4c039060 |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | /* |
17 | $Log$ |
345f4f8a |
18 | Revision 1.19 1999/12/17 09:03:12 fca |
19 | Introduce a names array |
20 | |
9006703b |
21 | Revision 1.18 1999/11/26 16:55:39 fca |
22 | Reimplement CurrentVolName() to avoid memory leaks |
23 | |
11c74eaf |
24 | Revision 1.17 1999/11/03 16:58:28 fca |
25 | Correct source of address violation in creating character string |
26 | |
176551d7 |
27 | Revision 1.16 1999/11/03 13:17:08 fca |
28 | Have ProdProcess return const char* |
29 | |
6a935c13 |
30 | Revision 1.15 1999/10/26 06:04:50 fca |
31 | Introduce TLorentzVector in AliMC::GetSecondary. Thanks to I.Hrivnacova |
32 | |
5d84196c |
33 | Revision 1.14 1999/09/29 09:24:30 fca |
34 | Introduction of the Copyright and cvs Log |
35 | |
4c039060 |
36 | */ |
37 | |
fe4da5cc |
38 | /////////////////////////////////////////////////////////////////////////////// |
39 | // // |
40 | // Interface Class to the Geant3.21 MonteCarlo // |
41 | // // |
42 | //Begin_Html |
43 | /* |
1439f98e |
44 | <img src="picts/TGeant3Class.gif"> |
fe4da5cc |
45 | */ |
46 | //End_Html |
47 | // // |
48 | // // |
49 | /////////////////////////////////////////////////////////////////////////////// |
50 | |
51 | #include "TGeant3.h" |
52 | #include "TROOT.h" |
53 | #include "THIGZ.h" |
54 | #include "ctype.h" |
1578254f |
55 | #include <TDatabasePDG.h> |
fe4da5cc |
56 | #include "AliCallf77.h" |
57 | |
58 | #ifndef WIN32 |
59 | # define gzebra gzebra_ |
60 | # define grfile grfile_ |
61 | # define gpcxyz gpcxyz_ |
62 | # define ggclos ggclos_ |
63 | # define glast glast_ |
64 | # define ginit ginit_ |
65 | # define gcinit gcinit_ |
66 | # define grun grun_ |
67 | # define gtrig gtrig_ |
68 | # define gtrigc gtrigc_ |
69 | # define gtrigi gtrigi_ |
70 | # define gwork gwork_ |
71 | # define gzinit gzinit_ |
72 | # define gfmate gfmate_ |
73 | # define gfpart gfpart_ |
74 | # define gftmed gftmed_ |
75 | # define gmate gmate_ |
76 | # define gpart gpart_ |
77 | # define gsdk gsdk_ |
78 | # define gsmate gsmate_ |
79 | # define gsmixt gsmixt_ |
80 | # define gspart gspart_ |
81 | # define gstmed gstmed_ |
82 | # define gsckov gsckov_ |
83 | # define gstpar gstpar_ |
84 | # define gfkine gfkine_ |
85 | # define gfvert gfvert_ |
86 | # define gskine gskine_ |
87 | # define gsvert gsvert_ |
88 | # define gphysi gphysi_ |
89 | # define gdebug gdebug_ |
90 | # define gekbin gekbin_ |
91 | # define gfinds gfinds_ |
92 | # define gsking gsking_ |
93 | # define gskpho gskpho_ |
94 | # define gsstak gsstak_ |
95 | # define gsxyz gsxyz_ |
96 | # define gtrack gtrack_ |
97 | # define gtreve gtreve_ |
1578254f |
98 | # define gtreve_root gtreve_root_ |
fe4da5cc |
99 | # define grndm grndm_ |
100 | # define grndmq grndmq_ |
101 | # define gdtom gdtom_ |
102 | # define glmoth glmoth_ |
103 | # define gmedia gmedia_ |
104 | # define gmtod gmtod_ |
105 | # define gsdvn gsdvn_ |
106 | # define gsdvn2 gsdvn2_ |
107 | # define gsdvs gsdvs_ |
108 | # define gsdvs2 gsdvs2_ |
109 | # define gsdvt gsdvt_ |
110 | # define gsdvt2 gsdvt2_ |
111 | # define gsord gsord_ |
112 | # define gspos gspos_ |
113 | # define gsposp gsposp_ |
114 | # define gsrotm gsrotm_ |
115 | # define gprotm gprotm_ |
116 | # define gsvolu gsvolu_ |
117 | # define gprint gprint_ |
118 | # define gdinit gdinit_ |
119 | # define gdopt gdopt_ |
120 | # define gdraw gdraw_ |
121 | # define gdrayt gdrayt_ |
