf, Int_t nbuf) {
305 //
306 fGeometryManager
307 ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
308 epsil, stmin, ubuf, nbuf);
309}
310void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
311 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
312 Double_t stemax, Double_t deemax, Double_t epsil,
313 Double_t stmin, Double_t* ubuf, Int_t nbuf) {
314 //
315 fGeometryManager
316 ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
317 epsil, stmin, ubuf, nbuf);
318}
319
320void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
321 Double_t thetaY, Double_t phiY, Double_t thetaZ,
322 Double_t phiZ) {
323//
324 fGeometryManager
325 ->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ);
326}
327
328void TFluka::Gstpar(Int_t itmed, const char *param, Double_t parval) {
329//
330 fGeometryManager->Gstpar(itmed, param, parval);
331}
332
333// functions from GGEOM
334Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
335 Float_t *upar, Int_t np) {
336//
6d4d27f2 337// fVolumeMediaMap[TString(name)] = nmed;
fee5ea25 338 if (fVerbosityLevel >= 3)
b0d8df96 339 printf("TFluka::Gsvolu() name = %s, nmed = %d\n", name, nmed);
340
6d4d27f2 341 TClonesArray &lvols = *fVolumeMediaMap;
342 new(lvols[fNVolumes++])
343 FlukaVolume(name, nmed);
344 return fGeometryManager->Gsvolu(name, shape, nmed, upar, np);
bf3aa28e 345}
346Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
347 Double_t *upar, Int_t np) {
348//
6d4d27f2 349 TClonesArray &lvols = *fVolumeMediaMap;
350 new(lvols[fNVolumes++])
351 FlukaVolume(name, nmed);
352
353 return fGeometryManager->Gsvolu(name, shape, nmed, upar, np);
bf3aa28e 354}
355
356void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv,
357 Int_t iaxis) {
358//
b0d8df96 359// The medium of the daughter is the one of the mother
360 Int_t volid = TFluka::VolId(mother);
361 Int_t med = TFluka::VolId2Mate(volid);
362 TClonesArray &lvols = *fVolumeMediaMap;
363 new(lvols[fNVolumes++])
364 FlukaVolume(name, med);
6d4d27f2 365 fGeometryManager->Gsdvn(name, mother, ndiv, iaxis);
bf3aa28e 366}
367
368void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
369 Int_t iaxis, Double_t c0i, Int_t numed) {
370//
6d4d27f2 371 TClonesArray &lvols = *fVolumeMediaMap;
372 new(lvols[fNVolumes++])
373 FlukaVolume(name, numed);
374 fGeometryManager->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed);
bf3aa28e 375}
376
377void TFluka::Gsdvt(const char *name, const char *mother, Double_t step,
378 Int_t iaxis, Int_t numed, Int_t ndvmx) {
6d4d27f2 379//
380 TClonesArray &lvols = *fVolumeMediaMap;
381 new(lvols[fNVolumes++])
382 FlukaVolume(name, numed);
383 fGeometryManager->Gsdvt(name, mother, step, iaxis, numed, ndvmx);
bf3aa28e 384}
385
386void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step,
387 Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) {
388//
6d4d27f2 389 TClonesArray &lvols = *fVolumeMediaMap;
390 new(lvols[fNVolumes++])
391 FlukaVolume(name, numed);
392 fGeometryManager->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx);
bf3aa28e 393}
394
395void TFluka::Gsord(const char *name, Int_t iax) {
396//
397 fGeometryManager->Gsord(name, iax);
398}
399
400void TFluka::Gspos(const char *name, Int_t nr, const char *mother,
401 Double_t x, Double_t y, Double_t z, Int_t irot,
402 const char *konly) {
403//
404 fGeometryManager->Gspos(name, nr, mother, x, y, z, irot, konly);
405}
406
407void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
408 Double_t x, Double_t y, Double_t z, Int_t irot,
409 const char *konly, Float_t *upar, Int_t np) {
410 //
411 fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
412}
413void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
414 Double_t x, Double_t y, Double_t z, Int_t irot,
415 const char *konly, Double_t *upar, Int_t np) {
416 //
417 fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
418}
419
420void TFluka::Gsbool(const char* onlyVolName, const char* manyVolName) {
421//
422 fGeometryManager->Gsbool(onlyVolName, manyVolName);
423}
424
425void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t *ppckov,
426 Float_t *absco, Float_t *effic, Float_t *rindex) {
427//
428 fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex);
429}
430void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov,
431 Double_t *absco, Double_t *effic, Double_t *rindex) {
432//
433 fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex);
434}
435
436// Euclid
437void TFluka::WriteEuclid(const char* fileName, const char* topVol,
438 Int_t number, Int_t nlevel) {
439//
440 fGeometryManager->WriteEuclid(fileName, topVol, number, nlevel);
441}
442
443
444
27b2f7fe 445//_____________________________________________________________________________
446// methods needed by the stepping
447//____________________________________________________________________________
6d4d27f2 448
27b2f7fe 449Int_t TFluka::GetMedium() const {
b0d8df96 450//
451// Get the medium number for the current fluka region
452//
6d4d27f2 453 FGeometryInit* flugg = FGeometryInit::GetInstance();
454 return flugg->GetMedium(fCurrentFlukaRegion);
27b2f7fe 455}
bf3aa28e 456
457
458
459//____________________________________________________________________________
1de0a072 460// particle table usage
bf3aa28e 461// ID <--> PDG transformations
b9d0a01d 462//_____________________________________________________________________________
463Int_t TFluka::IdFromPDG(Int_t pdg) const
464{
72f84f29 465 //
466 // Return Fluka code from PDG and pseudo ENDF code
467
468 // Catch the feedback photons
469 if (pdg == 50000051) return (-1);
470 // MCIHAD() goes from pdg to fluka internal.
471 Int_t intfluka = mcihad(pdg);
472 // KPTOIP array goes from internal to official
473 return GetFlukaKPTOIP(intfluka);
b9d0a01d 474}
475
b9d0a01d 476Int_t TFluka::PDGFromId(Int_t id) const
477{
478 //
f9cb2fec 479 // Return PDG code and pseudo ENDF code from Fluka code
c230803a 480
5929ad29 481 // IPTOKP array goes from official to internal
f906eae0 482
483 if (id == -1) {
484// Cerenkov photon
485 if (fVerbosityLevel >= 1)
486 printf("\n PDGFromId: Cerenkov Photon \n");
487 return 50000050;
488 }
5929ad29 489// Error id
b0d8df96 490 if (id == 0) {
f906eae0 491 if (fVerbosityLevel >= 1)
492 printf("PDGFromId: Error id = 0\n");
b0d8df96 493 return -1;
494 }
5929ad29 495// Good id
f906eae0 496 Int_t intfluka = GetFlukaIPTOKP(id);
b0d8df96 497 if (intfluka == 0) {
f906eae0 498 if (fVerbosityLevel >= 1)
499 printf("PDGFromId: Error intfluka = 0: %d\n", id);
b0d8df96 500 return -1;
6015a930 501 } else if (intfluka < 0) {
f906eae0 502 if (fVerbosityLevel >= 1)
503 printf("PDGFromId: Error intfluka < 0: %d\n", id);
6015a930 504 return -1;
b0d8df96 505 }
fee5ea25 506 if (fVerbosityLevel >= 3)
f906eae0 507 printf("mpdgha called with %d %d \n", id, intfluka);
5929ad29 508 // MPDGHA() goes from fluka internal to pdg.
f906eae0 509 return mpdgha(intfluka);
6d4d27f2 510}
511
1de0a072 512//_____________________________________________________________________________
513// methods for physics management
514//____________________________________________________________________________
515//
516// set methods
517//
518
519void TFluka::SetProcess(const char* flagName, Int_t flagValue)
520{
521 Int_t i;
522 if (iNbOfProc < 100) {
523 for (i=0; i<iNbOfProc; i++) {
524 if (strcmp(&sProcessFlag[i][0],flagName) == 0) {
525 iProcessValue[iNbOfProc] = flagValue;
526 goto fin;
527 }
528 }
529 strcpy(&sProcessFlag[iNbOfProc][0],flagName);
530 iProcessValue[iNbOfProc++] = flagValue;
531 }
532 else
533 cout << "Nb of SetProcess calls exceeds 100 - ignored" << endl;
534fin:
535 iNbOfProc = iNbOfProc;
536}
537
538void TFluka::SetCut(const char* cutName, Double_t cutValue)
539{
540 Int_t i;
541 if (iNbOfCut < 100) {
542 for (i=0; i<iNbOfCut; i++) {
543 if (strcmp(&sCutFlag[i][0],cutName) == 0) {
544 fCutValue[iNbOfCut] = cutValue;
545 goto fin;
546 }
547 }
548 strcpy(&sCutFlag[iNbOfCut][0],cutName);
549 fCutValue[iNbOfCut++] = cutValue;
550 }
551 else
552 cout << "Nb of SetCut calls exceeds 100 - ignored" << endl;
553fin:
554 iNbOfCut = iNbOfCut;
555}
556
557Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t)
558{
559 printf("WARNING: Xsec not yet implemented !\n"); return -1.;
560}
561
562
563void TFluka::InitPhysics()
564{
cbc3a17e 565 Int_t i, j, k;
566 Double_t fCut;
754972a2 567 FGeometryInit* geominit = FGeometryInit::GetInstance();
568 Float_t fLastMaterial = geominit->GetLastMaterialIndex();
569 printf(" last FLUKA material is %g\n", fLastMaterial);
cbc3a17e 570
1de0a072 571// construct file names
0c160c74 572 TString sAliceCoreInp = getenv("ALICE_ROOT");
573 sAliceCoreInp +="/TFluka/input/";
754972a2 574 TString sAliceTmp = "flukaMat.inp";
0c160c74 575 TString sAliceInp = GetInputFileName();
1de0a072 576 sAliceCoreInp += GetCoreInputFileName();
577 ifstream AliceCoreInp(sAliceCoreInp.Data());
6364fb0a 578 ifstream AliceFlukaMat(sAliceTmp.Data());
1de0a072 579 ofstream AliceInp(sAliceInp.Data());
580
6364fb0a 581// copy core input file
1de0a072 582 Char_t sLine[255];
583 Float_t fEventsPerRun;
6364fb0a 584
585 while (AliceCoreInp.getline(sLine,255)) {
586 if (strncmp(sLine,"GEOEND",6) != 0)
587 AliceInp << sLine << endl; // copy until GEOEND card
588 else {
589 AliceInp << "GEOEND" << endl; // add GEOEND card
590 goto flukamat;
591 }
592 } // end of while until GEOEND card
593
594flukamat:
595 while (AliceFlukaMat.getline(sLine,255)) { // copy flukaMat.inp file
596 AliceInp << sLine << endl;
597 }
598
1de0a072 599 while (AliceCoreInp.getline(sLine,255)) {
600 if (strncmp(sLine,"START",5) != 0)
601 AliceInp << sLine << endl;
602 else {
603 sscanf(sLine+10,"%10f",&fEventsPerRun);
604 goto fin;
605 }
6364fb0a 606 } //end of while until START card
1de0a072 607
608fin:
609// in G3 the process control values meaning can be different for
610// different processes, but for most of them is:
611// 0 process is not activated
612// 1 process is activated WITH generation of secondaries
613// 2 process is activated WITHOUT generation of secondaries
614// if process does not generate secondaries => 1 same as 2
615//
616// Exceptions:
617// MULS: also 3
618// LOSS: also 3, 4
619// RAYL: only 0,1
620// HADR: may be > 2
621//
622
623// Loop over number of SetProcess calls
624 AliceInp << "*----------------------------------------------------------------------------- ";
625 AliceInp << endl;
626 AliceInp << "*----- The following data are generated from SetProcess and SetCut calls ----- ";
627 AliceInp << endl;
628 AliceInp << "*----------------------------------------------------------------------------- ";
629 AliceInp << endl;
cbc3a17e 630 for (i=0; i<iNbOfProc; i++) {
1de0a072 631
632 // annihilation
633 // G3 default value: 1
634 // G4 processes: G4eplusAnnihilation/G4IeplusAnnihilation
635 // Particles: e+
636 // Physics: EM
cbc3a17e 637 // flag = 0 no annihilation
638 // flag = 1 annihilation, decays processed
639 // flag = 2 annihilation, no decay product stored
1de0a072 640 // gMC ->SetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR
cbc3a17e 641 if (strncmp(&sProcessFlag[i][0],"ANNI",4) == 0) {
