]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TFluka/source.cxx
Macro to calculate the resolution and the efficiency of chamber(s) (Nicolas)
[u/mrichter/AliRoot.git] / TFluka / source.cxx
CommitLineData
b9d0a01d 1// Fortran
2#include "TCallf77.h"
3
4// Fluka commons
5#include "Fdblprc.h" //(DBLPRC) fluka common
6#include "Fdimpar.h" //(DIMPAR) fluka parameters
81f1d030 7#include "Fsourcm.h" //(EPISOR) fluka common
8#include "Fflkstk.h" //(FLKSTK) fluka common
380c2ff0 9#include "Fsumcou.h" //(SUMCOU) fluka common
b9d0a01d 10#include "Fpaprop.h" //(PAPROP) fluka common
11#include "Fltclcm.h" //(LTCLCM) fluka common
cfd35035 12#include "Fopphst.h" //(OPPHST) fluka common
b9d0a01d 13
14//Virutal MC
15#include "TFluka.h"
a7bb59a2 16
b9d0a01d 17#include "TVirtualMCStack.h"
fbf08100 18//#include "TVirtualMCApplication.h"
fbf08100 19
b9d0a01d 20#include "TParticle.h"
21#include "TVector3.h"
22
23//Other
eae0fe66 24#include <Riostream.h>
b9d0a01d 25
26#ifndef WIN32
27# define source source_
28# define geocrs geocrs_
29# define georeg georeg_
30# define geohsm geohsm_
31# define soevsv soevsv_
32#else
33# define source SOURCE
34# define geocrs GEOCRS
35# define georeg GEOREG
36# define geohsm GEOHSM
37# define soevsv SOEVSV
38#endif
39
b9d0a01d 40extern "C" {
41 //
42 // Prototypes for FLUKA functions
43 //
44 void type_of_call geocrs(Double_t &, Double_t &, Double_t &);
45 void type_of_call georeg(Double_t &, Double_t &, Double_t &,
4aba9d66 46 Int_t &, Int_t &);
b9d0a01d 47 void type_of_call geohsm(Int_t &, Int_t &, Int_t &, Int_t &);
48 void type_of_call soevsv();
49 /*
50 *----------------------------------------------------------------------*
51 * *
52 * Created on 07 january 1990 by Alfredo Ferrari & Paola Sala *
53 * Infn - Milan *
54 * *
55 * Last change on 21-jun-98 by Alfredo Ferrari *
56 * *
57 * C++ version on 27-sep-02 by Isidro Gonzalez *
58 * *
59 * This is just an example of a possible user written source routine. *
60 * note that the beam card still has some meaning - in the scoring the *
61 * maximum momentum used in deciding the binning is taken from the *
62 * beam momentum. Other beam card parameters are obsolete. *
63 * *
64 *----------------------------------------------------------------------*/
65
66 void source(Int_t& nomore) {
b496f27c 67// Get the pointer to TFluka
2bc4c610 68 TFluka* fluka = (TFluka*)gMC;
b496f27c 69
2bc4c610 70 Int_t verbosityLevel = fluka->GetVerbosityLevel();
71 Bool_t debug = (verbosityLevel>=3)?kTRUE:kFALSE;
72 if (debug) {
ce60a136 73 cout << "==> source(" << nomore << ")" << endl;
81f1d030 74 cout << "\t* SOURCM.lsouit = " << (SOURCM.lsouit?'T':'F') << endl;
2bc4c610 75 }
b9d0a01d 76
2bc4c610 77 static Bool_t lfirst = true;
78 static Bool_t particleIsPrimary = true;
79 static Bool_t lastParticleWasPrimary = true;
b9d0a01d 80
ce60a136 81 nomore = 0;
cadd9e6b 82
b496f27c 83
84// Get the stack
b9d0a01d 85 TVirtualMCStack* cppstack = fluka->GetStack();
b496f27c 86
ce60a136 87 TParticle* particle;
b9d0a01d 88 Int_t itrack = -1;
ce60a136 89 Int_t nprim = cppstack->GetNprimary();
90// Get the next particle from the stack
91 particle = cppstack->PopNextTrack(itrack);
2bc4c610 92 fluka->SetTrackIsNew(kTRUE);
a32460fe 93 if (itrack == (nprim - 1)) lfirst = true;
ce60a136 94// Is this a secondary not handled by Fluka, i.e. a particle added by user action ?