122 | # define gdrawc gdrawc_ |
123 | # define gdrawx gdrawx_ |
124 | # define gdhead gdhead_ |
125 | # define gdwmn1 gdwmn1_ |
126 | # define gdwmn2 gdwmn2_ |
127 | # define gdwmn3 gdwmn3_ |
128 | # define gdxyz gdxyz_ |
129 | # define gdcxyz gdcxyz_ |
130 | # define gdman gdman_ |
131 | # define gdspec gdspec_ |
132 | # define gdtree gdtree_ |
133 | # define gdelet gdelet_ |
134 | # define gdclos gdclos_ |
135 | # define gdshow gdshow_ |
136 | # define gdopen gdopen_ |
137 | # define dzshow dzshow_ |
138 | # define gsatt gsatt_ |
139 | # define gfpara gfpara_ |
140 | # define gckpar gckpar_ |
141 | # define gckmat gckmat_ |
142 | # define geditv geditv_ |
7ac3f11b |
143 | # define mzdrop mzdrop_ |
6991054d |
144 | |
145 | # define ertrak ertrak_ |
146 | # define ertrgo ertrgo_ |
fe4da5cc |
147 | |
148 | # define setbomb setbomb_ |
149 | # define setclip setclip_ |
150 | # define gcomad gcomad_ |
151 | |
152 | #else |
153 | # define gzebra GZEBRA |
154 | # define grfile GRFILE |
155 | # define gpcxyz GPCXYZ |
156 | # define ggclos GGCLOS |
157 | # define glast GLAST |
158 | # define ginit GINIT |
159 | # define gcinit GCINIT |
160 | # define grun GRUN |
161 | # define gtrig GTRIG |
162 | # define gtrigc GTRIGC |
163 | # define gtrigi GTRIGI |
164 | # define gwork GWORK |
165 | # define gzinit GZINIT |
166 | # define gfmate GFMATE |
167 | # define gfpart GFPART |
168 | # define gftmed GFTMED |
169 | # define gmate GMATE |
170 | # define gpart GPART |
171 | # define gsdk GSDK |
172 | # define gsmate GSMATE |
173 | # define gsmixt GSMIXT |
174 | # define gspart GSPART |
175 | # define gstmed GSTMED |
176 | # define gsckov GSCKOV |
177 | # define gstpar GSTPAR |
178 | # define gfkine GFKINE |
179 | # define gfvert GFVERT |
180 | # define gskine GSKINE |
181 | # define gsvert GSVERT |
182 | # define gphysi GPHYSI |
183 | # define gdebug GDEBUG |
184 | # define gekbin GEKBIN |
185 | # define gfinds GFINDS |
186 | # define gsking GSKING |
187 | # define gskpho GSKPHO |
188 | # define gsstak GSSTAK |
189 | # define gsxyz GSXYZ |
190 | # define gtrack GTRACK |
191 | # define gtreve GTREVE |
1578254f |
192 | # define gtreve_root GTREVE_ROOT |
fe4da5cc |
193 | # define grndm GRNDM |
194 | # define grndmq GRNDMQ |
195 | # define gdtom GDTOM |
196 | # define glmoth GLMOTH |
197 | # define gmedia GMEDIA |
198 | # define gmtod GMTOD |
199 | # define gsdvn GSDVN |
200 | # define gsdvn2 GSDVN2 |
201 | # define gsdvs GSDVS |
202 | # define gsdvs2 GSDVS2 |
203 | # define gsdvt GSDVT |
204 | # define gsdvt2 GSDVT2 |
205 | # define gsord GSORD |
206 | # define gspos GSPOS |
207 | # define gsposp GSPOSP |
208 | # define gsrotm GSROTM |
209 | # define gprotm GPROTM |
210 | # define gsvolu GSVOLU |
211 | # define gprint GPRINT |
212 | # define gdinit GDINIT |
213 | # define gdopt GDOPT |
214 | # define gdraw GDRAW |
215 | # define gdrayt GDRAYT |
216 | # define gdrawc GDRAWC |
217 | # define gdrawx GDRAWX |
218 | # define gdhead GDHEAD |
219 | # define gdwmn1 GDWMN1 |
220 | # define gdwmn2 GDWMN2 |
221 | # define gdwmn3 GDWMN3 |
222 | # define gdxyz GDXYZ |
223 | # define gdcxyz GDCXYZ |
224 | # define gdman GDMAN |
225 | # define gdfspc GDFSPC |
226 | # define gdspec GDSPEC |
227 | # define gdtree GDTREE |
228 | # define gdelet GDELET |
229 | # define gdclos GDCLOS |
230 | # define gdshow GDSHOW |
231 | # define gdopen GDOPEN |
232 | # define dzshow DZSHOW |
233 | # define gsatt GSATT |