642 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
643 AliceInp << "*";
644 AliceInp << endl;
645 AliceInp << "*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.";
646 AliceInp << endl;
647 AliceInp << "*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)";
648 AliceInp << endl;
649 AliceInp << setw(10) << "EMFCUT ";
650 AliceInp << setiosflags(ios::scientific) << setprecision(5);
651 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
652 AliceInp << setw(10) << -1.0; // kinetic energy threshold (GeV) for e+ annihilation (resets to default=0)
653 AliceInp << setw(10) << 0.0; // not used
654 AliceInp << setw(10) << 0.0; // not used
655 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
656 AliceInp << setw(10) << setprecision(2);
657 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
658 AliceInp << setprecision(1);
659 AliceInp << setw(10) << 1.0; // step length in assigning indices
660 AliceInp << setw(8) << "ANNH-THR";
661 AliceInp << endl;
662 }
663 else if (iProcessValue[i] == 0) {
664 AliceInp << "*";
665 AliceInp << endl;
666 AliceInp << "*No annihilation - no FLUKA card generated";
667 AliceInp << endl;
668 AliceInp << "*Generated from call: SetProcess('ANNI',0)";
669 AliceInp << endl;
670 }
671 else {
672 AliceInp << "*";
673 AliceInp << endl;
674 AliceInp << "*Illegal flag value in SetProcess('ANNI',?) call.";
675 AliceInp << endl;
676 AliceInp << "*No FLUKA card generated";
677 AliceInp << endl;
678 }
1de0a072 679 }
680
cbc3a17e 681 // bremsstrahlung and pair production are both activated
1de0a072 682 // G3 default value: 1
683 // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
684 // G4MuBremsstrahlung/G4IMuBremsstrahlung,
685 // G4LowEnergyBremstrahlung
686 // Particles: e-/e+; mu+/mu-
687 // Physics: EM
cbc3a17e 688 // flag = 0 no bremsstrahlung
689 // flag = 1 bremsstrahlung, photon processed
690 // flag = 2 bremsstrahlung, no photon stored
1de0a072 691 // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
692 // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
cbc3a17e 693 // G3 default value: 1
694 // G4 processes: G4GammaConversion,
695 // G4MuPairProduction/G4IMuPairProduction
696 // G4LowEnergyGammaConversion
697 // Particles: gamma, mu
698 // Physics: EM
699 // flag = 0 no delta rays
700 // flag = 1 delta rays, secondaries processed
701 // flag = 2 delta rays, no secondaries stored
702 // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat
703 // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR
704 else if ((strncmp(&sProcessFlag[i][0],"PAIR",4) == 0) && (iProcessValue[i] == 1 || iProcessValue[i] == 2)) {
705 for (j=0; j<iNbOfProc; j++) {
706 if ((strncmp(&sProcessFlag[j][0],"BREM",4) == 0) && (iProcessValue[j] == 1 || iProcessValue[j] == 2)) {
707 AliceInp << "*";
708 AliceInp << endl;
709 AliceInp << "*Bremsstrahlung and pair production by muons and charged hadrons both activated";
710 AliceInp << endl;
711 AliceInp << "*Generated from call: SetProcess('BREM',1) and SetProcess('PAIR',1)";
712 AliceInp << endl;
713 AliceInp << "*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.";
714 AliceInp << endl;
715 AliceInp << "*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.";
716 AliceInp << endl;
717 AliceInp << setw(10) << "PAIRBREM ";
718 AliceInp << setiosflags(ios::scientific) << setprecision(5);
719 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
720 AliceInp << setw(10) << 3.0; // bremsstrahlung and pair production by muons and charged hadrons both are activated
721 // direct pair production by muons
722 // G4 particles: "e-", "e+"
723 // G3 default value: 0.01 GeV
724 //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
725 fCut = 0.0;
726 for (k=0; k<iNbOfCut; k++) {
727 if (strncmp(&sCutFlag[k][0],"PPCUTM",6) == 0) fCut = fCutValue[k];
728 }
729 AliceInp << setiosflags(ios::scientific) << setprecision(5);
730 AliceInp << setw(10) << fCut; // e+, e- kinetic energy threshold (in GeV) for explicit pair production.
731 // muon and hadron bremsstrahlung
732 // G4 particles: "gamma"
733 // G3 default value: CUTGAM=0.001 GeV
734 //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
735 fCut = 0.0;
736 for (k=0; k<iNbOfCut; k++) {
737 if (strncmp(&sCutFlag[k][0],"BCUTM",5) == 0) fCut = fCutValue[k];
738 }
739 AliceInp << setiosflags(ios::scientific) << setprecision(5);
740 AliceInp << setw(10) << fCut; // photon energy threshold (GeV) for explicit bremsstrahlung production
741 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
742 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
743 AliceInp << setw(10) << setprecision(2);
744 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
745 AliceInp << endl;
746
747 // for e+ and e-
748 AliceInp << "*";
749 AliceInp << endl;
750 AliceInp << "*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.";
751 AliceInp << endl;
752 AliceInp << "*Generated from call: SetProcess('BREM',1);";
753 AliceInp << endl;
754 AliceInp << setw(10) << "EMFCUT ";
755 fCut = -1.0;
756 for (k=0; k<iNbOfCut; k++) {
757 if (strncmp(&sCutFlag[k][0],"BCUTE",5) == 0) fCut = fCutValue[k];
758 }
759 AliceInp << setiosflags(ios::scientific) << setprecision(5);
760 AliceInp << setw(10) << fCut; // kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
761 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
762 AliceInp << setw(10) << 0.0; // not used
763 AliceInp << setw(10) << 0.0; // not used
764 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
765 AliceInp << setw(10) << setprecision(2);
766 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
767 AliceInp << setprecision(1);
768 AliceInp << setw(10) << 1.0; // step length in assigning indices
769 AliceInp << setw(8) << "ELPO-THR";
770 AliceInp << endl;
771
772 // for e+ and e-
773 AliceInp << "*";
774 AliceInp << endl;
775 AliceInp << "*Pair production by electrons is activated";
776 AliceInp << endl;
777 AliceInp << "*Generated from call: SetProcess('PAIR',1);";
778 AliceInp << endl;
779 AliceInp << setw(10) << "EMFCUT ";
780 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
781 AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Compton scattering (= 0.0 : ignored)
782 AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Photoelectric (= 0.0 : ignored)
783 fCut = -1.0;
784 for (j=0; j<iNbOfCut; j++) {
785 if (strncmp(&sCutFlag[j][0],"CUTGAM",6) == 0) fCut = fCutValue[j];
786 }
787 AliceInp << setiosflags(ios::scientific) << setprecision(5);
788 AliceInp << setw(10) << fCut; // energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
789 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
790 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
791 AliceInp << setprecision(2);
792 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
793 AliceInp << setprecision(1);
794 AliceInp << setw(10) << 1.0; // step length in assigning indices
795 AliceInp << setw(8) << "PHOT-THR";
796 AliceInp << endl;
797 goto BOTH;
798 } // end of if for BREM
799 } // end of loop for BREM
800
801 // only pair production by muons and charged hadrons is activated
802 AliceInp << "*";
803 AliceInp << endl;
804 AliceInp << "*Pair production by muons and charged hadrons is activated";
805 AliceInp << endl;
806 AliceInp << "*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)";
1de0a072 807 AliceInp << endl;
cbc3a17e 808 AliceInp << "*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.";
1de0a072 809 AliceInp << endl;
810 AliceInp << setw(10) << "PAIRBREM ";
811 AliceInp << setiosflags(ios::scientific) << setprecision(5);
812 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
cbc3a17e 813 AliceInp << setw(10) << 1.0; // pair production by muons and charged hadrons is activated
814 // direct pair production by muons
815 // G4 particles: "e-", "e+"
816 // G3 default value: 0.01 GeV
817 //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
818 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
819 AliceInp << setw(10) << 0.0; // e+, e- kinetic energy threshold (in GeV) for explicit pair production.
1de0a072 820 AliceInp << setw(10) << 0.0; // no explicit bremsstrahlung production is simulated
821 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
cbc3a17e 822 AliceInp << setprecision(2);
1de0a072 823 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
824 AliceInp << endl;
cbc3a17e 825
1de0a072 826 // for e+ and e-
cbc3a17e 827 AliceInp << "*";
828 AliceInp << endl;
829 AliceInp << "*Pair production by electrons is activated";
1de0a072 830 AliceInp << endl;
cbc3a17e 831 AliceInp << "*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)";
1de0a072 832 AliceInp << endl;
833 AliceInp << setw(10) << "EMFCUT ";
cbc3a17e 834 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
835 AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Compton scattering (= 0.0 : ignored)
836 AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Photoelectric (= 0.0 : ignored)
837
838 fCut = -1.0;
839 for (j=0; j<iNbOfCut; j++) {
840 if (strncmp(&sCutFlag[j][0],"CUTGAM",6) == 0) fCut = fCutValue[j];
841 }
1de0a072 842 AliceInp << setiosflags(ios::scientific) << setprecision(5);
cbc3a17e 843 AliceInp << setw(10) << fCut; // energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
1de0a072 844 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1de0a072 845 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
cbc3a17e 846 AliceInp << setprecision(2);
1de0a072 847 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
848 AliceInp << setprecision(1);
cbc3a17e 849 AliceInp << setw(10) << 1.0; // step length in assigning indices
850 AliceInp << setw(8) << "PHOT-THR";
1de0a072 851 AliceInp << endl;
cbc3a17e 852
853BOTH:
854 k = 0;
855 } // end of if for PAIR
856
857
858
859 // bremsstrahlung
860 // G3 default value: 1
861 // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
862 // G4MuBremsstrahlung/G4IMuBremsstrahlung,
863 // G4LowEnergyBremstrahlung
864 // Particles: e-/e+; mu+/mu-
865 // Physics: EM
866 // flag = 0 no bremsstrahlung
867 // flag = 1 bremsstrahlung, photon processed
868 // flag = 2 bremsstrahlung, no photon stored
869 // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
870 // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
871 else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0) {
872 for (j=0; j<iNbOfProc; j++) {
873 if ((strncmp(&sProcessFlag[j][0],"PAIR",4) == 0) && iProcessValue[j] == 1) goto NOBREM;
874 }
875 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
876 AliceInp << "*";
877 AliceInp << endl;
878 AliceInp << "*Bremsstrahlung by muons and charged hadrons is activated";
879 AliceInp << endl;
880 AliceInp << "*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)";
881 AliceInp << endl;
882 AliceInp << "*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.";
883 AliceInp << endl;
884 AliceInp << setw(10) << "PAIRBREM ";
885 AliceInp << setiosflags(ios::scientific) << setprecision(5);
886 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
887 AliceInp << setw(10) << 2.0; // bremsstrahlung by muons and charged hadrons is activated
888 AliceInp << setw(10) << 0.0; // no meaning
889 // muon and hadron bremsstrahlung
