Small mod to make it more portable
[u/mrichter/AliRoot.git] / TFluka / source.cxx
CommitLineData
b9d0a01d 1#define METHODDEBUG
2
3// Fortran
4#include "TCallf77.h"
5
6// Fluka commons
7#include "Fdblprc.h" //(DBLPRC) fluka common
8#include "Fdimpar.h" //(DIMPAR) fluka parameters
9#include "Fepisor.h" //(EPISOR) fluka common
10#include "Fstack.h" //(STACK) fluka common
11#include "Fstars.h" //(STARS) fluka common
12#include "Fbeam.h" //(BEAM) fluka common
13#include "Fpaprop.h" //(PAPROP) fluka common
14#include "Fltclcm.h" //(LTCLCM) fluka common
15//#include "Fcaslim.h" //(CASLIM) fluka common
16
17//Virutal MC
18#include "TFluka.h"
19#include "TVirtualMCStack.h"
20#include "TParticle.h"
21#include "TVector3.h"
22
23//Other
eae0fe66 24#include <Riostream.h>
b9d0a01d 25
26#ifndef WIN32
27# define source source_
28# define geocrs geocrs_
29# define georeg georeg_
30# define geohsm geohsm_
31# define soevsv soevsv_
32#else
33# define source SOURCE
34# define geocrs GEOCRS
35# define georeg GEOREG
36# define geohsm GEOHSM
37# define soevsv SOEVSV
38#endif
39
40
41extern "C" {
42 //
43 // Prototypes for FLUKA functions
44 //
45 void type_of_call geocrs(Double_t &, Double_t &, Double_t &);
46 void type_of_call georeg(Double_t &, Double_t &, Double_t &,
47 Int_t &, Int_t &);
48 void type_of_call geohsm(Int_t &, Int_t &, Int_t &, Int_t &);
49 void type_of_call soevsv();
50 /*
51 *----------------------------------------------------------------------*
52 * *
53 * Created on 07 january 1990 by Alfredo Ferrari & Paola Sala *
54 * Infn - Milan *
55 * *
56 * Last change on 21-jun-98 by Alfredo Ferrari *
57 * *
58 * C++ version on 27-sep-02 by Isidro Gonzalez *
59 * *
60 * This is just an example of a possible user written source routine. *
61 * note that the beam card still has some meaning - in the scoring the *
62 * maximum momentum used in deciding the binning is taken from the *
63 * beam momentum. Other beam card parameters are obsolete. *
64 * *
65 *----------------------------------------------------------------------*/
66
67 void source(Int_t& nomore) {
68#ifdef METHODDEBUG
69 cout << "==> source(" << nomore << ")" << endl;
70#endif
71
72 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
73
74 static Bool_t lfirst = true;
75 /*======================================================================*
76 * *
77 * BASIC VERSION *
78 * *
79 *======================================================================*/
80 nomore = 0;
81 /* +-------------------------------------------------------------------*
82 * | First call initializations:*/
83 if (lfirst) {
84
85 /*| *** The following 3 cards are mandatory ***/
86
87 EPISOR.tkesum = zerzer;
88 lfirst = false;
89 EPISOR.lussrc = true;
90 /*| *** User initialization ***/
91 }
92 /* |
93 * +-------------------------------------------------------------------*
94 * Push one source particle to the stack. Note that you could as well
95 * push many but this way we reserve a maximum amount of space in the
96 * stack for the secondaries to be generated
97 */
98
99 // Get the pointer to the VMC
100 TVirtualMC* fluka = TFluka::GetMC();
101 // Get the stack produced from the generator