234 | # define gfpara GFPARA |
235 | # define gckpar GCKPAR |
236 | # define gckmat GCKMAT |
237 | # define geditv GEDITV |
7ac3f11b |
238 | # define mzdrop MZDROP |
fe4da5cc |
239 | |
6991054d |
240 | # define ertrak ERTRAK |
241 | # define ertrgo ERTRGO |
242 | |
fe4da5cc |
243 | # define setbomb SETBOMB |
244 | # define setclip SETCLIP |
7ac3f11b |
245 | # define gcomad GCOMAD |
fe4da5cc |
246 | |
247 | #endif |
248 | |
249 | //____________________________________________________________________________ |
250 | extern "C" |
251 | { |
252 | // |
253 | // Prototypes for GEANT functions |
254 | // |
255 | void type_of_call gzebra(const int&); |
256 | |
257 | void type_of_call gpcxyz(); |
258 | |
259 | void type_of_call ggclos(); |
260 | |
261 | void type_of_call glast(); |
262 | |
263 | void type_of_call ginit(); |
264 | |
265 | void type_of_call gcinit(); |
266 | |
267 | void type_of_call grun(); |
268 | |
269 | void type_of_call gtrig(); |
270 | |
271 | void type_of_call gtrigc(); |
272 | |
273 | void type_of_call gtrigi(); |
274 | |
275 | void type_of_call gwork(const int&); |
276 | |
277 | void type_of_call gzinit(); |
278 | |
279 | void type_of_call gmate(); |
280 | |
281 | void type_of_call gpart(); |
282 | |
283 | void type_of_call gsdk(Int_t &, Float_t *, Int_t *); |
284 | |
285 | void type_of_call gfkine(Int_t &, Float_t *, Float_t *, Int_t &, |
286 | Int_t &, Float_t *, Int_t &); |
287 | |
288 | void type_of_call gfvert(Int_t &, Float_t *, Int_t &, Int_t &, |
289 | Float_t &, Float_t *, Int_t &); |
290 | |
291 | void type_of_call gskine(Float_t *,Int_t &, Int_t &, Float_t *, |
292 | Int_t &, Int_t &); |
293 | |
294 | void type_of_call gsvert(Float_t *,Int_t &, Int_t &, Float_t *, |
295 | Int_t &, Int_t &); |
296 | |
297 | void type_of_call gphysi(); |
298 | |
299 | void type_of_call gdebug(); |
300 | |
301 | void type_of_call gekbin(); |
302 | |
303 | void type_of_call gfinds(); |
304 | |
305 | void type_of_call gsking(Int_t &); |
306 | |
307 | void type_of_call gskpho(Int_t &); |
308 | |
309 | void type_of_call gsstak(Int_t &); |
310 | |
311 | void type_of_call gsxyz(); |
312 | |
313 | void type_of_call gtrack(); |
314 | |
315 | void type_of_call gtreve(); |
316 | |
1578254f |
317 | void type_of_call gtreve_root(); |
318 | |
fe4da5cc |
319 | void type_of_call grndm(Float_t *, const Int_t &); |
320 | |
321 | void type_of_call grndmq(Int_t &, Int_t &, const Int_t &, |
322 | DEFCHARD DEFCHARL); |
323 | |
324 | void type_of_call gdtom(Float_t *, Float_t *, Int_t &); |
325 | |
326 | void type_of_call glmoth(DEFCHARD, Int_t &, Int_t &, Int_t *, |
327 | Int_t *, Int_t * DEFCHARL); |
328 | |
329 | void type_of_call gmedia(Float_t *, Int_t &); |
330 | |
331 | void type_of_call gmtod(Float_t *, Float_t *, Int_t &); |
332 | |
333 | void type_of_call gsrotm(const Int_t &, const Float_t &, const Float_t &, |
334 | const Float_t &, const Float_t &, const Float_t &, |
335 | const Float_t &); |
336 | |
337 | void type_of_call gprotm(const Int_t &); |
338 | |
339 | void type_of_call grfile(const Int_t&, DEFCHARD, |
340 | DEFCHARD DEFCHARL DEFCHARL); |
341 | |
342 | void type_of_call gfmate(const Int_t&, DEFCHARD, Float_t &, Float_t &, |
343 | Float_t &, Float_t &, Float_t &, Float_t *, |
344 | Int_t& DEFCHARL); |
345 | |
346 | void type_of_call gfpart(const Int_t&, DEFCHARD, Int_t &, Float_t &, |
347 | Float_t &, Float_t &, Float_t *, Int_t & DEFCHARL); |
348 | |