890 // G4 particles: "gamma"
891 // G3 default value: CUTGAM=0.001 GeV
892 //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
893 fCut = 0.0;
894 for (j=0; j<iNbOfCut; j++) {
895 if (strncmp(&sCutFlag[j][0],"BCUTM",5) == 0) fCut = fCutValue[j];
896 }
897 AliceInp << setw(10) << fCut; // photon energy threshold (GeV) for explicit bremsstrahlung production
898 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
899 AliceInp << setw(10) << setprecision(2);
900 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
901 AliceInp << endl;
902
903 // for e+ and e-
904 AliceInp << "*";
905 AliceInp << endl;
906 AliceInp << "*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.";
907 AliceInp << endl;
908 AliceInp << "*Generated from call: SetProcess('BREM',1);";
909 AliceInp << endl;
910 AliceInp << setw(10) << "EMFCUT ";
911 AliceInp << setiosflags(ios::scientific) << setprecision(5);
912 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
913 AliceInp << setw(10) << -1.0; // kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
914 AliceInp << setw(10) << 0.0; // not used
915 AliceInp << setw(10) << 0.0; // not used
916 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
917 AliceInp << setw(10) << setprecision(2);
918 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
919 AliceInp << setprecision(1);
920 AliceInp << setw(10) << 1.0; // step length in assigning indices
921 AliceInp << setw(8) << "ELPO-THR";
922 AliceInp << endl;
923 }
924 else if (iProcessValue[i] == 0) {
925 AliceInp << "*";
926 AliceInp << endl;
927 AliceInp << "*No bremsstrahlung - no FLUKA card generated";
928 AliceInp << endl;
929 AliceInp << "*Generated from call: SetProcess('BREM',0)";
930 AliceInp << endl;
931 }
932 else {
933 AliceInp << "*";
934 AliceInp << endl;
935 AliceInp << "*Illegal flag value in SetProcess('BREM',?) call.";
936 AliceInp << endl;
937 AliceInp << "*No FLUKA card generated";
938 AliceInp << endl;
939 }
940NOBREM:
941 j = 0;
942 } // end of else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0)
943
1de0a072 944
cbc3a17e 945 // Cerenkov photon generation
946 // G3 default value: 0
947 // G4 process: G4Cerenkov
948 //
949 // Particles: charged
950 // Physics: Optical
951 // flag = 0 no Cerenkov photon generation
952 // flag = 1 Cerenkov photon generation
953 // flag = 2 Cerenkov photon generation with primary stopped at each step
954 //xx gMC ->SetProcess("CKOV",1); // ??? Cerenkov photon generation
955 else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) {
956 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
957 AliceInp << "*";
958 AliceInp << endl;
959 AliceInp << "*Cerenkov photon generation";
960 AliceInp << endl;
961 AliceInp << "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)";
962 AliceInp << endl;
963 AliceInp << setw(10) << "OPT-PROD ";
964 AliceInp << setiosflags(ios::scientific) << setprecision(5);
965 AliceInp << setw(10) << 2.07e-9 ; // minimum Cerenkov photon emission energy (in GeV!). Default: 2.07E-9 GeV (corresponding to 600 nm)
966 AliceInp << setw(10) << 4.96e-9; // maximum Cerenkov photon emission energy (in GeV!). Default: 4.96E-9 GeV (corresponding to 250 nm)
967 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
968 AliceInp << setw(10) << 0.0; // not used
969 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
970 AliceInp << setprecision(2);
971 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
972 AliceInp << setprecision(1);
973 AliceInp << setw(10) << 1.0; // step length in assigning indices
974 AliceInp << setw(8) << "CERENKOV";
975 AliceInp << endl;
976 }
977 else if (iProcessValue[i] == 0) {
978 AliceInp << "*";
979 AliceInp << endl;
980 AliceInp << "*No Cerenkov photon generation";
981 AliceInp << endl;
982 AliceInp << "*Generated from call: SetProcess('CKOV',0)";
983 AliceInp << endl;
984 AliceInp << setw(10) << "OPT-PROD ";
985 AliceInp << setiosflags(ios::scientific) << setprecision(5);
986 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
987 AliceInp << setw(10) << 0.0; // not used
988 AliceInp << setw(10) << 0.0; // not used
989 AliceInp << setw(10) << 0.0; // not used
990 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
991 AliceInp << setprecision(2);
992 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
993 AliceInp << setprecision(1);
994 AliceInp << setw(10) << 1.0; // step length in assigning indices
995 AliceInp << setw(8) << "CERE-OFF";
996 AliceInp << endl;
997 }
998 else {
999 AliceInp << "*";
1000 AliceInp << endl;
1001 AliceInp << "*Illegal flag value in SetProcess('CKOV',?) call.";
1002 AliceInp << endl;
1003 AliceInp << "*No FLUKA card generated";
1004 AliceInp << endl;
1005 }
1006 } // end of else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0)
1007
1008
1de0a072 1009 // Compton scattering
1010 // G3 default value: 1
1011 // G4 processes: G4ComptonScattering,
1012 // G4LowEnergyCompton,
1013 // G4PolarizedComptonScattering
1014 // Particles: gamma
cbc3a17e 1015 // Physics: EM
1016 // flag = 0 no Compton scattering
1017 // flag = 1 Compton scattering, electron processed
1018 // flag = 2 Compton scattering, no electron stored
1de0a072 1019 // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR
cbc3a17e 1020 else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) {
1021 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
1022 AliceInp << "*";
1023 AliceInp << endl;
1024 AliceInp << "*Energy threshold (GeV) for Compton scattering - resets to default=0.";
1025 AliceInp << endl;
1026 AliceInp << "*Generated from call: SetProcess('COMP',1);";
1027 AliceInp << endl;
1028 AliceInp << setw(10) << "EMFCUT ";
1029 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1030 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1031 AliceInp << setw(10) << -1.0; // energy threshold (GeV) for Compton scattering - resets to default=0.
1032 AliceInp << setw(10) << 0.0; // not used
1033 AliceInp << setw(10) << 0.0; // not used
1034 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1035 AliceInp << setprecision(2);
1036 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1037 AliceInp << setprecision(1);
1038 AliceInp << setw(10) << 1.0; // step length in assigning indices
1039 AliceInp << setw(8) << "PHOT-THR";
1040 AliceInp << endl;
1041 }
1042 else if (iProcessValue[i] == 0) {
1043 AliceInp << "*";
1044 AliceInp << endl;
1045 AliceInp << "*No Compton scattering - no FLUKA card generated";
1046 AliceInp << endl;
1047 AliceInp << "*Generated from call: SetProcess('COMP',0)";
1048 AliceInp << endl;
1049 }
1050 else {
1051 AliceInp << "*";
1052 AliceInp << endl;
1053 AliceInp << "*Illegal flag value in SetProcess('COMP',?) call.";
1054 AliceInp << endl;
1055 AliceInp << "*No FLUKA card generated";
1056 AliceInp << endl;
1057 }
1058 } // end of else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0)
1de0a072 1059
1060 // decay
1061 // G3 default value: 1
1062 // G4 process: G4Decay
1063 //
1064 // Particles: all which decay is applicable for
1065 // Physics: General
cbc3a17e 1066 // flag = 0 no decays
1067 // flag = 1 decays, secondaries processed
1068 // flag = 2 decays, no secondaries stored
1de0a072 1069 //gMC ->SetProcess("DCAY",1); // not available
1070 else if ((strncmp(&sProcessFlag[i][0],"DCAY",4) == 0) && iProcessValue[i] == 1)
1071 cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not avaliable!" << endl;
1072
1073 // delta-ray
1074 // G3 default value: 2
1075 // !! G4 treats delta rays in different way
1076 // G4 processes: G4eIonisation/G4IeIonization,
1077 // G4MuIonisation/G4IMuIonization,
1078 // G4hIonisation/G4IhIonisation
cbc3a17e 1079 // Particles: charged
1de0a072 1080 // Physics: EM
cbc3a17e 1081 // flag = 0 no energy loss
1082 // flag = 1 restricted energy loss fluctuations
1083 // flag = 2 complete energy loss fluctuations
1084 // flag = 3 same as 1
1085 // flag = 4 no energy loss fluctuations
1de0a072 1086 // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0.
cbc3a17e 1087 else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0) {
1088 if (iProcessValue[i] == 0 || iProcessValue[i] == 4) {
1089 AliceInp << "*";
1090 AliceInp << endl;
1091 AliceInp << "*Kinetic energy threshold (GeV) for delta ray production";
1092 AliceInp << endl;
1093 AliceInp << "*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)";
1094 AliceInp << endl;
1095 AliceInp << "*No delta ray production by muons - threshold set artificially high";
1096 AliceInp << endl;
1097 AliceInp << setw(10) << "DELTARAY ";
1098 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1099 AliceInp << setw(10) << 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
1100 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1101 AliceInp << setw(10) << 0.0; // ignored
1102 AliceInp << setw(10) << 0.0; // ignored
1103 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1104 AliceInp << setw(10) << setprecision(2);
1105 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1106 AliceInp << setprecision(1);
1107 AliceInp << setw(10) << 1.0; // step length in assigning indices
1108 AliceInp << endl;
1109 }
1110 else if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
1111 AliceInp << "*";
1112 AliceInp << endl;
1113 AliceInp << "*Kinetic energy threshold (GeV) for delta ray production";
1114 AliceInp << endl;
1115 AliceInp << "*Generated from call: SetProcess('DRAY',flag), flag=1,2,3";
1116 AliceInp << endl;
1117 AliceInp << "*Delta ray production by muons switched on";
1118 AliceInp << endl;
1119 AliceInp << "*Energy threshold set by call SetCut('DCUTM',cut) or set to 0.";
1120 AliceInp << endl;
1121 AliceInp << setw(10) << "DELTARAY ";
1122 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1123 fCut = 1.0e+6;
1124 for (j=0; j<iNbOfCut; j++) {
1125 if (strncmp(&sCutFlag[j][0],"DCUTM",5) == 0) fCut = fCutValue[j];
1126 }
1127 AliceInp << setw(10) << fCut; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
1128 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1129 AliceInp << setw(10) << 0.0; // ignored
1130 AliceInp << setw(10) << 0.0; // ignored
1131 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1132 AliceInp << setw(10) << setprecision(2);
1133 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1134 AliceInp << setprecision(1);
1135 AliceInp << setw(10) << 1.0; // step length in assigning indices
1136 AliceInp << endl;
1137 }
1138 else {
1139 AliceInp << "*";
1140 AliceInp << endl;
1141 AliceInp << "*Illegal flag value in SetProcess('DRAY',?) call.";
1142 AliceInp << endl;
1143 AliceInp << "*No FLUKA card generated";
1144 AliceInp << endl;
1145 }
1146 } // end of else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0)
1de0a072 1147
cbc3a17e 1148 // hadronic process
1149 // G3 default value: 1
1150 // G4 processes: all defined by TG4PhysicsConstructorHadron
1151 //
1152 // Particles: hadrons
1153 // Physics: Hadron
1154 // flag = 0 no multiple scattering
1155 // flag = 1 hadronic interactions, secondaries processed
1156 // flag = 2 hadronic interactions, no secondaries stored
1157 // gMC ->SetProcess("HADR",1); // ??? hadronic process
1158 //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ?????
