]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TFluka/source.cxx
Current track number correctly stored in stack.
[u/mrichter/AliRoot.git] / TFluka / source.cxx
CommitLineData
b9d0a01d 1#define METHODDEBUG
2
3// Fortran
4#include "TCallf77.h"
5
6// Fluka commons
7#include "Fdblprc.h" //(DBLPRC) fluka common
8#include "Fdimpar.h" //(DIMPAR) fluka parameters
9#include "Fepisor.h" //(EPISOR) fluka common
10#include "Fstack.h" //(STACK) fluka common
11#include "Fstars.h" //(STARS) fluka common
12#include "Fbeam.h" //(BEAM) fluka common
13#include "Fpaprop.h" //(PAPROP) fluka common
14#include "Fltclcm.h" //(LTCLCM) fluka common
15//#include "Fcaslim.h" //(CASLIM) fluka common
16
17//Virutal MC
18#include "TFluka.h"
19#include "TVirtualMCStack.h"
45dc600a 20#include "TVirtualMCApplication.h"
b9d0a01d 21#include "TParticle.h"
22#include "TVector3.h"
23
24//Other
eae0fe66 25#include <Riostream.h>
b9d0a01d 26
27#ifndef WIN32
28# define source source_
29# define geocrs geocrs_
30# define georeg georeg_
31# define geohsm geohsm_
32# define soevsv soevsv_
33#else
34# define source SOURCE
35# define geocrs GEOCRS
36# define georeg GEOREG
37# define geohsm GEOHSM
38# define soevsv SOEVSV
39#endif
40
b9d0a01d 41extern "C" {
42 //
43 // Prototypes for FLUKA functions
44 //
45 void type_of_call geocrs(Double_t &, Double_t &, Double_t &);
46 void type_of_call georeg(Double_t &, Double_t &, Double_t &,
47 Int_t &, Int_t &);
48 void type_of_call geohsm(Int_t &, Int_t &, Int_t &, Int_t &);
49 void type_of_call soevsv();
50 /*
51 *----------------------------------------------------------------------*
52 * *
53 * Created on 07 january 1990 by Alfredo Ferrari & Paola Sala *
54 * Infn - Milan *
55 * *
56 * Last change on 21-jun-98 by Alfredo Ferrari *
57 * *
58 * C++ version on 27-sep-02 by Isidro Gonzalez *
59 * *
60 * This is just an example of a possible user written source routine. *
61 * note that the beam card still has some meaning - in the scoring the *
62 * maximum momentum used in deciding the binning is taken from the *
63 * beam momentum. Other beam card parameters are obsolete. *
64 * *
65 *----------------------------------------------------------------------*/
66
67 void source(Int_t& nomore) {
68#ifdef METHODDEBUG
69 cout << "==> source(" << nomore << ")" << endl;
70#endif
71
72 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
73
74 static Bool_t lfirst = true;
75 /*======================================================================*
76 * *
77 * BASIC VERSION *
78 * *
79 *======================================================================*/
80 nomore = 0;
81 /* +-------------------------------------------------------------------*
82 * | First call initializations:*/
83 if (lfirst) {
84
85 /*| *** The following 3 cards are mandatory ***/
86
87 EPISOR.tkesum = zerzer;
88 lfirst = false;
89 EPISOR.lussrc = true;
90 /*| *** User initialization ***/
91 }
92 /* |
93 * +-------------------------------------------------------------------*
94 * Push one source particle to the stack. Note that you could as well
95 * push many but this way we reserve a maximum amount of space in the
96 * stack for the secondaries to be generated
97 */
98
99 // Get the pointer to the VMC
100 TVirtualMC* fluka = TFluka::GetMC();
101 // Get the stack produced from the generator
102 TVirtualMCStack* cppstack = fluka->GetStack();