102 TVirtualMCStack* cppstack = fluka->GetStack();
103 //Get next particle
104 Int_t itrack = -1;
105 TParticle* particle = cppstack->GetNextTrack(itrack);
106
107 //Exit if itrack is negative (-1). Set lsouit to false to mark last track for
108 //this event
109 if (itrack<0) {
110 nomore = 1;
111 EPISOR.lsouit = false;
112 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
113 cout << "\t* No more particles. Exiting..." << endl;
114#ifdef METHODDEBUG
115 cout << "<== source(" << nomore << ")" << endl;
116#endif
117 return;
118 }
119
120 //Get some info about the particle and print it
121 TVector3 polarisation;
122 particle->GetPolarisation(polarisation);
123 cout << "\t* Particle " << itrack << " retrieved..." << endl;
124 cout << "\t\t+ Name = " << particle->GetName() << endl;
125 cout << "\t\t+ PDG/Fluka code = " << particle->GetPdgCode()
126 << " / " << fluka->IdFromPDG(particle->GetPdgCode()) << endl;
127 cout << "\t\t+ E = " << particle->Energy() << " GeV" << endl;
128 cout << "\t\t+ P = ("
129 << particle->Px() << " , "
130 << particle->Py() << " , "
131 << particle->Pz() << " ) --> "
132 << particle->P() << " GeV" << endl;
133 cout << "\t\t+ M = " << particle->GetMass() << " GeV" << endl;
134 cout << "\t\t+ Initial point = ( "
135 << particle->Vx() << " , "
136 << particle->Vy() << " , "
137 << particle->Vz() << " )"
138 << endl;
139 cout << "\t\t+ Polarisation = ( "
140 << polarisation.Px() << " , "
141 << polarisation.Py() << " , "
142 << polarisation.Pz() << " )"
143 << endl;
144 /* Lstack is the stack counter: of course any time source is called it
145 * must be =0
146 */
147 STACK.lstack++;
148 cout << "\t* Storing particle parameters in the stack, lstack = "
149 << STACK.lstack << endl;
150 /* Wt is the weight of the particle*/
151 STACK.wt[STACK.lstack] = oneone;
152 STARS.weipri += STACK.wt[STACK.lstack];
153 /* Particle type (1=proton.....). Ijbeam is the type set by the BEAM
154 * card
155 */
156 //STACK.ilo[STACK.lstack] = BEAM.ijbeam;
157 STACK.ilo[STACK.lstack] = fluka-> IdFromPDG(particle->GetPdgCode());
158 /* From this point .....
159 * Particle generation (1 for primaries)
160 */
161 STACK.lo[STACK.lstack] = 1;
162 /* User dependent flag:*/
163 STACK.louse[STACK.lstack] = 0;
164 /* User dependent spare variables:*/
148ba0b4 165 Int_t ispr = 0;
166 for (ispr = 0; ispr < mkbmx1; ispr++)
b9d0a01d 167 STACK.sparek[STACK.lstack][ispr] = zerzer;
168 /* User dependent spare flags:*/
148ba0b4 169 for (ispr = 0; ispr < mkbmx2; ispr++)
b9d0a01d 170 STACK.ispark[STACK.lstack][ispr] = 0;
171 /* Save the track number of the stack particle:*/
172 STACK.ispark[STACK.lstack][mkbmx2-1] = STACK.lstack;
173 STACK.nparma++;
174 STACK.numpar[STACK.lstack] = STACK.nparma;
175 STACK.nevent[STACK.lstack] = 0;
176 STACK.dfnear[STACK.lstack] = +zerzer;
177 /* ... to this point: don't change anything
178 * Particle age (s)
179 */
180 STACK.agestk[STACK.lstack] = +zerzer;
181 STACK.aknshr[STACK.lstack] = -twotwo;
182 /* Group number for "low" energy neutrons, set to 0 anyway*/
183 STACK.igroup[STACK.lstack] = 0;
184 /* Kinetic energy of the particle (GeV)*/
185 //STACK.tke[STACK.lstack] =
186 //sqrt( BEAM.pbeam*BEAM.pbeam +