1159 else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) {
1160 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
1161 AliceInp << "*";
1162 AliceInp << endl;
1163 AliceInp << "*Hadronic interaction is ON by default in FLUKA";
1164 AliceInp << endl;
1165 AliceInp << "*No FLUKA card generated";
1166 AliceInp << endl;
1167 }
1168 else if (iProcessValue[i] == 0) {
1169 AliceInp << "*";
1170 AliceInp << endl;
1171 AliceInp << "*Hadronic interaction is set OFF";
1172 AliceInp << endl;
1173 AliceInp << "*Generated from call: SetProcess('HADR',0);";
1174 AliceInp << endl;
1175 AliceInp << setw(10) << "MULSOPT ";
1176 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1177 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1178 AliceInp << setw(10) << 0.0; // ignored
1179 AliceInp << setw(10) << 3.0; // multiple scattering for hadrons and muons is completely suppressed
1180 AliceInp << setw(10) << 0.0; // no spin-relativistic corrections
1181 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1182 AliceInp << setprecision(2);
1183 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1184 AliceInp << endl;
1185
1186 }
1187 else {
1188 AliceInp << "*";
1189 AliceInp << endl;
1190 AliceInp << "*Illegal flag value in SetProcess('HADR',?) call.";
1191 AliceInp << endl;
1192 AliceInp << "*No FLUKA card generated";
1193 AliceInp << endl;
1194 }
1195 } // end of else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0)
1196
1197
1198 // energy loss
1199 // G3 default value: 2
1200 // G4 processes: G4eIonisation/G4IeIonization,
1201 // G4MuIonisation/G4IMuIonization,
1202 // G4hIonisation/G4IhIonisation
1de0a072 1203 //
cbc3a17e 1204 // Particles: charged
1205 // Physics: EM
1206 // flag=0 no energy loss
1207 // flag=1 restricted energy loss fluctuations
1208 // flag=2 complete energy loss fluctuations
1209 // flag=3 same as 1
1210 // flag=4 no energy loss fluctuations
1211 // If the value ILOSS is changed, then (in G3) cross-sections and energy
1212 // loss tables must be recomputed via the command 'PHYSI'
1213 // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss
1214 else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) {
1215 if (iProcessValue[i] == 2) { // complete energy loss fluctuations
1216 AliceInp << "*";
1217 AliceInp << endl;
1218 AliceInp << "*Complete energy loss fluctuations do not exist in FLUKA";
1219 AliceInp << endl;
1220 AliceInp << "*Generated from call: SetProcess('LOSS',2);";
1221 AliceInp << endl;
1222 AliceInp << "*flag=2=complete energy loss fluctuations";
1223 AliceInp << endl;
1224 AliceInp << "*No input card generated";
1225 AliceInp << endl;
1226 }
1227 else if (iProcessValue[i] == 1 || iProcessValue[i] == 3) { // restricted energy loss fluctuations
1228 AliceInp << "*";
1229 AliceInp << endl;
1230 AliceInp << "*Restricted energy loss fluctuations";
1231 AliceInp << endl;
1232 AliceInp << "*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)";
1233 AliceInp << endl;
1234 AliceInp << setw(10) << "IONFLUCT ";
1235 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1236 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1237 AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations (for hadrons and muons) switched on
1238 AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations (for e+ and e-) switched on
1239 AliceInp << setw(10) << 1.0; // minimal accuracy
1240 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1241 AliceInp << setprecision(2);
1242 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1243 AliceInp << endl;
1244 }
1245 else if (iProcessValue[i] == 4) { // no energy loss fluctuations
1246 AliceInp << "*";
1247 AliceInp << endl;
1248 AliceInp << "*No energy loss fluctuations";
1249 AliceInp << endl;
1250 AliceInp << "*Generated from call: SetProcess('LOSS',4)";
1251 AliceInp << endl;
1252 AliceInp << setw(10) << -1.0; // restricted energy loss fluctuations (for hadrons and muons) switched off
1253 AliceInp << setw(10) << -1.0; // restricted energy loss fluctuations (for e+ and e-) switched off
1254 AliceInp << setw(10) << 1.0; // minimal accuracy
1255 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1256 AliceInp << setprecision(2);
1257 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1258 AliceInp << endl;
1259 }
1260 else {
1261 AliceInp << "*";
1262 AliceInp << endl;
1263 AliceInp << "*Illegal flag value in SetProcess('LOSS',?) call.";
1264 AliceInp << endl;
1265 AliceInp << "*No FLUKA card generated";
1266 AliceInp << endl;
1267 }
1268 } // end of else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0)
1269
1270
1271 // multiple scattering
1272 // G3 default value: 1
1273 // G4 process: G4MultipleScattering/G4IMultipleScattering
1274 //
1275 // Particles: charged
1276 // Physics: EM
1277 // flag = 0 no multiple scattering
1278 // flag = 1 Moliere or Coulomb scattering
1279 // flag = 2 Moliere or Coulomb scattering
1280 // flag = 3 Gaussian scattering
1281 // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering
1282 else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) {
1283 if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
1284 AliceInp << "*";
1285 AliceInp << endl;
1286 AliceInp << "*Multiple scattering is ON by default for e+e- and for hadrons/muons";
1287 AliceInp << endl;
1288 AliceInp << "*No FLUKA card generated";
1289 AliceInp << endl;
1290 }
1291 else if (iProcessValue[i] == 0) {
1292 AliceInp << "*";
1293 AliceInp << endl;
1294 AliceInp << "*Multiple scattering is set OFF";
1295 AliceInp << endl;
1296 AliceInp << "*Generated from call: SetProcess('MULS',0);";
1297 AliceInp << endl;
1298 AliceInp << setw(10) << "MULSOPT ";
1299 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1300 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1301 AliceInp << setw(10) << 0.0; // ignored
1302 AliceInp << setw(10) << 3.0; // multiple scattering for hadrons and muons is completely suppressed
1303 AliceInp << setw(10) << 3.0; // multiple scattering for e+ and e- is completely suppressed
1304 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1305 AliceInp << setprecision(2);
1306 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1307 AliceInp << endl;
1308 }
1309 else {
1310 AliceInp << "*";
1311 AliceInp << endl;
1312 AliceInp << "*Illegal flag value in SetProcess('MULS',?) call.";
1313 AliceInp << endl;
1314 AliceInp << "*No FLUKA card generated";
1315 AliceInp << endl;
1316 }
1317 } // end of else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0)
1318
1de0a072 1319
1320 // muon nuclear interaction
1321 // G3 default value: 0
1322 // G4 processes: G4MuNuclearInteraction,
1323 // G4MuonMinusCaptureAtRest
1324 //
1325 // Particles: mu
1326 // Physics: Not set
cbc3a17e 1327 // flag = 0 no muon-nuclear interaction
1328 // flag = 1 nuclear interaction, secondaries processed
1329 // flag = 2 nuclear interaction, secondaries not processed
1de0a072 1330 // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat
cbc3a17e 1331 else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) {
1332 if (iProcessValue[i] == 1) {
1333 AliceInp << "*";
1334 AliceInp << endl;
1335 AliceInp << "*Muon nuclear interactions with production of secondary hadrons";
1336 AliceInp << endl;
1337 AliceInp << "*Generated from call: SetProcess('MUNU',1);";
1338 AliceInp << endl;
1339 AliceInp << setw(10) << "MUPHOTON ";
1340 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1341 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1342 AliceInp << setw(10) << 1.0; // full simulation of muon nuclear interactions and production of secondary hadrons
1343 AliceInp << setw(10) << 0.0; // ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
1344 AliceInp << setw(10) << 0.0; // fraction of rho-like interactions ( must be < 1) - Default = 0.75.
1345 AliceInp << setprecision(1);
1346 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1347 AliceInp << setprecision(2);
1348 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1349 AliceInp << endl;
1350 }
1351 else if (iProcessValue[i] == 2) {
1352 AliceInp << "*";
1353 AliceInp << endl;
1354 AliceInp << "*Muon nuclear interactions without production of secondary hadrons";
1355 AliceInp << endl;
1356 AliceInp << "*Generated from call: SetProcess('MUNU',2);";
1357 AliceInp << endl;
1358 AliceInp << setw(10) << "MUPHOTON ";
1359 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1360 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1361 AliceInp << setw(10) << 2.0; // full simulation of muon nuclear interactions and production of secondary hadrons
1362 AliceInp << setw(10) << 0.0; // ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
1363 AliceInp << setw(10) << 0.0; // fraction of rho-like interactions ( must be < 1) - Default = 0.75.
1364 AliceInp << setprecision(1);
1365 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1366 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1367 AliceInp << endl;
1368 }
1369 else if (iProcessValue[i] == 0) {
1370 AliceInp << "*";
1371 AliceInp << endl;
1372 AliceInp << "*No muon nuclear interaction - no FLUKA card generated";
1373 AliceInp << endl;
1374 AliceInp << "*Generated from call: SetProcess('MUNU',0)";
1375 AliceInp << endl;
1376 }
1377 else {
1378 AliceInp << "*";
1379 AliceInp << endl;
1380 AliceInp << "*Illegal flag value in SetProcess('MUNU',?) call.";
1381 AliceInp << endl;
1382 AliceInp << "*No FLUKA card generated";
1383 AliceInp << endl;
1384 }
1385 } // end of else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0)
1de0a072 1386
1de0a072 1387
1388 // photofission
1389 // G3 default value: 0
1390 // G4 process: ??
1391 //
1392 // Particles: gamma
1393 // Physics: ??
1394 // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0.
cbc3a17e 1395 // flag = 0 no photon fission
1396 // flag = 1 photon fission, secondaries processed
1397 // flag = 2 photon fission, no secondaries stored
1398 else if (strncmp(&sProcessFlag[i][0],"PFIS",4) == 0) {
1399 if (iProcessValue[i] == 0) {
1400 AliceInp << "*";
1401 AliceInp << endl;
1402 AliceInp << "*No photonuclear interactions";
1403 AliceInp << endl;
1404 AliceInp << "*Generated from call: SetProcess('PFIS',0);";
1405 AliceInp << endl;
1406 AliceInp << setw(10) << "PHOTONUC ";
1407 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1408 AliceInp << setw(10) << -1.0; // no photonuclear interactions
1409 AliceInp << setw(10) << 0.0; // not used
1410 AliceInp << setw(10) << 0.0; // not used
1411 AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply
1412 AliceInp << setprecision(2);
1413 AliceInp << setw(10) << fLastMaterial;
1414 AliceInp << setprecision(1); // upper bound of the material indices in which the respective thresholds apply
1415 AliceInp << setprecision(1);
1416 AliceInp << setw(10) << 1.0; // step length in assigning indices
1417 AliceInp << endl;
1418 }
1419 else if (iProcessValue[i] == 1) {
1420 AliceInp << "*";
1421 AliceInp << endl;
1422 AliceInp << "*Photon nuclear interactions are activated at all energies";
1423 AliceInp << endl;
1424 AliceInp << "*Generated from call: SetProcess('PFIS',1);";
1425 AliceInp << endl;
1426 AliceInp << setw(10) << "PHOTONUC ";
1427 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1428 AliceInp << setw(10) << 1.0; // photonuclear interactions are activated at all energies
1429 AliceInp << setw(10) << 0.0; // not used
1430 AliceInp << setw(10) << 0.0; // not used
1431 AliceInp << setprecision(2);
1432 AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply
1433 AliceInp << setw(10) << fLastMaterial;
1434 AliceInp << setprecision(1); // upper bound of the material indices in which the respective thresholds apply
1435 AliceInp << setprecision(1);
1436 AliceInp << setw(10) << 1.0; // step length in assigning indices
1437 AliceInp << endl;
1438 }
1439 else if (iProcessValue[i] == 0) {
1440 AliceInp << "*";
1441 AliceInp << endl;
1442 AliceInp << "*No photofission - no FLUKA card generated";
1443 AliceInp << endl;
1444 AliceInp << "*Generated from call: SetProcess('PFIS',0)";
1445 AliceInp << endl;
1446 }
1447 else {
1448 AliceInp << "*";
1449 AliceInp << endl;
1450 AliceInp << "*Illegal flag value in SetProcess('PFIS',?) call.";
1451 AliceInp << endl;
1452 AliceInp << "*No FLUKA card generated";
1453 AliceInp << endl;
1454 }
1de0a072 1455 }
1456
cbc3a17e 1457
1de0a072 1458 // photo electric effect
1459 // G3 default value: 1
1460 // G4 processes: G4PhotoElectricEffect
1461 // G4LowEnergyPhotoElectric
1462 // Particles: gamma
1463 // Physics: EM
cbc3a17e 1464 // flag = 0 no photo electric effect
1465 // flag = 1 photo electric effect, electron processed
1466 // flag = 2 photo electric effect, no electron stored
1de0a072 1467 // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR
cbc3a17e 1468 else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) {
1469 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
1470 AliceInp << "*";
1471 AliceInp << endl;
1472 AliceInp << "*Photo electric effect is activated";
1473 AliceInp << endl;
1474 AliceInp << "*Generated from call: SetProcess('PHOT',1);";
1475 AliceInp << endl;
1476 AliceInp << setw(10) << "EMFCUT ";
1477 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1478 AliceInp << setw(10) << 0.0; // ignored