103 //Get next particle
45dc600a 104 if (STACK.lstack != 1) {
105 TVirtualMCApplication::Instance()->PostTrack();
106 TVirtualMCApplication::Instance()->FinishPrimary();
107 }
b9d0a01d 108 Int_t itrack = -1;
109 TParticle* particle = cppstack->GetNextTrack(itrack);
110
111 //Exit if itrack is negative (-1). Set lsouit to false to mark last track for
112 //this event
113 if (itrack<0) {
114 nomore = 1;
115 EPISOR.lsouit = false;
116 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
117 cout << "\t* No more particles. Exiting..." << endl;
118#ifdef METHODDEBUG
119 cout << "<== source(" << nomore << ")" << endl;
120#endif
121 return;
122 }
123
124 //Get some info about the particle and print it
125 TVector3 polarisation;
126 particle->GetPolarisation(polarisation);
127 cout << "\t* Particle " << itrack << " retrieved..." << endl;
128 cout << "\t\t+ Name = " << particle->GetName() << endl;
129 cout << "\t\t+ PDG/Fluka code = " << particle->GetPdgCode()
130 << " / " << fluka->IdFromPDG(particle->GetPdgCode()) << endl;
131 cout << "\t\t+ E = " << particle->Energy() << " GeV" << endl;
132 cout << "\t\t+ P = ("
133 << particle->Px() << " , "
134 << particle->Py() << " , "
135 << particle->Pz() << " ) --> "
136 << particle->P() << " GeV" << endl;
137 cout << "\t\t+ M = " << particle->GetMass() << " GeV" << endl;
138 cout << "\t\t+ Initial point = ( "
139 << particle->Vx() << " , "
140 << particle->Vy() << " , "
141 << particle->Vz() << " )"
142 << endl;
143 cout << "\t\t+ Polarisation = ( "
144 << polarisation.Px() << " , "
145 << polarisation.Py() << " , "
146 << polarisation.Pz() << " )"
147 << endl;
148 /* Lstack is the stack counter: of course any time source is called it
149 * must be =0
150 */
45dc600a 151
b9d0a01d 152 STACK.lstack++;
153 cout << "\t* Storing particle parameters in the stack, lstack = "
154 << STACK.lstack << endl;
155 /* Wt is the weight of the particle*/
156 STACK.wt[STACK.lstack] = oneone;
157 STARS.weipri += STACK.wt[STACK.lstack];
158 /* Particle type (1=proton.....). Ijbeam is the type set by the BEAM
159 * card
160 */
161 //STACK.ilo[STACK.lstack] = BEAM.ijbeam;
162 STACK.ilo[STACK.lstack] = fluka-> IdFromPDG(particle->GetPdgCode());
163 /* From this point .....
164 * Particle generation (1 for primaries)
165 */
166 STACK.lo[STACK.lstack] = 1;
167 /* User dependent flag:*/
168 STACK.louse[STACK.lstack] = 0;
169 /* User dependent spare variables:*/
148ba0b4 170 Int_t ispr = 0;
171 for (ispr = 0; ispr < mkbmx1; ispr++)
b9d0a01d 172 STACK.sparek[STACK.lstack][ispr] = zerzer;
173 /* User dependent spare flags:*/
148ba0b4 174 for (ispr = 0; ispr < mkbmx2; ispr++)
b9d0a01d 175 STACK.ispark[STACK.lstack][ispr] = 0;
176 /* Save the track number of the stack particle:*/
5d298556 177 STACK.ispark[STACK.lstack][mkbmx2-1] = itrack;
b9d0a01d 178 STACK.nparma++;
179 STACK.numpar[STACK.lstack] = STACK.nparma;
180 STACK.nevent[STACK.lstack] = 0;
181 STACK.dfnear[STACK.lstack] = +zerzer;
182 /* ... to this point: don't change anything
183 * Particle age (s)
184 */
185 STACK.agestk[STACK.lstack] = +zerzer;
186 STACK.aknshr[STACK.lstack] = -twotwo;
187 /* Group number for "low" energy neutrons, set to 0 anyway*/
188 STACK.igroup[STACK.lstack] = 0;
189 /* Kinetic energy of the particle (GeV)*/
190 //STACK.tke[STACK.lstack] =
191 //sqrt( BEAM.pbeam*BEAM.pbeam +