349 | void type_of_call gftmed(const Int_t&, DEFCHARD, Int_t &, Int_t &, Int_t &, |
350 | Float_t &, Float_t &, Float_t &, Float_t &, |
351 | Float_t &, Float_t &, Float_t *, Int_t * DEFCHARL); |
352 | |
353 | void type_of_call gsmate(const Int_t&, DEFCHARD, Float_t &, Float_t &, |
354 | Float_t &, Float_t &, Float_t &, Float_t *, |
355 | Int_t & DEFCHARL); |
356 | |
357 | void type_of_call gsmixt(const Int_t&, DEFCHARD, Float_t *, Float_t *, |
358 | Float_t &, Int_t &, Float_t * DEFCHARL); |
359 | |
360 | void type_of_call gspart(const Int_t&, DEFCHARD, Int_t &, Float_t &, |
361 | Float_t &, Float_t &, Float_t *, Int_t & DEFCHARL); |
362 | |
363 | |
364 | void type_of_call gstmed(const Int_t&, DEFCHARD, Int_t &, Int_t &, Int_t &, |
365 | Float_t &, Float_t &, Float_t &, Float_t &, |
366 | Float_t &, Float_t &, Float_t *, Int_t & DEFCHARL); |
367 | |
368 | void type_of_call gsckov(Int_t &itmed, Int_t &npckov, Float_t *ppckov, |
369 | Float_t *absco, Float_t *effic, Float_t *rindex); |
370 | void type_of_call gstpar(const Int_t&, DEFCHARD, Float_t & DEFCHARL); |
371 | |
372 | void type_of_call gsdvn(DEFCHARD,DEFCHARD, Int_t &, Int_t & |
373 | DEFCHARL DEFCHARL); |
374 | |
375 | void type_of_call gsdvn2(DEFCHARD,DEFCHARD, Int_t &, Int_t &, Float_t &, |
376 | Int_t & DEFCHARL DEFCHARL); |
377 | |
378 | void type_of_call gsdvs(DEFCHARD,DEFCHARD, Float_t &, Int_t &, Int_t & |
379 | DEFCHARL DEFCHARL); |
380 | |
381 | void type_of_call gsdvs2(DEFCHARD,DEFCHARD, Float_t &, Int_t &, Float_t &, |
382 | Int_t & DEFCHARL DEFCHARL); |
383 | |
384 | void type_of_call gsdvt(DEFCHARD,DEFCHARD, Float_t &, Int_t &, Int_t &, |
385 | Int_t & DEFCHARL DEFCHARL); |
386 | |
387 | void type_of_call gsdvt2(DEFCHARD,DEFCHARD, Float_t &, Int_t &, Float_t&, |
388 | Int_t &, Int_t & DEFCHARL DEFCHARL); |
389 | |
390 | void type_of_call gsord(DEFCHARD, Int_t & DEFCHARL); |
391 | |
392 | void type_of_call gspos(DEFCHARD, Int_t &, DEFCHARD, Float_t &, Float_t &, |
393 | Float_t &, Int_t &, DEFCHARD DEFCHARL DEFCHARL |
394 | DEFCHARL); |
395 | |
396 | void type_of_call gsposp(DEFCHARD, Int_t &, DEFCHARD, Float_t &, Float_t &, |
397 | Float_t &, Int_t &, DEFCHARD, |
398 | Float_t *, Int_t & DEFCHARL DEFCHARL DEFCHARL); |
399 | |
400 | void type_of_call gsvolu(DEFCHARD, DEFCHARD, Int_t &, Float_t *, Int_t &, |
401 | Int_t & DEFCHARL DEFCHARL); |
402 | |
403 | void type_of_call gsatt(DEFCHARD, DEFCHARD, Int_t & DEFCHARL DEFCHARL); |
404 | |
405 | void type_of_call gfpara(DEFCHARD , Int_t&, Int_t&, Int_t&, Int_t&, Float_t*, |
406 | Float_t* DEFCHARL); |
407 | |
408 | void type_of_call gckpar(Int_t&, Int_t&, Float_t*); |
409 | |
410 | void type_of_call gckmat(Int_t&, DEFCHARD DEFCHARL); |
411 | |
412 | void type_of_call gprint(DEFCHARD,const int& DEFCHARL); |
413 | |
414 | void type_of_call gdinit(); |
415 | |
416 | void type_of_call gdopt(DEFCHARD,DEFCHARD DEFCHARL DEFCHARL); |
417 | |
418 | void type_of_call gdraw(DEFCHARD,Float_t &,Float_t &, Float_t &,Float_t &, |
419 | Float_t &, Float_t &, Float_t & DEFCHARL); |
420 | void type_of_call gdrayt(DEFCHARD,Float_t &,Float_t &, Float_t &,Float_t &, |
421 | Float_t &, Float_t &, Float_t & DEFCHARL); |
422 | void type_of_call gdrawc(DEFCHARD,Int_t &, Float_t &, Float_t &, Float_t &, |
423 | Float_t &, Float_t & DEFCHARL); |
424 | void type_of_call gdrawx(DEFCHARD,Float_t &, Float_t &, Float_t &, Float_t &, |
425 | Float_t &, Float_t &, Float_t &, Float_t &, |
426 | Float_t & DEFCHARL); |