1479 AliceInp << setw(10) << -1.0; // resets to default=0.
1480 AliceInp << setw(10) << 0.0; // ignored
1481 AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply
1482 AliceInp << setprecision(2);
1483 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1484 AliceInp << setprecision(1);
1485 AliceInp << setw(10) << 1.0; // step length in assigning indices
1486 AliceInp << setw(8) << "PHOT-THR";
1487 AliceInp << endl;
1488 }
1489 else if (iProcessValue[i] == 0) {
1490 AliceInp << "*";
1491 AliceInp << endl;
1492 AliceInp << "*No photo electric effect - no FLUKA card generated";
1493 AliceInp << endl;
1494 AliceInp << "*Generated from call: SetProcess('PHOT',0)";
1495 AliceInp << endl;
1496 }
1497 else {
1498 AliceInp << "*";
1499 AliceInp << endl;
1500 AliceInp << "*Illegal flag value in SetProcess('PHOT',?) call.";
1501 AliceInp << endl;
1502 AliceInp << "*No FLUKA card generated";
1503 AliceInp << endl;
1504 }
1505 } // else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0)
1de0a072 1506
5929ad29 1507
cbc3a17e 1508 // Rayleigh scattering
1de0a072 1509 // G3 default value: 0
cbc3a17e 1510 // G4 process: G4OpRayleigh
1de0a072 1511 //
cbc3a17e 1512 // Particles: optical photon
1de0a072 1513 // Physics: Optical
cbc3a17e 1514 // flag = 0 Rayleigh scattering off
1515 // flag = 1 Rayleigh scattering on
1516 //xx gMC ->SetProcess("RAYL",1);
1517 else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) {
1518 if (iProcessValue[i] == 1) {
1519 AliceInp << "*";
1520 AliceInp << endl;
1521 AliceInp << "*Rayleigh scattering is ON by default in FLUKA";
1522 AliceInp << endl;
1523 AliceInp << "*No FLUKA card generated";
1524 AliceInp << endl;
1525 }
1526 else if (iProcessValue[i] == 0) {
1527 AliceInp << "*";
1528 AliceInp << endl;
1529 AliceInp << "*Rayleigh scattering is set OFF";
1530 AliceInp << endl;
1531 AliceInp << "*Generated from call: SetProcess('RAYL',0);";
1532 AliceInp << endl;
1533 AliceInp << setw(10) << "EMFRAY ";
1534 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1535 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1536 AliceInp << setw(10) << -1.0; // no Rayleigh scattering and no binding corrections for Compton
1537 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1538 AliceInp << setprecision(2);
1539 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1540 AliceInp << endl;
1541 }
1542 else {
1543 AliceInp << "*";
1544 AliceInp << endl;
1545 AliceInp << "*Illegal flag value in SetProcess('RAYL',?) call.";
1546 AliceInp << endl;
1547 AliceInp << "*No FLUKA card generated";
1548 AliceInp << endl;
1549 }
1550 } // end of else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0)
1de0a072 1551
5929ad29 1552
1553 // synchrotron radiation in magnetic field
1554 // G3 default value: 0
1555 // G4 process: G4SynchrotronRadiation
1556 //
1557 // Particles: ??
1558 // Physics: Not set
1559 // flag = 0 no synchrotron radiation
1560 // flag = 1 synchrotron radiation
1561 //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation
1562 else if (strncmp(&sProcessFlag[i][0],"SYNC",4) == 0) {
1563 AliceInp << "*";
1564 AliceInp << endl;
1565 AliceInp << "*Synchrotron radiation generation is NOT implemented in FLUKA";
1566 AliceInp << endl;
1567 AliceInp << "*No FLUKA card generated";
1568 AliceInp << endl;
1569 }
1570
cbc3a17e 1571
1572 // Automatic calculation of tracking medium parameters
1573 // flag = 0 no automatic calculation
1574 // flag = 1 automatic calculation
1575 //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters
5929ad29 1576 else if (strncmp(&sProcessFlag[i][0],"AUTO",4) == 0) {
1577 AliceInp << "*";
1578 AliceInp << endl;
1579 AliceInp << "*Automatic calculation of tracking medium parameters is always ON in FLUKA";
1580 AliceInp << endl;
1581 AliceInp << "*No FLUKA card generated";
1582 AliceInp << endl;
1583 }
1584
1585
1586 // To control energy loss fluctuation model
1587 // flag = 0 Urban model
1588 // flag = 1 PAI model
1589 // flag = 2 PAI+ASHO model (not active at the moment)
1590 //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model
1591 else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) {
1592 if (iProcessValue[i] == 0 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
1593 AliceInp << "*";
1594 AliceInp << endl;
1595 AliceInp << "*Ionization energy losses calculation is activated";
1596 AliceInp << endl;
1597 AliceInp << "*Generated from call: SetProcess('STRA',n);, n=0,1,2";
1598 AliceInp << endl;
1599 AliceInp << setw(10) << "IONFLUCT ";
1600 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1601 AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations
1602 // (for hadrons and muons) switched on
1603 AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations
1604 // (for e+ and e-) switched on
1605 AliceInp << setw(10) << 1.0; // minimal accuracy
1606 AliceInp << setw(10) << 3.0; // upper bound of the material indices in
1607 // which the respective thresholds apply
1608 AliceInp << setprecision(2);
1609 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1610 AliceInp << setprecision(1);
1611 AliceInp << setw(10) << 1.0; // step length in assigning indices
1612 AliceInp << endl;
1613 }
1614 else {
1615 AliceInp << "*";
1616 AliceInp << endl;
1617 AliceInp << "*Illegal flag value in SetProcess('STRA',?) call.";
1618 AliceInp << endl;
1619 AliceInp << "*No FLUKA card generated";
1620 AliceInp << endl;
1621 }
1622 } // else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0)
1623
1624
1625
1626
1627 else { // processes not yet treated
1de0a072 1628
cbc3a17e 1629 // light photon absorption (Cerenkov photons)
1de0a072 1630 // it is turned on when Cerenkov process is turned on
1631 // G3 default value: 0
1632 // G4 process: G4OpAbsorption, G4OpBoundaryProcess
1633 //
1634 // Particles: optical photon
1635 // Physics: Optical
cbc3a17e 1636 // flag = 0 no absorption of Cerenkov photons
1637 // flag = 1 absorption of Cerenkov photons
1de0a072 1638 // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption
1639
1de0a072 1640
1de0a072 1641
1642 cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not yet implemented!" << endl;
1643 }
1644 } //end of loop number of SetProcess calls
1645
1646
1647// Loop over number of SetCut calls
1648 for (Int_t i=0; i<iNbOfCut; i++) {
1649
cbc3a17e 1650 // cuts used in SetProcess calls
1651 if (strncmp(&sCutFlag[i][0],"BCUTM",5) == 0) continue;
1652 else if (strncmp(&sCutFlag[i][0],"BCUTE",5) == 0) continue;
1653 else if (strncmp(&sCutFlag[i][0],"DCUTM",5) == 0) continue;
1654 else if (strncmp(&sCutFlag[i][0],"PPCUTM",6) == 0) continue;
1655
1de0a072 1656 // gammas
1657 // G4 particles: "gamma"
1658 // G3 default value: 0.001 GeV
1659 //gMC ->SetCut("CUTGAM",cut); // cut for gammas
cbc3a17e 1660 else if (strncmp(&sCutFlag[i][0],"CUTGAM",6) == 0) {
1661 AliceInp << "*";
1662 AliceInp << endl;
1de0a072 1663 AliceInp << "*Cut for gamma";
1664 AliceInp << endl;
1665 AliceInp << "*Generated from call: SetCut('CUTGAM',cut);";
1666 AliceInp << endl;
1667 AliceInp << setw(10) << "PART-THR ";
1668 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1669 AliceInp << setw(10) << -fCutValue[i];
1670 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1671 AliceInp << setw(10) << 7.0;
1672 AliceInp << endl;
1673 }
1674
1675 // electrons
1676 // G4 particles: "e-"
1677 // ?? positrons
1678 // G3 default value: 0.001 GeV
1679 //gMC ->SetCut("CUTELE",cut); // cut for e+,e-
1680 else if (strncmp(&sCutFlag[i][0],"CUTELE",6) == 0) {
cbc3a17e 1681 AliceInp << "*";
1682 AliceInp << endl;
1de0a072 1683 AliceInp << "*Cut for electrons";
1684 AliceInp << endl;
1685 AliceInp << "*Generated from call: SetCut('CUTELE',cut);";
1686 AliceInp << endl;
1687 AliceInp << setw(10) << "PART-THR ";
1688 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1689 AliceInp << setw(10) << -fCutValue[i];
1690 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1691 AliceInp << setw(10) << 3.0;
1692 AliceInp << setw(10) << 4.0;
1693 AliceInp << setw(10) << 1.0;
1694 AliceInp << endl;
1695 }
1696
1697 // neutral hadrons
1698 // G4 particles: of type "baryon", "meson", "nucleus" with zero charge
1699 // G3 default value: 0.01 GeV
1700 //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons
1701 else if (strncmp(&sCutFlag[i][0],"CUTNEU",6) == 0) {
cbc3a17e 1702 AliceInp << "*";
1703 AliceInp << endl;
1de0a072 1704 AliceInp << "*Cut for neutral hadrons";
1705 AliceInp << endl;
1706 AliceInp << "*Generated from call: SetCut('CUTNEU',cut);";
1707 AliceInp << endl;
1708 AliceInp << setw(10) << "PART-THR ";
1709 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1710 AliceInp << setw(10) << -fCutValue[i];
1711 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1712 AliceInp << setw(10) << 8.0; // Neutron
1713 AliceInp << setw(10) << 9.0; // Antineutron
1714 AliceInp << endl;
1715 AliceInp << setw(10) << "PART-THR ";
1716 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1717 AliceInp << setw(10) << -fCutValue[i];
1718 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1719 AliceInp << setw(10) << 12.0; // Kaon zero long
1720 AliceInp << setw(10) << 12.0; // Kaon zero long
1721 AliceInp << endl;
1722 AliceInp << setw(10) << "PART-THR ";
1723 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1724 AliceInp << setw(10) << -fCutValue[i];
1725 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1726 AliceInp << setw(10) << 17.0; // Lambda, 18=Antilambda
1727 AliceInp << setw(10) << 19.0; // Kaon zero short
1728 AliceInp << endl;
1729 AliceInp << setw(10) << "PART-THR ";
1730 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1731 AliceInp << setw(10) << -fCutValue[i];
1732 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1733 AliceInp << setw(10) << 22.0; // Sigma zero, Pion zero, Kaon zero
1734 AliceInp << setw(10) << 25.0; // Antikaon zero
1735 AliceInp << endl;
1736 AliceInp << setw(10) << "PART-THR ";