192 // PAPROP.am[BEAM.ijbeam+6]*PAPROP.am[BEAM.ijbeam+6] )
193 //- PAPROP.am[BEAM.ijbeam+6];
194 STACK.tke[STACK.lstack] = particle->Energy() - particle->GetMass();
195
196 /* Particle momentum*/
197 //STACK.pmom [STACK.lstack] = BEAM.pbeam;
198 STACK.pmom [STACK.lstack] = particle->P();
199
200 /* PMOM (lstack) = SQRT ( TKE (stack) * ( TKE (lstack) + TWOTWO
201 * & * AM (ILO(lstack)) ) )
202 * Cosines (tx,ty,tz)
203 */
204 //STACK.tx [STACK.lstack] = BEAM.tinx;
205 //STACK.ty [STACK.lstack] = BEAM.tiny;
206 //STACK.tz [STACK.lstack] = BEAM.tinz;
207 Double_t cosx = particle->Px()/particle->P();
208 Double_t cosy = particle->Py()/particle->P();
57dd4539 209 Double_t cosz = TMath::Sqrt(oneone - cosx*cosx - cosy*cosy);
210 if (particle->Pz() < 0.) cosz = -cosz;
b9d0a01d 211 STACK.tx [STACK.lstack] = cosx;
212 STACK.ty [STACK.lstack] = cosy;
213 STACK.tz [STACK.lstack] = cosz;
214
215 /* Polarization cosines:
216 */
217 //STACK.txpol [STACK.lstack] = -twotwo;
218 //STACK.typol [STACK.lstack] = +zerzer;
219 //STACK.tzpol [STACK.lstack] = +zerzer;
220 if (polarisation.Mag()) {
221 Double_t cospolx = polarisation.Px()/polarisation.Mag();
222 Double_t cospoly = polarisation.Py()/polarisation.Mag();
223 Double_t cospolz = sqrt(oneone - cospolx*cospolx - cospoly*cospoly);
224 STACK.tx [STACK.lstack] = cospolx;
225 STACK.ty [STACK.lstack] = cospoly;
226 STACK.tz [STACK.lstack] = cospolz;
227 }
228 else {
229 STACK.txpol [STACK.lstack] = -twotwo;
230 STACK.typol [STACK.lstack] = +zerzer;
231 STACK.tzpol [STACK.lstack] = +zerzer;
232 }
233
234 /* Particle coordinates*/
235 //STACK.xa [STACK.lstack] = BEAM.xina;
236 //STACK.ya [STACK.lstack] = BEAM.yina;
237 //STACK.za [STACK.lstack] = BEAM.zina
238 //Vertext coordinates;
239 STACK.xa [STACK.lstack] = particle->Vx();
240 STACK.ya [STACK.lstack] = particle->Vy();
241 STACK.za [STACK.lstack] = particle->Vz();
242
243 // Some printout
244 cout << "\t* Particle information transfered to stack..." << endl;
245
246 /* Calculate the total kinetic energy of the primaries: don't change*/
247 Int_t st_ilo = STACK.ilo[STACK.lstack];
248 if ( st_ilo != 0 )
249 EPISOR.tkesum +=
250 ((STACK.tke[STACK.lstack] + PAPROP.amdisc[st_ilo+6])
251 * STACK.wt[STACK.lstack]);
252 else
253 EPISOR.tkesum += (STACK.tke[STACK.lstack] * STACK.wt[STACK.lstack]);
254
255 /* Here we ask for the region number of the hitting point.
256 * NREG (LSTACK) = ...
257 * The following line makes the starting region search much more
258 * robust if particles are starting very close to a boundary:
259 */
260 geocrs( STACK.tx[STACK.lstack],
261 STACK.ty[STACK.lstack],
262 STACK.tz[STACK.lstack] );
263 Int_t idisc;
264 georeg ( STACK.xa[STACK.lstack],
265 STACK.ya[STACK.lstack],
266 STACK.za[STACK.lstack],
267 STACK.nreg[STACK.lstack],
268 idisc);//<-- dummy return variable not used
269
270 /* Do not change these cards:*/
271 Int_t igeohsm1 = 1;
272 Int_t igeohsm2 = -11;
273 geohsm ( STACK.nhspnt[STACK.lstack], igeohsm1, igeohsm2, LTCLCM.mlattc );
274 STACK.nlattc[STACK.lstack] = LTCLCM.mlattc;
275 soevsv();
276
277 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
278 cout << "\t* " << STACK.lstack << " particles in the event" << endl;
45dc600a 279 TVirtualMCApplication::Instance()->PreTrack();
b9d0a01d 280#ifdef METHODDEBUG
281 cout << "<== source(" << nomore << ")" << endl;
282#endif
283 }
284}