427 | void type_of_call gdhead(Int_t &,DEFCHARD, Float_t & DEFCHARL); |
428 | void type_of_call gdxyz(Int_t &); |
429 | void type_of_call gdcxyz(); |
430 | void type_of_call gdman(Float_t &, Float_t &); |
431 | void type_of_call gdwmn1(Float_t &, Float_t &); |
432 | void type_of_call gdwmn2(Float_t &, Float_t &); |
433 | void type_of_call gdwmn3(Float_t &, Float_t &); |
434 | void type_of_call gdspec(DEFCHARD DEFCHARL); |
435 | void type_of_call gdfspc(DEFCHARD, Int_t &, Int_t & DEFCHARL) {;} |
436 | void type_of_call gdtree(DEFCHARD, Int_t &, Int_t & DEFCHARL); |
437 | |
438 | void type_of_call gdopen(Int_t &); |
439 | void type_of_call gdclos(); |
440 | void type_of_call gdelet(Int_t &); |
441 | void type_of_call gdshow(Int_t &); |
442 | void type_of_call geditv(Int_t &) {;} |
443 | |
444 | |
445 | void type_of_call dzshow(DEFCHARD,const int&,const int&,DEFCHARD,const int&, |
446 | const int&, const int&, const int& DEFCHARL |
447 | DEFCHARL); |
448 | |
7ac3f11b |
449 | void type_of_call mzdrop(Int_t&, Int_t&, DEFCHARD DEFCHARL); |
450 | |
fe4da5cc |
451 | void type_of_call setbomb(Float_t &); |
452 | void type_of_call setclip(DEFCHARD, Float_t &,Float_t &,Float_t &,Float_t &, |
453 | Float_t &, Float_t & DEFCHARL); |
454 | void type_of_call gcomad(DEFCHARD, Int_t*& DEFCHARL); |
6991054d |
455 | |
456 | void type_of_call ertrak(const Float_t *const x1, const Float_t *const p1, |
457 | const Float_t *x2, const Float_t *p2, |
458 | const Int_t &ipa, DEFCHARD DEFCHARL); |
459 | |
460 | void type_of_call ertrgo(); |
fe4da5cc |
461 | } |
462 | |
463 | // |
464 | // Geant3 global pointer |
465 | // |
466 | static Int_t defSize = 600; |
467 | |
468 | ClassImp(TGeant3) |
469 | |
470 | //____________________________________________________________________________ |
1578254f |
471 | TGeant3::TGeant3() |
fe4da5cc |
472 | { |
473 | // |
474 | // Default constructor |
475 | // |
476 | } |
477 | |
478 | //____________________________________________________________________________ |
479 | TGeant3::TGeant3(const char *title, Int_t nwgeant) |
480 | :AliMC("TGeant3",title) |
481 | { |
482 | // |
483 | // Standard constructor for TGeant3 with ZEBRA initialisation |
484 | // |
485 | |
486 | if(nwgeant) { |
487 | gzebra(nwgeant); |
488 | ginit(); |
489 | gzinit(); |
490 | } else { |
491 | gcinit(); |
492 | } |
493 | // |
494 | // Load Address of Geant3 commons |
495 | LoadAddress(); |
1578254f |
496 | // |
497 | // Zero number of particles |
498 | fNPDGCodes=0; |
fe4da5cc |
499 | } |
500 | |
501 | //____________________________________________________________________________ |
502 | Int_t TGeant3::CurrentMaterial(Float_t &a, Float_t &z, Float_t &dens, |
503 | Float_t &radl, Float_t &absl) const |
504 | { |
505 | // |
506 | // Return the parameters of the current material during transport |
507 | // |
508 | z = fGcmate->z; |
509 | a = fGcmate->a; |
510 | dens = fGcmate->dens; |
511 | radl = fGcmate->radl; |
512 | absl = fGcmate->absl; |
513 | return 1; //this could be the number of elements in mixture |
514 | } |
515 | |
516 | //____________________________________________________________________________ |
517 | void TGeant3::DefaultRange() |
518 | { |
519 | // |
520 | // Set range of current drawing pad to 20x20 cm |
521 | // |
522 | if (!higz) { |
523 | new THIGZ(defSize); |
524 | gdinit(); |
525 | } |
526 | higz->Range(0,0,20,20); |
527 | } |
528 | |