1737 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1738 AliceInp << setw(10) << -fCutValue[i];
1739 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1740 AliceInp << setw(10) << 32.0; // Antisigma zero
1741 AliceInp << setw(10) << 32.0; // Antisigma zero
1742 AliceInp << endl;
1743 AliceInp << setw(10) << "PART-THR ";
1744 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1745 AliceInp << setw(10) << -fCutValue[i];
1746 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1747 AliceInp << setw(10) << 34.0; // Xi zero
1748 AliceInp << setw(10) << 35.0; // AntiXi zero
1749 AliceInp << endl;
1750 AliceInp << setw(10) << "PART-THR ";
1751 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1752 AliceInp << setw(10) << -fCutValue[i];
1753 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1754 AliceInp << setw(10) << 47.0; // D zero
1755 AliceInp << setw(10) << 48.0; // AntiD zero
1756 AliceInp << endl;
1757 AliceInp << setw(10) << "PART-THR ";
1758 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1759 AliceInp << setw(10) << -fCutValue[i];
1760 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1761 AliceInp << setw(10) << 53.0; // Xi_c zero
1762 AliceInp << setw(10) << 53.0; // Xi_c zero
1763 AliceInp << endl;
1764 AliceInp << setw(10) << "PART-THR ";
1765 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1766 AliceInp << setw(10) << -fCutValue[i];
1767 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1768 AliceInp << setw(10) << 55.0; // Xi'_c zero
1769 AliceInp << setw(10) << 56.0; // Omega_c zero
1770 AliceInp << endl;
1771 AliceInp << setw(10) << "PART-THR ";
1772 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1773 AliceInp << setw(10) << -fCutValue[i];
1774 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1775 AliceInp << setw(10) << 59.0; // AntiXi_c zero
1776 AliceInp << setw(10) << 59.0; // AntiXi_c zero
1777 AliceInp << endl;
1778 AliceInp << setw(10) << "PART-THR ";
1779 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1780 AliceInp << setw(10) << -fCutValue[i];
1781 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1782 AliceInp << setw(10) << 61.0; // AntiXi'_c zero
1783 AliceInp << setw(10) << 62.0; // AntiOmega_c zero
1784 AliceInp << endl;
1785 }
1786
1787 // charged hadrons
1788 // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge
1789 // G3 default value: 0.01 GeV
1790 //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons
1791 else if (strncmp(&sCutFlag[i][0],"CUTHAD",6) == 0) {
cbc3a17e 1792 AliceInp << "*";
1793 AliceInp << endl;
1de0a072 1794 AliceInp << "*Cut for charged hadrons";
1795 AliceInp << endl;
1796 AliceInp << "*Generated from call: SetCut('CUTHAD',cut);";
1797 AliceInp << endl;
1798 AliceInp << setw(10) << "PART-THR ";
1799 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1800 AliceInp << setw(10) << -fCutValue[i];
1801 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1802 AliceInp << setw(10) << 1.0; // Proton
1803 AliceInp << setw(10) << 2.0; // Antiproton
1804 AliceInp << endl;
1805 AliceInp << setw(10) << "PART-THR ";
1806 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1807 AliceInp << setw(10) << -fCutValue[i];
1808 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1809 AliceInp << setw(10) << 13.0; // Positive Pion, Negative Pion, Positive Kaon
1810 AliceInp << setw(10) << 16.0; // Negative Kaon
1811 AliceInp << endl;
1812 AliceInp << setw(10) << "PART-THR ";
1813 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1814 AliceInp << setw(10) << -fCutValue[i];
1815 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1816 AliceInp << setw(10) << 20.0; // Negative Sigma
1817 AliceInp << setw(10) << 16.0; // Positive Sigma
1818 AliceInp << endl;
1819 AliceInp << setw(10) << "PART-THR ";
1820 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1821 AliceInp << setw(10) << -fCutValue[i];
1822 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1823 AliceInp << setw(10) << 31.0; // Antisigma minus
1824 AliceInp << setw(10) << 33.0; // Antisigma plus
1825 AliceInp << setprecision(1);
1826 AliceInp << setw(10) << 2.0; // step length
1827 AliceInp << endl;
1828 AliceInp << setw(10) << "PART-THR ";
1829 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1830 AliceInp << setw(10) << -fCutValue[i];
1831 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1832 AliceInp << setw(10) << 36.0; // Negative Xi, Positive Xi, Omega minus
1833 AliceInp << setw(10) << 39.0; // Antiomega
1834 AliceInp << endl;
1835 AliceInp << setw(10) << "PART-THR ";
1836 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1837 AliceInp << setw(10) << -fCutValue[i];
1838 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1839 AliceInp << setw(10) << 45.0; // D plus
1840 AliceInp << setw(10) << 46.0; // D minus
1841 AliceInp << endl;
1842 AliceInp << setw(10) << "PART-THR ";
1843 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1844 AliceInp << setw(10) << -fCutValue[i];
1845 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1846 AliceInp << setw(10) << 49.0; // D_s plus, D_s minus, Lambda_c plus
1847 AliceInp << setw(10) << 52.0; // Xi_c plus
1848 AliceInp << endl;
1849 AliceInp << setw(10) << "PART-THR ";
1850 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1851 AliceInp << setw(10) << -fCutValue[i];
1852 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1853 AliceInp << setw(10) << 54.0; // Xi'_c plus
1854 AliceInp << setw(10) << 60.0; // AntiXi'_c minus
1855 AliceInp << setprecision(1);
1856 AliceInp << setw(10) << 6.0; // step length
1857 AliceInp << endl;
1858 AliceInp << setw(10) << "PART-THR ";
1859 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1860 AliceInp << setw(10) << -fCutValue[i];
1861 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1862 AliceInp << setw(10) << 57.0; // Antilambda_c minus
1863 AliceInp << setw(10) << 58.0; // AntiXi_c minus
1864 AliceInp << endl;
1865 }
1866
1867 // muons
1868 // G4 particles: "mu+", "mu-"
1869 // G3 default value: 0.01 GeV
1870 //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu-
1871 else if (strncmp(&sCutFlag[i][0],"CUTMUO",6) == 0) {
cbc3a17e 1872 AliceInp << "*";
1873 AliceInp << endl;
1de0a072 1874 AliceInp << "*Cut for muons";
1875 AliceInp << endl;
1876 AliceInp << "*Generated from call: SetCut('CUTMUO',cut);";
1877 AliceInp << endl;
1878 AliceInp << setw(10) << "PART-THR ";
1879 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1880 AliceInp << setw(10) << -fCutValue[i];
1881 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1882 AliceInp << setprecision(2);
1883 AliceInp << setw(10) << 10.0;
1884 AliceInp << setw(10) << 11.0;
1885 AliceInp << endl;
1886 }
1de0a072 1887 // delta-rays by electrons
1888 // G4 particles: "e-"
1889 // G3 default value: 10**4 GeV
cbc3a17e 1890 // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons ???????????????
1de0a072 1891 else if (strncmp(&sCutFlag[i][0],"DCUTE",5) == 0) {
cbc3a17e 1892 AliceInp << "*";
1de0a072 1893 AliceInp << endl;
cbc3a17e 1894 AliceInp << "*Cut for delta rays by electrons ????????????";
1de0a072 1895 AliceInp << endl;
cbc3a17e 1896 AliceInp << "*Generated from call: SetCut('DCUTE',cut);";
1de0a072 1897 AliceInp << endl;
cbc3a17e 1898 AliceInp << setw(10) << "EMFCUT ";
1de0a072 1899 AliceInp << setiosflags(ios::scientific) << setprecision(5);
cbc3a17e 1900 AliceInp << setw(10) << -fCutValue[i];
1de0a072 1901 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1902 AliceInp << setw(10) << 0.0;
1903 AliceInp << setw(10) << 0.0;
1904 AliceInp << setw(10) << 3.0;
1905 AliceInp << setprecision(2);
1906 AliceInp << setw(10) << fLastMaterial;
1907 AliceInp << setprecision(1);
1908 AliceInp << setw(10) << 1.0;
1909 AliceInp << endl;
1910 }
1911
cbc3a17e 1912 //
1de0a072 1913 // time of flight cut in seconds
1914 // G4 particles: all
1915 // G3 default value: 0.01 GeV
1916 //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds
1917 else if (strncmp(&sCutFlag[i][0],"TOFMAX",6) == 0) {
cbc3a17e 1918 AliceInp << "*";
1919 AliceInp << endl;
1de0a072 1920 AliceInp << "*Time of flight cuts in seconds";
1921 AliceInp << endl;
1922 AliceInp << "*Generated from call: SetCut('TOFMAX',tofmax);";
1923 AliceInp << endl;
1924 AliceInp << setw(10) << "TIME-CUT ";
1925 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1926 AliceInp << setw(10) << fCutValue[i]*1.e9;
1927 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1928 AliceInp << setw(10) << 0.0;
1929 AliceInp << setw(10) << 0.0;
1930 AliceInp << setw(10) << -6.0; // lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
1931 AliceInp << setprecision(2);
1932 AliceInp << setw(10) << 64.0; // upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
1933 AliceInp << setprecision(1);
1934 AliceInp << setw(10) << 1.0; // step length in assigning numbers
1935 AliceInp << endl;
1936 }
1937
1938 else {
1939 cout << "SetCut for flag=" << &sCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl;
1940 }
1941 } //end of loop over SeCut calls
1942
1943// Add START and STOP card
1944 AliceInp << setw(10) << "START ";
1945 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint);
1946 AliceInp << setw(10) << fEventsPerRun;
1947 AliceInp << endl;
1948 AliceInp << setw(10) << "STOP ";
1949 AliceInp << endl;
1950
6364fb0a 1951} // end of InitPhysics
1de0a072 1952
cbc3a17e 1953
bc021b12 1954void TFluka::SetMaxStep(Double_t)
1955{
1956// SetMaxStep is dummy procedure in TFluka !
fee5ea25 1957 if (fVerbosityLevel >=3)
bc021b12 1958 cout << "SetMaxStep is dummy procedure in TFluka !" << endl;
1959}
1960
1961void TFluka::SetMaxNStep(Int_t)
1962{
1963// SetMaxNStep is dummy procedure in TFluka !
fee5ea25 1964 if (fVerbosityLevel >=3)
bc021b12 1965 cout << "SetMaxNStep is dummy procedure in TFluka !" << endl;
1966}
1967
1968void TFluka::SetUserDecay(Int_t)
1969{
1970// SetUserDecay is dummy procedure in TFluka !