95 lastParticleWasPrimary = particleIsPrimary;
96
97 if (itrack >= nprim) {
4aba9d66 98 particleIsPrimary = kFALSE;
ce60a136 99 } else {
4aba9d66 100 particleIsPrimary = kTRUE;
ce60a136 101 }
102
ce60a136 103 if (lfirst) {
4aba9d66 104 SOURCM.tkesum = zerzer;
105 lfirst = false;
106 SOURCM.lussrc = true;
ce60a136 107 } else {
108//
109// Post-track actions for primary track
110//
4aba9d66 111 if (particleIsPrimary) {
112 TVirtualMCApplication::Instance()->PostTrack();
113 TVirtualMCApplication::Instance()->FinishPrimary();
114 if ((itrack%10)==0)
115 cout << "=== TRACKING PRIMARY "<< itrack <<" ===" << endl;
116 //printf("=== TRACKING PRIMARY %d ===\n", itrack);
117 }
ce60a136 118 }
b9d0a01d 119
b496f27c 120 // Exit if itrack is negative (-1). Set lsouit to false to mark last track for this event
ce60a136 121
b9d0a01d 122 if (itrack<0) {
123 nomore = 1;
81f1d030 124 SOURCM.lsouit = false;
2bc4c610 125 if (debug) {
81f1d030 126 cout << "\t* SOURCM.lsouit = " << (SOURCM.lsouit?'T':'F') << endl;
2bc4c610 127 cout << "\t* No more particles. Exiting..." << endl;
128 cout << "<== source(" << nomore << ")" << endl;
129 }
b9d0a01d 130 return;
131 }
ce60a136 132
b496f27c 133 //
134 // Handle user event abortion
135 if (fluka->EventIsStopped()) {
4aba9d66 136 printf("Event has been stopped by user !");
137 fluka->SetStopEvent(kFALSE);
138 nomore = 1;
139 SOURCM.lsouit = false;
140 return;
b496f27c 141 }
142
b9d0a01d 143 //Get some info about the particle and print it
ce60a136 144 //
145 //pdg code
146 Int_t pdg = particle->GetPdgCode();
b9d0a01d 147 TVector3 polarisation;
148 particle->GetPolarisation(polarisation);
2bc4c610 149 if (debug) {
150 cout << "\t* Particle " << itrack << " retrieved..." << endl;
151 cout << "\t\t+ Name = " << particle->GetName() << endl;
152 cout << "\t\t+ PDG/Fluka code = " << pdg
4aba9d66 153 << " / " << fluka->IdFromPDG(pdg) << endl;
2bc4c610 154 cout << "\t\t+ P = ("
4aba9d66 155 << particle->Px() << " , "
156 << particle->Py() << " , "
157 << particle->Pz() << " ) --> "
158 << particle->P() << " GeV "
159 << particle->Energy() << " GeV "
160 << particle->GetMass() << " GeV " << endl;
2bc4c610 161 }
81f1d030 162 /* Npflka is the stack counter: of course any time source is called it
b9d0a01d 163 * must be =0
164 */
cfd35035 165 /* Cosines (tx,ty,tz)*/
166 Double_t cosx = particle->Px()/particle->P();
167 Double_t cosy = particle->Py()/particle->P();
168 Double_t cosz = TMath::Sqrt(oneone - cosx*cosx - cosy*cosy);
169 if (particle->Pz() < 0.) cosz = -cosz;
ce60a136 170
cfd35035 171 if (pdg != 50000050 && pdg != 50000051) {
4aba9d66 172 FLKSTK.npflka++;
173 Int_t ifl = fluka-> IdFromPDG(pdg);
174 FLKSTK.iloflk[FLKSTK.npflka] = ifl;