187 // PAPROP.am[BEAM.ijbeam+6]*PAPROP.am[BEAM.ijbeam+6] )
188 //- PAPROP.am[BEAM.ijbeam+6];
189 STACK.tke[STACK.lstack] = particle->Energy() - particle->GetMass();
190
191 /* Particle momentum*/
192 //STACK.pmom [STACK.lstack] = BEAM.pbeam;
193 STACK.pmom [STACK.lstack] = particle->P();
194
195 /* PMOM (lstack) = SQRT ( TKE (stack) * ( TKE (lstack) + TWOTWO
196 * & * AM (ILO(lstack)) ) )
197 * Cosines (tx,ty,tz)
198 */
199 //STACK.tx [STACK.lstack] = BEAM.tinx;
200 //STACK.ty [STACK.lstack] = BEAM.tiny;
201 //STACK.tz [STACK.lstack] = BEAM.tinz;
202 Double_t cosx = particle->Px()/particle->P();
203 Double_t cosy = particle->Py()/particle->P();
204 Double_t cosz = sqrt(oneone - cosx*cosx - cosy*cosy);
205 STACK.tx [STACK.lstack] = cosx;
206 STACK.ty [STACK.lstack] = cosy;
207 STACK.tz [STACK.lstack] = cosz;
208
209 /* Polarization cosines:
210 */
211 //STACK.txpol [STACK.lstack] = -twotwo;
212 //STACK.typol [STACK.lstack] = +zerzer;
213 //STACK.tzpol [STACK.lstack] = +zerzer;
214 if (polarisation.Mag()) {
215 Double_t cospolx = polarisation.Px()/polarisation.Mag();
216 Double_t cospoly = polarisation.Py()/polarisation.Mag();
217 Double_t cospolz = sqrt(oneone - cospolx*cospolx - cospoly*cospoly);
218 STACK.tx [STACK.lstack] = cospolx;
219 STACK.ty [STACK.lstack] = cospoly;
220 STACK.tz [STACK.lstack] = cospolz;
221 }
222 else {
223 STACK.txpol [STACK.lstack] = -twotwo;
224 STACK.typol [STACK.lstack] = +zerzer;
225 STACK.tzpol [STACK.lstack] = +zerzer;
226 }
227
228 /* Particle coordinates*/
229 //STACK.xa [STACK.lstack] = BEAM.xina;
230 //STACK.ya [STACK.lstack] = BEAM.yina;
231 //STACK.za [STACK.lstack] = BEAM.zina
232 //Vertext coordinates;
233 STACK.xa [STACK.lstack] = particle->Vx();
234 STACK.ya [STACK.lstack] = particle->Vy();
235 STACK.za [STACK.lstack] = particle->Vz();
236
237 // Some printout
238 cout << "\t* Particle information transfered to stack..." << endl;
239
240 /* Calculate the total kinetic energy of the primaries: don't change*/
241 Int_t st_ilo = STACK.ilo[STACK.lstack];
242 if ( st_ilo != 0 )
243 EPISOR.tkesum +=
244 ((STACK.tke[STACK.lstack] + PAPROP.amdisc[st_ilo+6])
245 * STACK.wt[STACK.lstack]);
246 else
247 EPISOR.tkesum += (STACK.tke[STACK.lstack] * STACK.wt[STACK.lstack]);
248
249 /* Here we ask for the region number of the hitting point.
250 * NREG (LSTACK) = ...
251 * The following line makes the starting region search much more
252 * robust if particles are starting very close to a boundary:
253 */
254 geocrs( STACK.tx[STACK.lstack],
255 STACK.ty[STACK.lstack],
256 STACK.tz[STACK.lstack] );
257 Int_t idisc;
258 georeg ( STACK.xa[STACK.lstack],
259 STACK.ya[STACK.lstack],
260 STACK.za[STACK.lstack],
261 STACK.nreg[STACK.lstack],
262 idisc);//<-- dummy return variable not used
263
264 /* Do not change these cards:*/
265 Int_t igeohsm1 = 1;
266 Int_t igeohsm2 = -11;
267 geohsm ( STACK.nhspnt[STACK.lstack], igeohsm1, igeohsm2, LTCLCM.mlattc );
268 STACK.nlattc[STACK.lstack] = LTCLCM.mlattc;
269 soevsv();
270
271 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
272 cout << "\t* " << STACK.lstack << " particles in the event" << endl;
273
274#ifdef METHODDEBUG
275 cout << "<== source(" << nomore << ")" << endl;
276#endif
277 }
278}