fee5ea25 1971 if (fVerbosityLevel >=3)
bc021b12 1972 cout << "SetUserDecay is dummy procedure in TFluka !" << endl;
1973}
1974
fa3d1cc7 1975//
1976// dynamic properties
1977//
1978void TFluka::TrackPosition(TLorentzVector& position) const
1979{
1980// Return the current position in the master reference frame of the
1981// track being transported
1982// TRACKR.atrack = age of the particle
1983// TRACKR.xtrack = x-position of the last point
1984// TRACKR.ytrack = y-position of the last point
1985// TRACKR.ztrack = z-position of the last point
1de0a072 1986 Int_t caller = GetCaller();
fbf08100 1987 if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw
1de0a072 1988 position.SetX(GetXsco());
1989 position.SetY(GetYsco());
1990 position.SetZ(GetZsco());
1991 position.SetT(TRACKR.atrack);
1992 }
1993 else if (caller == 4) { // mgdraw
1994 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1995 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1996 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1997 position.SetT(TRACKR.atrack);
1998 }
1999 else if (caller == 5) { // sodraw
2000 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
2001 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
2002 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
2003 position.SetT(0);
2004 }
2005 else
2006 Warning("TrackPosition","position not available");
2007}
24969d13 2008
1de0a072 2009//
2010void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const
2011{
2012// Return the current position in the master reference frame of the
2013// track being transported
2014// TRACKR.atrack = age of the particle
2015// TRACKR.xtrack = x-position of the last point
2016// TRACKR.ytrack = y-position of the last point
2017// TRACKR.ztrack = z-position of the last point
2018 Int_t caller = GetCaller();
fbf08100 2019 if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw
1de0a072 2020 x = GetXsco();
2021 y = GetYsco();
2022 z = GetZsco();
2023 }
e8f0734b 2024 else if (caller == 4 || caller == 5) { // mgdraw, sodraw
1de0a072 2025 x = TRACKR.xtrack[TRACKR.ntrack];
2026 y = TRACKR.ytrack[TRACKR.ntrack];
2027 z = TRACKR.ztrack[TRACKR.ntrack];
2028 }
2029 else
2030 Warning("TrackPosition","position not available");
fa3d1cc7 2031}
2032
2033void TFluka::TrackMomentum(TLorentzVector& momentum) const
2034{
2035// Return the direction and the momentum (GeV/c) of the track
2036// currently being transported
2037// TRACKR.ptrack = momentum of the particle (not always defined, if
2038// < 0 must be obtained from etrack)
2039// TRACKR.cx,y,ztrck = direction cosines of the current particle
2040// TRACKR.etrack = total energy of the particle
2041// TRACKR.jtrack = identity number of the particle
2042// PAPROP.am[TRACKR.jtrack] = particle mass in gev
1de0a072 2043 Int_t caller = GetCaller();
2044 if (caller != 2) { // not eedraw
2045 if (TRACKR.ptrack >= 0) {
2046 momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck);
2047 momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck);
2048 momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck);
2049 momentum.SetE(TRACKR.etrack);
2050 return;
2051 }
2052 else {
2053 Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]);
2054 momentum.SetPx(p*TRACKR.cxtrck);
2055 momentum.SetPy(p*TRACKR.cytrck);
2056 momentum.SetPz(p*TRACKR.cztrck);
2057 momentum.SetE(TRACKR.etrack);
2058 return;
2059 }
fa3d1cc7 2060 }
1de0a072 2061 else
2062 Warning("TrackMomentum","momentum not available");
2063}
2064
2065void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const
2066{
2067// Return the direction and the momentum (GeV/c) of the track
2068// currently being transported
2069// TRACKR.ptrack = momentum of the particle (not always defined, if
2070// < 0 must be obtained from etrack)
2071// TRACKR.cx,y,ztrck = direction cosines of the current particle
2072// TRACKR.etrack = total energy of the particle
2073// TRACKR.jtrack = identity number of the particle
2074// PAPROP.am[TRACKR.jtrack] = particle mass in gev
2075 Int_t caller = GetCaller();
2076 if (caller != 2) { // not eedraw
2077 if (TRACKR.ptrack >= 0) {
2078 px = TRACKR.ptrack*TRACKR.cxtrck;
2079 py = TRACKR.ptrack*TRACKR.cytrck;
2080 pz = TRACKR.ptrack*TRACKR.cztrck;
2081 e = TRACKR.etrack;
2082 return;
2083 }
2084 else {
2085 Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]);
2086 px = p*TRACKR.cxtrck;
2087 py = p*TRACKR.cytrck;
2088 pz = p*TRACKR.cztrck;
2089 e = TRACKR.etrack;
2090 return;
2091 }
fa3d1cc7 2092 }
1de0a072 2093 else
2094 Warning("TrackMomentum","momentum not available");
fa3d1cc7 2095}
2096
2097Double_t TFluka::TrackStep() const
2098{
2099// Return the length in centimeters of the current step
2100// TRACKR.ctrack = total curved path
1de0a072 2101 Int_t caller = GetCaller();
fbf08100 2102 if (caller == 11 || caller==12 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw
1de0a072 2103 return 0.0;
2104 else if (caller == 4) //mgdraw
fa3d1cc7 2105 return TRACKR.ctrack;
1de0a072 2106 else
2107 return -1.0;
fa3d1cc7 2108}
2109
2110Double_t TFluka::TrackLength() const
2111{
5929ad29 2112// TRACKR.cmtrck = cumulative curved path since particle birth
1de0a072 2113 Int_t caller = GetCaller();
e8f0734b 2114 if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw
5929ad29 2115 return TRACKR.cmtrck;
1de0a072 2116 else
2117 return -1.0;
fa3d1cc7 2118}
2119
2120Double_t TFluka::TrackTime() const
2121{
2122// Return the current time of flight of the track being transported
2123// TRACKR.atrack = age of the particle
1de0a072 2124 Int_t caller = GetCaller();
fbf08100 2125 if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw
1de0a072 2126 return TRACKR.atrack;
2127 else
2128 return -1;
fa3d1cc7 2129}
2130
2131Double_t TFluka::Edep() const
2132{
2133// Energy deposition
2134// if TRACKR.ntrack = 0, TRACKR.mtrack = 0:
2135// -->local energy deposition (the value and the point are not recorded in TRACKR)
2136// but in the variable "rull" of the procedure "endraw.cxx"
2137// if TRACKR.ntrack > 0, TRACKR.mtrack = 0:
2138// -->no energy loss along the track
2139// if TRACKR.ntrack > 0, TRACKR.mtrack > 0:
2140// -->energy loss distributed along the track
2141// TRACKR.dtrack = energy deposition of the jth deposition even
fbf08100 2142
2143 // If coming from bxdraw we have 2 steps of 0 length and 0 edep
2144 Int_t caller = GetCaller();
2145 if (caller == 11 || caller==12) return 0.0;
1de0a072 2146 Double_t sum = 0;
2147 for ( Int_t j=0;j<TRACKR.mtrack;j++) {
2148 sum +=TRACKR.dtrack[j];
2149 }
fa3d1cc7 2150 if (TRACKR.ntrack == 0 && TRACKR.mtrack == 0)
1de0a072 2151 return fRull + sum;
fa3d1cc7 2152 else {
fa3d1cc7 2153 return sum;
2154 }
2155}
2156
2157Int_t TFluka::TrackPid() const
2158{
2159// Return the id of the particle transported
2160// TRACKR.jtrack = identity number of the particle
1de0a072 2161 Int_t caller = GetCaller();
2162 if (caller != 2) // not eedraw
2163 return PDGFromId(TRACKR.jtrack);
2164 else
2165 return -1000;
fa3d1cc7 2166}
2167
2168Double_t TFluka::TrackCharge() const
2169{
2170// Return charge of the track currently transported
2171// PAPROP.ichrge = electric charge of the particle
bc021b12 2172// TRACKR.jtrack = identity number of the particle
1de0a072 2173 Int_t caller = GetCaller();
2174 if (caller != 2) // not eedraw
2175 return PAPROP.ichrge[TRACKR.jtrack+6];
2176 else
2177 return -1000.0;
fa3d1cc7 2178}
2179
2180Double_t TFluka::TrackMass() const
2181{
2182// PAPROP.am = particle mass in GeV
bc021b12 2183// TRACKR.jtrack = identity number of the particle
1de0a072 2184 Int_t caller = GetCaller();
0c160c74 2185 if (caller != 2) { // not eedraw
2186// cout << "JTRACK=" << TRACKR.jtrack << " mass=" << PAPROP.am[TRACKR.jtrack+6] << endl;
1de0a072 2187 return PAPROP.am[TRACKR.jtrack+6];
0c160c74 2188 }
1de0a072 2189 else
2190 return -1000.0;
fa3d1cc7 2191}
2192
2193Double_t TFluka::Etot() const
2194{
2195// TRACKR.etrack = total energy of the particle
1de0a072 2196 Int_t caller = GetCaller();
2197 if (caller != 2) // not eedraw
2198 return TRACKR.etrack;
2199 else
2200 return -1000.0;
fa3d1cc7 2201}
2202
2203//
2204// track status
2205//
2206Bool_t TFluka::IsNewTrack() const
2207{
fbf08100 2208// Return true for the first call of Stepping()
fbf08100 2209 return fTrackIsNew;
fa3d1cc7 2210}
2211
2212Bool_t TFluka::IsTrackInside() const
2213{
2214// True if the track is not at the boundary of the current volume
2215// In Fluka a step is always inside one kind of material
2216// If the step would go behind the region of one material,
2217// it will be shortened to reach only the boundary.
2218// Therefore IsTrackInside() is always true.
1de0a072 2219 Int_t caller = GetCaller();
fbf08100 2220 if (caller == 11 || caller==12) // bxdraw
1de0a072 2221 return 0;
2222 else
2223 return 1;
fa3d1cc7 2224}
2225
2226Bool_t TFluka::IsTrackEntering() const
2227{
2228// True if this is the first step of the track in the current volume
cbc3a17e 2229
1de0a072 2230 Int_t caller = GetCaller();
12d57e74 2231 if (caller == 11) // bxdraw entering
1de0a072 2232 return 1;
fa3d1cc7 2233 else return 0;
2234}
2235
2236Bool_t TFluka::IsTrackExiting() const
2237{
1de0a072 2238 Int_t caller = GetCaller();
2239 if (caller == 12) // bxdraw exiting
2240 return 1;
fa3d1cc7 2241 else return 0;
2242}
2243
2244Bool_t TFluka::IsTrackOut() const
2245{
2246// True if the track is out of the setup
2247// means escape
2248// Icode = 14: escape - call from Kaskad
2249// Icode = 23: escape - call from Emfsco
2250// Icode = 32: escape - call from Kasneu
2251// Icode = 40: escape - call from Kashea
2252// Icode = 51: escape - call from Kasoph
70541a80 2253 if (fIcode == 14 ||
2254 fIcode == 23 ||
2255 fIcode == 32 ||
2256 fIcode == 40 ||
2257 fIcode == 51) return 1;
fa3d1cc7 2258 else return 0;
2259}
2260
2261Bool_t TFluka::IsTrackDisappeared() const
2262{
2263// means all inelastic interactions and decays
70541a80 2264// fIcode from usdraw
2265 if (fIcode == 101 || // inelastic interaction
2266 fIcode == 102 || // particle decay
2267 fIcode == 214 || // in-flight annihilation
2268 fIcode == 215 || // annihilation at rest
2269 fIcode == 217 || // pair production
2270 fIcode == 221) return 1;
fa3d1cc7 2271 else return 0;
2272}
2273
2274Bool_t TFluka::IsTrackStop() const
2275{
2276// True if the track energy has fallen below the threshold
2277// means stopped by signal or below energy threshold
2278// Icode = 12: stopping particle - call from Kaskad
2279// Icode = 15: time kill - call from Kaskad
2280// Icode = 21: below threshold, iarg=1 - call from Emfsco
2281// Icode = 22: below threshold, iarg=2 - call from Emfsco
2282// Icode = 24: time kill - call from Emfsco
2283// Icode = 31: below threshold - call from Kasneu
2284// Icode = 33: time kill - call from Kasneu
2285// Icode = 41: time kill - call from Kashea
2286// Icode = 52: time kill - call from Kasoph
70541a80 2287 if (fIcode == 12 ||
2288 fIcode == 15 ||
2289 fIcode == 21 ||
2290 fIcode == 22 ||
2291 fIcode == 24 ||
2292 fIcode == 31 ||
2293 fIcode == 33 ||
2294 fIcode == 41 ||
2295 fIcode == 52) return 1;
fa3d1cc7 2296 else return 0;
2297}
2298
2299Bool_t TFluka::IsTrackAlive() const
2300{
2301// means not disappeared or not out
2302 if (IsTrackDisappeared() || IsTrackOut() ) return 0;
2303 else return 1;
2304}
2305
2306//
2307// secondaries
2308//
2309
2310Int_t TFluka::NSecondaries() const
2311// Number of secondary particles generated in the current step
bc021b12 2312// FINUC.np = number of secondaries except light and heavy ions
b8b430a9 2313// FHEAVY.npheav = number of secondaries for light and heavy secondary ions
fa3d1cc7 2314{
1de0a072 2315 Int_t caller = GetCaller();
2316 if (caller == 6) // valid only after usdraw
2317 return FINUC.np + FHEAVY.npheav;
2318 else
2319 return 0;
2320} // end of NSecondaries
fa3d1cc7 2321
2322void TFluka::GetSecondary(Int_t isec, Int_t& particleId,
2323 TLorentzVector& position, TLorentzVector& momentum)
fa3d1cc7 2324{
1de0a072 2325 Int_t caller = GetCaller();
2326 if (caller == 6) { // valid only after usdraw
2327 if (isec >= 0 && isec < FINUC.np) {
2328 particleId = PDGFromId(FINUC.kpart[isec]);
2329 position.SetX(fXsco);
2330 position.SetY(fYsco);
2331 position.SetZ(fZsco);
2332 position.SetT(TRACKR.atrack);
1de0a072 2333 momentum.SetPx(FINUC.plr[isec]*FINUC.cxr[isec]);
2334 momentum.SetPy(FINUC.plr[isec]*FINUC.cyr[isec]);
2335 momentum.SetPz(FINUC.plr[isec]*FINUC.czr[isec]);
2336 momentum.SetE(FINUC.tki[isec] + PAPROP.am[FINUC.kpart[isec]+6]);
bc021b12 2337 }
1de0a072 2338 else if (isec >= FINUC.np && isec < FINUC.np + FHEAVY.npheav) {
2339 Int_t jsec = isec - FINUC.np;
2340 particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!!
2341 position.SetX(fXsco);
2342 position.SetY(fYsco);
2343 position.SetZ(fZsco);
2344 position.SetT(TRACKR.atrack);
1de0a072 2345 momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]);
2346 momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]);
2347 momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]);
2348 if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6)
2349 momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]);
2350 else if (FHEAVY.tkheav[jsec] > 6)
2351 momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!!