175 /* Wtflk is the weight of the particle*/
176 FLKSTK.wtflk[FLKSTK.npflka] = oneone;
177 SUMCOU.weipri += FLKSTK.wtflk[FLKSTK.npflka];
178
179 FLKSTK.loflk[FLKSTK.npflka] = 1;
180
181 /* User dependent flag:*/
182 FLKSTK.louse[FLKSTK.npflka] = 0;
183
184 /* User dependent spare variables:*/
185 Int_t ispr = 0;
186 for (ispr = 0; ispr < mkbmx1; ispr++)
187 FLKSTK.sparek[FLKSTK.npflka][ispr] = zerzer;
188
189 /* User dependent spare flags:*/
190 for (ispr = 0; ispr < mkbmx2; ispr++)
191 FLKSTK.ispark[FLKSTK.npflka][ispr] = 0;
192
193 /* Save the track number of the stack particle:*/
194 FLKSTK.ispark[FLKSTK.npflka][mkbmx2-1] = itrack;
195 FLKSTK.nparma++;
196 FLKSTK.numpar[FLKSTK.npflka] = FLKSTK.nparma;
197 FLKSTK.nevent[FLKSTK.npflka] = 0;
198 FLKSTK.dfnear[FLKSTK.npflka] = +zerzer;
199
200 /* Particle age (s)*/
201 FLKSTK.agestk[FLKSTK.npflka] = +zerzer;
202 FLKSTK.cmpath[FLKSTK.npflka] = +zerzer;
203 FLKSTK.aknshr[FLKSTK.npflka] = -twotwo;
204
205 /* Group number for "low" energy neutrons, set to 0 anyway*/
206 FLKSTK.igroup[FLKSTK.npflka] = 0;
207
208 /* Kinetic energy */
209 Double_t p = particle->P();
210 Double_t mass = PAPROP.am[ifl + 6];
211 FLKSTK.tkeflk[FLKSTK.npflka] = TMath::Sqrt( p * p + mass * mass) - mass;
212 /* Particle momentum*/
213 FLKSTK.pmoflk [FLKSTK.npflka] = p;
214
215 FLKSTK.txflk [FLKSTK.npflka] = cosx;
216 FLKSTK.tyflk [FLKSTK.npflka] = cosy;
217 FLKSTK.tzflk [FLKSTK.npflka] = cosz;
b9d0a01d 218
4aba9d66 219 /* Polarization cosines:*/
220 if (polarisation.Mag()) {
221 Double_t cospolx = polarisation.Px() / polarisation.Mag();
222 Double_t cospoly = polarisation.Py() / polarisation.Mag();
223 Double_t cospolz = sqrt(oneone - cospolx * cospolx - cospoly * cospoly);
224 FLKSTK.txpol [FLKSTK.npflka] = cospolx;
225 FLKSTK.typol [FLKSTK.npflka] = cospoly;
226 FLKSTK.tzpol [FLKSTK.npflka] = cospolz;
227 }
228 else {
229 FLKSTK.txpol [FLKSTK.npflka] = -twotwo;
230 FLKSTK.typol [FLKSTK.npflka] = +zerzer;
231 FLKSTK.tzpol [FLKSTK.npflka] = +zerzer;
232 }
233
234 /* Particle coordinates*/
235 // Vertext coordinates;
236 FLKSTK.xflk [FLKSTK.npflka] = particle->Vx();
237 FLKSTK.yflk [FLKSTK.npflka] = particle->Vy();
238 FLKSTK.zflk [FLKSTK.npflka] = particle->Vz();
239
240 /* Calculate the total kinetic energy of the primaries: don't change*/
241 Int_t st_ilo = FLKSTK.iloflk[FLKSTK.npflka];
242 if ( st_ilo != 0 )
243 SOURCM.tkesum +=
244 ((FLKSTK.tkeflk[FLKSTK.npflka] + PAPROP.amdisc[st_ilo+6])
245 * FLKSTK.wtflk[FLKSTK.npflka]);
246 else
247 SOURCM.tkesum += (FLKSTK.tkeflk[FLKSTK.npflka] * FLKSTK.wtflk[FLKSTK.npflka]);
248
249 /* Here we ask for the region number of the hitting point.
250 * NRGFLK (LFLKSTK) = ...