529 | //____________________________________________________________________________ |
530 | void TGeant3::InitHIGZ() |
531 | { |
532 | // |
533 | // Initialise HIGZ |
534 | // |
535 | if (!higz) { |
536 | new THIGZ(defSize); |
537 | gdinit(); |
538 | } |
539 | } |
540 | |
541 | //____________________________________________________________________________ |
542 | void TGeant3::LoadAddress() |
543 | { |
544 | // |
545 | // Assigns the address of the GEANT common blocks to the structures |
546 | // that allow their access from C++ |
547 | // |
548 | Int_t *addr; |
549 | gcomad(PASSCHARD("QUEST"), (int*&) fQuest PASSCHARL("QUEST")); |
7ac3f11b |
550 | gcomad(PASSCHARD("GCBANK"),(int*&) fGcbank PASSCHARL("GCBANK")); |
fe4da5cc |
551 | gcomad(PASSCHARD("GCLINK"),(int*&) fGclink PASSCHARL("GCLINK")); |
552 | gcomad(PASSCHARD("GCCUTS"),(int*&) fGccuts PASSCHARL("GCCUTS")); |
553 | gcomad(PASSCHARD("GCFLAG"),(int*&) fGcflag PASSCHARL("GCFLAG")); |
554 | gcomad(PASSCHARD("GCKINE"),(int*&) fGckine PASSCHARL("GCKINE")); |
555 | gcomad(PASSCHARD("GCKING"),(int*&) fGcking PASSCHARL("GCKING")); |
556 | gcomad(PASSCHARD("GCKIN2"),(int*&) fGckin2 PASSCHARL("GCKIN2")); |
557 | gcomad(PASSCHARD("GCKIN3"),(int*&) fGckin3 PASSCHARL("GCKIN3")); |
558 | gcomad(PASSCHARD("GCMATE"),(int*&) fGcmate PASSCHARL("GCMATE")); |
559 | gcomad(PASSCHARD("GCTMED"),(int*&) fGctmed PASSCHARL("GCTMED")); |
560 | gcomad(PASSCHARD("GCTRAK"),(int*&) fGctrak PASSCHARL("GCTRAK")); |
561 | gcomad(PASSCHARD("GCTPOL"),(int*&) fGctpol PASSCHARL("GCTPOL")); |
562 | gcomad(PASSCHARD("GCVOLU"),(int*&) fGcvolu PASSCHARL("GCVOLU")); |
563 | gcomad(PASSCHARD("GCNUM"), (int*&) fGcnum PASSCHARL("GCNUM")); |
564 | gcomad(PASSCHARD("GCSETS"),(int*&) fGcsets PASSCHARL("GCSETS")); |
565 | gcomad(PASSCHARD("GCPHYS"),(int*&) fGcphys PASSCHARL("GCPHYS")); |
566 | gcomad(PASSCHARD("GCOPTI"),(int*&) fGcopti PASSCHARL("GCOPTI")); |
567 | gcomad(PASSCHARD("GCTLIT"),(int*&) fGctlit PASSCHARL("GCTLIT")); |
568 | gcomad(PASSCHARD("GCVDMA"),(int*&) fGcvdma PASSCHARL("GCVDMA")); |
569 | |
914f878e |
570 | // Commons for GEANE |
571 | gcomad(PASSCHARD("ERTRIO"),(int*&) fErtrio PASSCHARL("ERTRIO")); |
572 | gcomad(PASSCHARD("EROPTS"),(int*&) fEropts PASSCHARL("EROPTS")); |
573 | gcomad(PASSCHARD("EROPTC"),(int*&) fEroptc PASSCHARL("EROPTC")); |
574 | gcomad(PASSCHARD("ERWORK"),(int*&) fErwork PASSCHARL("ERWORK")); |
575 | |
576 | // Variables for ZEBRA store |
fe4da5cc |
577 | gcomad(PASSCHARD("IQ"), addr PASSCHARL("IQ")); |
578 | fZiq = addr; |
579 | gcomad(PASSCHARD("LQ"), addr PASSCHARL("LQ")); |
580 | fZlq = addr; |
581 | fZq = (float*)fZiq; |
582 | } |
583 | |
584 | //_____________________________________________________________________________ |
585 | void TGeant3::GeomIter() |
586 | { |
587 | // |
588 | // Geometry iterator for moving upward in the geometry tree |
589 | // Initialise the iterator |
590 | // |
591 | fNextVol=fGcvolu->nlevel; |
592 | } |
593 | |
594 | //____________________________________________________________________________ |
595 | Int_t TGeant3::NextVolUp(Text_t *name, Int_t ©) |
596 | { |
597 | // |
598 | // Geometry iterator for moving upward in the geometry tree |
599 | // Return next volume up |
600 | // |
601 | Int_t i, gname; |
602 | fNextVol--; |
603 | if(fNextVol>=0) { |
604 | gname=fGcvolu->names[fNextVol]; |
fe4da5cc |
605 | copy=fGcvolu->number[fNextVol]; |
606 | i=fGcvolu->lvolum[fNextVol]; |
9006703b |
607 | name = fVolNames[i-1]; |