2352 }
2353 else
2354 Warning("GetSecondary","isec out of range");
2355 }
2356 else
2357 Warning("GetSecondary","no secondaries available");
2358} // end of GetSecondary
fa3d1cc7 2359
adbc5ae1 2360TMCProcess TFluka::ProdProcess(Int_t) const
fa3d1cc7 2361// Name of the process that has produced the secondary particles
2362// in the current step
bc021b12 2363{
1de0a072 2364 const TMCProcess kIpNoProc = kPNoProcess;
2365 const TMCProcess kIpPDecay = kPDecay;
2366 const TMCProcess kIpPPair = kPPair;
2367// const TMCProcess kIpPPairFromPhoton = kPPairFromPhoton;
2368// const TMCProcess kIpPPairFromVirtualPhoton = kPPairFromVirtualPhoton;
2369 const TMCProcess kIpPCompton = kPCompton;
2370 const TMCProcess kIpPPhotoelectric = kPPhotoelectric;
2371 const TMCProcess kIpPBrem = kPBrem;
2372// const TMCProcess kIpPBremFromHeavy = kPBremFromHeavy;
2373// const TMCProcess kIpPBremFromElectronOrPositron = kPBremFromElectronOrPositron;
2374 const TMCProcess kIpPDeltaRay = kPDeltaRay;
2375// const TMCProcess kIpPMoller = kPMoller;
2376// const TMCProcess kIpPBhabha = kPBhabha;
2377 const TMCProcess kIpPAnnihilation = kPAnnihilation;
2378// const TMCProcess kIpPAnnihilInFlight = kPAnnihilInFlight;
2379// const TMCProcess kIpPAnnihilAtRest = kPAnnihilAtRest;
2380 const TMCProcess kIpPHadronic = kPHadronic;
2381 const TMCProcess kIpPMuonNuclear = kPMuonNuclear;
2382 const TMCProcess kIpPPhotoFission = kPPhotoFission;
2383 const TMCProcess kIpPRayleigh = kPRayleigh;
b0d8df96 2384// const TMCProcess kIpPCerenkov = kPCerenkov;
2385// const TMCProcess kIpPSynchrotron = kPSynchrotron;
bc021b12 2386
1de0a072 2387 Int_t mugamma = TRACKR.jtrack == 7 || TRACKR.jtrack == 10 || TRACKR.jtrack == 11;
70541a80 2388 if (fIcode == 102) return kIpPDecay;
2389 else if (fIcode == 104 || fIcode == 217) return kIpPPair;
2390// else if (fIcode == 104) return kIpPairFromPhoton;
2391// else if (fIcode == 217) return kIpPPairFromVirtualPhoton;
2392 else if (fIcode == 219) return kIpPCompton;
2393 else if (fIcode == 221) return kIpPPhotoelectric;
2394 else if (fIcode == 105 || fIcode == 208) return kIpPBrem;
2395// else if (fIcode == 105) return kIpPBremFromHeavy;
2396// else if (fIcode == 208) return kPBremFromElectronOrPositron;
2397 else if (fIcode == 103 || fIcode == 400) return kIpPDeltaRay;
2398 else if (fIcode == 210 || fIcode == 212) return kIpPDeltaRay;
2399// else if (fIcode == 210) return kIpPMoller;
2400// else if (fIcode == 212) return kIpPBhabha;
2401 else if (fIcode == 214 || fIcode == 215) return kIpPAnnihilation;
2402// else if (fIcode == 214) return kIpPAnnihilInFlight;
2403// else if (fIcode == 215) return kIpPAnnihilAtRest;
2404 else if (fIcode == 101) return kIpPHadronic;
2405 else if (fIcode == 101) {
1de0a072 2406 if (!mugamma) return kIpPHadronic;
2407 else if (TRACKR.jtrack == 7) return kIpPPhotoFission;
2408 else return kIpPMuonNuclear;
2409 }
70541a80 2410 else if (fIcode == 225) return kIpPRayleigh;
bc021b12 2411// Fluka codes 100, 300 and 400 still to be investigasted
1de0a072 2412 else return kIpNoProc;
bc021b12 2413}
fa3d1cc7 2414
2415//Int_t StepProcesses(TArrayI &proc) const
2416// Return processes active in the current step
2417//{
2418//ck = total energy of the particl ????????????????
2419//}
2420
2421
b0d8df96 2422Int_t TFluka::VolId2Mate(Int_t id) const
2423{
2424//
2425// Returns the material number for a given volume ID
2426//
fee5ea25 2427 if (fVerbosityLevel >= 3)
12d57e74 2428 printf("VolId2Mate %d %d\n", id, fMediaByRegion[id-1]);
b0d8df96 2429 return fMediaByRegion[id-1];
2430}
2431
2432const char* TFluka::VolName(Int_t id) const
2433{
2434//
2435// Returns the volume name for a given volume ID
2436//
2437 FlukaVolume* vol = dynamic_cast<FlukaVolume*>((*fVolumeMediaMap)[id-1]);
2438 const char* name = vol->GetName();
fee5ea25 2439 if (fVerbosityLevel >= 3)
b0d8df96 2440 printf("VolName %d %s \n", id, name);
2441 return name;
2442}
2443
2444Int_t TFluka::VolId(const Text_t* volName) const
2445{
2446//
2447// Converts from volume name to volume ID.
2448// Time consuming. (Only used during set-up)
2449// Could be replaced by hash-table
2450//
2451 char tmp[5];
2452 Int_t i =0;
2453 for (i = 0; i < fNVolumes; i++)
2454 {
2455 FlukaVolume* vol = dynamic_cast<FlukaVolume*>((*fVolumeMediaMap)[i]);
2456 TString name = vol->GetName();
2457 strcpy(tmp, name.Data());
2458 tmp[4] = '\0';
2459 if (!strcmp(tmp, volName)) break;
2460 }
2461 i++;
2462
2463 return i;
2464}
2465
2466
2467Int_t TFluka::CurrentVolID(Int_t& copyNo) const
2468{
2469//
2470// Return the logical id and copy number corresponding to the current fluka region
2471//
2472 int ir = fCurrentFlukaRegion;
2473 int id = (FGeometryInit::GetInstance())->CurrentVolID(ir, copyNo);
12d57e74 2474 copyNo++;
fee5ea25 2475 if (fVerbosityLevel >= 3)
b0d8df96 2476 printf("CurrentVolID: %d %d %d \n", ir, id, copyNo);
2477 return id;
b0d8df96 2478}
2479
2480Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const
2481{
2482//
2483// Return the logical id and copy number of off'th mother
2484// corresponding to the current fluka region
2485//
2486 if (off == 0)
2487 return CurrentVolID(copyNo);
2488
2489 int ir = fCurrentFlukaRegion;
2490 int id = (FGeometryInit::GetInstance())->CurrentVolOffID(ir, off, copyNo);
12d57e74 2491 copyNo++;
fee5ea25 2492 if (fVerbosityLevel >= 3)
b0d8df96 2493 printf("CurrentVolOffID: %d %d %d \n", ir, id, copyNo);
2494 if (id == -1)
fee5ea25 2495 if (fVerbosityLevel >= 0)
b0d8df96 2496 printf("CurrentVolOffID: Warning Mother not found !!!\n");
2497 return id;
2498}
2499
2500
2501const char* TFluka::CurrentVolName() const
2502{
2503//
2504// Return the current volume name
2505//
2506 Int_t copy;
2507 Int_t id = TFluka::CurrentVolID(copy);
2508 const char* name = TFluka::VolName(id);
fee5ea25 2509 if (fVerbosityLevel >= 3)
b0d8df96 2510 printf("CurrentVolumeName: %d %s \n", fCurrentFlukaRegion, name);
2511 return name;
2512}
2513
2514const char* TFluka::CurrentVolOffName(Int_t off) const
2515{
2516//
2517// Return the volume name of the off'th mother of the current volume
2518//
2519 Int_t copy;
2520 Int_t id = TFluka::CurrentVolOffID(off, copy);
2521 const char* name = TFluka::VolName(id);
fee5ea25 2522 if (fVerbosityLevel >= 3)
b0d8df96 2523 printf("CurrentVolumeOffName: %d %s \n", fCurrentFlukaRegion, name);
2524 return name;
2525}
2526
0c160c74 2527Int_t TFluka::CurrentMaterial(Float_t & /*a*/, Float_t & /*z*/,
2528 Float_t & /*dens*/, Float_t & /*radl*/, Float_t & /*absl*/) const
b0d8df96 2529{
2530//
2531// Return the current medium number
2532//
2533 Int_t copy;
2534 Int_t id = TFluka::CurrentVolID(copy);
2535 Int_t med = TFluka::VolId2Mate(id);
fee5ea25 2536 if (fVerbosityLevel >= 3)
b0d8df96 2537 printf("CurrentMaterial: %d %d \n", fCurrentFlukaRegion, med);
2538 return med;
2539}
2540
dc37cac6 2541void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
2542 {
2543// Transforms a position from the world reference frame
2544// to the current volume reference frame.
2545//
2546// Geant3 desription:
2547// ==================
2548// Computes coordinates XD (in DRS)
2549// from known coordinates XM in MRS
2550// The local reference system can be initialized by
2551// - the tracking routines and GMTOD used in GUSTEP
2552// - a call to GMEDIA(XM,NUMED)
2553// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2554// (inverse routine is GDTOM)
2555//
2556// If IFLAG=1 convert coordinates
2557// IFLAG=2 convert direction cosinus
2558//
2559// ---
2560 Double_t xmD[3], xdD[3];
2561 xmD[0] = xm[0]; xmD[1] = xm[1]; xmD[2] = xm[2];
2562 (FGeometryInit::GetInstance())->Gmtod(xmD, xdD, iflag);
2563 xd[0] = xdD[0]; xd[1] = xdD[1]; xd[2] = xdD[2];
2564 }
2565
2566
2567void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
2568 {
2569// Transforms a position from the world reference frame
2570// to the current volume reference frame.
2571//
2572// Geant3 desription:
2573// ==================
2574// Computes coordinates XD (in DRS)
2575// from known coordinates XM in MRS
2576// The local reference system can be initialized by
2577// - the tracking routines and GMTOD used in GUSTEP
2578// - a call to GMEDIA(XM,NUMED)
2579// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2580// (inverse routine is GDTOM)
2581//
2582// If IFLAG=1 convert coordinates
2583// IFLAG=2 convert direction cosinus
2584//
2585// ---
72f84f29 2586 (FGeometryInit::GetInstance())->Gmtod(xm, xd, iflag);
dc37cac6 2587 }
2588
2589void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
2590 {
2591// Transforms a position from the current volume reference frame
2592// to the world reference frame.
2593//
2594// Geant3 desription:
2595// ==================
2596// Computes coordinates XM (Master Reference System
2597// knowing the coordinates XD (Detector Ref System)
2598// The local reference system can be initialized by
2599// - the tracking routines and GDTOM used in GUSTEP
2600// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2601// (inverse routine is GMTOD)
2602//
2603// If IFLAG=1 convert coordinates
2604// IFLAG=2 convert direction cosinus
2605//
2606// ---
72f84f29 2607 Double_t xmD[3], xdD[3];
2608 xdD[0] = xd[0]; xdD[1] = xd[1]; xdD[2] = xd[2];
2609 (FGeometryInit::GetInstance())->Gdtom(xdD, xmD, iflag);
2610 xm[0] = xmD[0]; xm[1] = xmD[1]; xm[2] = xmD[2];
dc37cac6 2611 }
2612void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
2613 {
2614// Transforms a position from the current volume reference frame
2615// to the world reference frame.
2616//
2617// Geant3 desription:
2618// ==================
2619// Computes coordinates XM (Master Reference System
2620// knowing the coordinates XD (Detector Ref System)
2621// The local reference system can be initialized by
2622// - the tracking routines and GDTOM used in GUSTEP
2623// - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2624// (inverse routine is GMTOD)
2625//
2626// If IFLAG=1 convert coordinates
2627// IFLAG=2 convert direction cosinus
2628//
2629// ---
2630
72f84f29 2631 (FGeometryInit::GetInstance())->Gdtom(xd, xm, iflag);
dc37cac6 2632 }
b0d8df96 2633
fa3d1cc7 2634// ===============================================================