251 * The following line makes the starting region search much more
252 * robust if particles are starting very close to a boundary:
253 */
254 geocrs( FLKSTK.txflk[FLKSTK.npflka],
255 FLKSTK.tyflk[FLKSTK.npflka],
256 FLKSTK.tzflk[FLKSTK.npflka] );
b9d0a01d 257
4aba9d66 258 Int_t idisc;
259
260 georeg ( FLKSTK.xflk[FLKSTK.npflka],
261 FLKSTK.yflk[FLKSTK.npflka],
262 FLKSTK.zflk[FLKSTK.npflka],
263 FLKSTK.nrgflk[FLKSTK.npflka],
264 idisc);//<-- dummy return variable not used
265 /* Do not change these cards:*/
266 Int_t igeohsm1 = 1;
267 Int_t igeohsm2 = -11;
268 geohsm ( FLKSTK.nhspnt[FLKSTK.npflka], igeohsm1, igeohsm2, LTCLCM.mlattc );
269 FLKSTK.nlattc[FLKSTK.npflka] = LTCLCM.mlattc;
270 soevsv();
cfd35035 271 } else {
b496f27c 272 //
4aba9d66 273 // Next particle is optical photon
274 //
275 OPPHST.lstopp++;
276 OPPHST.donear [OPPHST.lstopp - 1] = 0.;
277
278 OPPHST.xoptph [OPPHST.lstopp - 1] = particle->Vx();
279 OPPHST.yoptph [OPPHST.lstopp - 1] = particle->Vy();
280 OPPHST.zoptph [OPPHST.lstopp - 1] = particle->Vz();
281
282 OPPHST.txopph [OPPHST.lstopp - 1] = cosx;
283 OPPHST.tyopph [OPPHST.lstopp - 1] = cosy;
284 OPPHST.tzopph [OPPHST.lstopp - 1] = cosz;
285
286
287 if (polarisation.Mag()) {
288 Double_t cospolx = polarisation.Px() / polarisation.Mag();
289 Double_t cospoly = polarisation.Py() / polarisation.Mag();
290 Double_t cospolz = sqrt(oneone - cospolx * cospolx - cospoly * cospoly);
291 OPPHST.txpopp [OPPHST.lstopp - 1] = cospolx;
292 OPPHST.typopp [OPPHST.lstopp - 1] = cospoly;
293 OPPHST.tzpopp [OPPHST.lstopp - 1] = cospolz;
294 }
295 else {
296 OPPHST.txpopp [OPPHST.lstopp - 1] = -twotwo;
297 OPPHST.typopp [OPPHST.lstopp - 1] = +zerzer;
298 OPPHST.tzpopp [OPPHST.lstopp - 1] = +zerzer;
299 }
300
301 geocrs( OPPHST.txopph[OPPHST.lstopp - 1],
302 OPPHST.tyopph[OPPHST.lstopp - 1],
303 OPPHST.tzopph[OPPHST.lstopp - 1] );
304
305 Int_t idisc;
306
307 georeg ( OPPHST.xoptph[OPPHST.lstopp - 1],
308 OPPHST.yoptph[OPPHST.lstopp - 1],
309 OPPHST.zoptph[OPPHST.lstopp - 1],
310 OPPHST.nregop[OPPHST.lstopp - 1],
311 idisc);//<-- dummy return variable not used
312
313 OPPHST.wtopph [OPPHST.lstopp - 1] = particle->GetWeight();
314 OPPHST.poptph [OPPHST.lstopp - 1] = particle->P();
315 OPPHST.agopph [OPPHST.lstopp - 1] = particle->T();
316 OPPHST.cmpopp [OPPHST.lstopp - 1] = +zerzer;
317 OPPHST.loopph [OPPHST.lstopp - 1] = 0;
318 OPPHST.louopp [OPPHST.lstopp - 1] = itrack;
319 OPPHST.nlatop [OPPHST.lstopp - 1] = LTCLCM.mlattc;
320 }
321
ce60a136 322//
323// Pre-track actions at for primary tracks
324//
325 if (particleIsPrimary) {
4aba9d66 326 TVirtualMCApplication::Instance()->BeginPrimary();
327 TVirtualMCApplication::Instance()->PreTrack();
ce60a136 328 }
ce60a136 329//
2bc4c610 330 if (debug) cout << "<== source(" << nomore << ")" << endl;
b9d0a01d 331 }
332}