fe4da5cc |
608 | if(gname == fZiq[fGclink->jvolum+i]) return i; |
609 | else printf("GeomTree: Volume %s not found in bank\n",name); |
610 | } |
611 | return 0; |
612 | } |
613 | |
614 | //_____________________________________________________________________________ |
0a6d8768 |
615 | Int_t TGeant3::CurrentVolID(Int_t ©) const |
fe4da5cc |
616 | { |
617 | // |
0a6d8768 |
618 | // Returns the current volume ID and copy number |
fe4da5cc |
619 | // |
620 | Int_t i, gname; |
621 | if( (i=fGcvolu->nlevel-1) < 0 ) { |
0a6d8768 |
622 | Warning("CurrentVolID","Stack depth only %d\n",fGcvolu->nlevel); |
fe4da5cc |
623 | } else { |
624 | gname=fGcvolu->names[i]; |
fe4da5cc |
625 | copy=fGcvolu->number[i]; |
626 | i=fGcvolu->lvolum[i]; |
627 | if(gname == fZiq[fGclink->jvolum+i]) return i; |
0a6d8768 |
628 | else Warning("CurrentVolID","Volume %4s not found\n",(char*)&gname); |
fe4da5cc |
629 | } |
630 | return 0; |
631 | } |
632 | |
633 | //_____________________________________________________________________________ |
0a6d8768 |
634 | Int_t TGeant3::CurrentVolOffID(Int_t off, Int_t ©) const |
fe4da5cc |
635 | { |
636 | // |
637 | // Return the current volume "off" upward in the geometrical tree |
0a6d8768 |
638 | // ID and copy number |
fe4da5cc |
639 | // |
640 | Int_t i, gname; |
641 | if( (i=fGcvolu->nlevel-off-1) < 0 ) { |
0a6d8768 |
642 | Warning("CurrentVolOffID","Offset requested %d but stack depth %d\n", |
643 | off,fGcvolu->nlevel); |
fe4da5cc |
644 | } else { |
645 | gname=fGcvolu->names[i]; |
fe4da5cc |
646 | copy=fGcvolu->number[i]; |
647 | i=fGcvolu->lvolum[i]; |
648 | if(gname == fZiq[fGclink->jvolum+i]) return i; |
0a6d8768 |
649 | else Warning("CurrentVolOffID","Volume %4s not found\n",(char*)&gname); |
650 | } |
651 | return 0; |
652 | } |
653 | |
654 | //_____________________________________________________________________________ |
655 | const char* TGeant3::CurrentVolName() const |
656 | { |
657 | // |
658 | // Returns the current volume name |
659 | // |
660 | Int_t i, gname; |
0a6d8768 |
661 | if( (i=fGcvolu->nlevel-1) < 0 ) { |
662 | Warning("CurrentVolName","Stack depth %d\n",fGcvolu->nlevel); |
663 | } else { |
664 | gname=fGcvolu->names[i]; |
0a6d8768 |
665 | i=fGcvolu->lvolum[i]; |
9006703b |
666 | if(gname == fZiq[fGclink->jvolum+i]) return fVolNames[i-1]; |
667 | else Warning("CurrentVolName","Volume %4s not found\n",(char*) &gname); |
0a6d8768 |
668 | } |
669 | return 0; |
670 | } |
671 | |
672 | //_____________________________________________________________________________ |
673 | const char* TGeant3::CurrentVolOffName(Int_t off) const |
674 | { |
675 | // |
676 | // Return the current volume "off" upward in the geometrical tree |
677 | // ID, name and copy number |
678 | // if name=0 no name is returned |
679 | // |
680 | Int_t i, gname; |
0a6d8768 |
681 | if( (i=fGcvolu->nlevel-off-1) < 0 ) { |
682 | Warning("CurrentVolOffName", |
683 | "Offset requested %d but stack depth %d\n",off,fGcvolu->nlevel); |
684 | } else { |
685 | gname=fGcvolu->names[i]; |
0a6d8768 |
686 | i=fGcvolu->lvolum[i]; |
9006703b |
687 | if(gname == fZiq[fGclink->jvolum+i]) return fVolNames[i-1]; |
688 | else Warning("CurrentVolOffName","Volume %4s not found\n",(char*)&gname); |
fe4da5cc |
689 | } |
690 | return 0; |
691 | } |
692 | |
1578254f |
693 | //_____________________________________________________________________________ |
694 | Int_t TGeant3::IdFromPDG(Int_t pdg) const |
695 | { |
696 | // |
697 | // Return Geant3 code from PDG and pseudo ENDF code |
698 | |
699 | for(Int_t i=0;i<fNPDGCodes;++i) |
700 | if(pdg==fPDGCode[i]) return i; |
701 | return -1; |
702 | } |
703 | |
704 | //_____________________________________________________________________________ |
705 | Int_t TGeant3::PDGFromId(Int_t id) const |
706 | { |
707 | if(id>0 && id<fNPDGCodes) return fPDGCode[id]; |
708 | else return -1; |
709 | } |
710 | |
711 | //_____________________________________________________________________________ |
712 | void TGeant3::DefineParticles() |
713 | { |
714 | // |
715 | // Define standard Geant 3 particles |
716 | Gpart(); |
717 | // |
718 | // Load standard numbers for GEANT particles and PDG conversion |
719 | fPDGCode[fNPDGCodes++]=-99; // 0 = unused location |
720 | fPDGCode[fNPDGCodes++]=22; // 1 = photon |
721 | fPDGCode[fNPDGCodes++]=-11; // 2 = positron |
722 | fPDGCode[fNPDGCodes++]=11; // 3 = electron |
723 | fPDGCode[fNPDGCodes++]=12; // 4 = neutrino e |
724 | fPDGCode[fNPDGCodes++]=-13; // 5 = muon + |
725 | fPDGCode[fNPDGCodes++]=13; // 6 = muon - |
726 | fPDGCode[fNPDGCodes++]=111; // 7 = pi0 |
727 | fPDGCode[fNPDGCodes++]=211; // 8 = pi+ |
728 | fPDGCode[fNPDGCodes++]=-211; // 9 = pi- |
729 | fPDGCode[fNPDGCodes++]=130; // 10 = Kaon Long |
730 | fPDGCode[fNPDGCodes++]=321; // 11 = Kaon + |
731 | fPDGCode[fNPDGCodes++]=-321; // 12 = Kaon - |
732 | fPDGCode[fNPDGCodes++]=2112; // 13 = Neutron |
733 | fPDGCode[fNPDGCodes++]=2212; // 14 = Proton |
734 | fPDGCode[fNPDGCodes++]=-2212; // 15 = Anti Proton |
735 | fPDGCode[fNPDGCodes++]=310; // 16 = Kaon Short |
736 | fPDGCode[fNPDGCodes++]=221; // 17 = Eta |
737 | fPDGCode[fNPDGCodes++]=3122; // 18 = Lambda |
738 | fPDGCode[fNPDGCodes++]=3222; // 19 = Sigma + |
739 | fPDGCode[fNPDGCodes++]=3212; // 20 = Sigma 0 |
740 | fPDGCode[fNPDGCodes++]=3112; // 21 = Sigma - |
741 | fPDGCode[fNPDGCodes++]=3322; // 22 = Xi0 |
742 | fPDGCode[fNPDGCodes++]=3312; // 23 = Xi- |
743 | fPDGCode[fNPDGCodes++]=3334; // 24 = Omega- |
744 | fPDGCode[fNPDGCodes++]=-2112; // 25 = Anti Proton |
745 | fPDGCode[fNPDGCodes++]=-3122; // 26 = Anti Proton |
746 | fPDGCode[fNPDGCodes++]=-3222; // 27 = Anti Sigma - |
747 | fPDGCode[fNPDGCodes++]=-3212; // 28 = Anti Sigma 0 |
748 | fPDGCode[fNPDGCodes++]=-3112; // 29 = Anti Sigma 0 |
749 | fPDGCode[fNPDGCodes++]=-3322; // 30 = Anti Xi 0 |
750 | fPDGCode[fNPDGCodes++]=-3312; // 31 = Anti Xi + |
751 | fPDGCode[fNPDGCodes++]=-3334; // 32 = Anti Omega + |
752 | |
753 | |
754 | Int_t mode[6]; |
755 | Int_t kz, ipa; |
756 | Float_t bratio[6]; |
757 | |
758 | /* --- Define additional particles */ |
759 | Gspart(33, "OMEGA(782)", 3, 0.782, 0., 7.836e-23); |
760 | fPDGCode[fNPDGCodes++]=223; // 33 = Omega(782) |
761 | |
762 | Gspart(34, "PHI(1020)", 3, 1.019, 0., 1.486e-22); |
763 | fPDGCode[fNPDGCodes++]=333; // 34 = PHI (1020) |
764 | |
765 | Gspart(35, "D +", 4, 1.87, 1., 1.066e-12); |
766 | fPDGCode[fNPDGCodes++]=411; // 35 = D+ |
767 | |
768 | Gspart(36, "D -", 4, 1.87, -1., 1.066e-12); |
769 | fPDGCode[fNPDGCodes++]=-411; // 36 = D- |
770 | |
771 | Gspart(37, "D 0", 3, 1.865, 0., 4.2e-13); |
772 | fPDGCode[fNPDGCodes++]=421; // 37 = D0 |
773 | |
774 | Gspart(38, "ANTI D 0", 3, 1.865, 0., 4.2e-13); |
775 | fPDGCode[fNPDGCodes++]=-421; // 38 = D0 bar |
776 | |
777 | fPDGCode[fNPDGCodes++]=-99; // 39 = unassigned |
778 | |
779 | fPDGCode[fNPDGCodes++]=-99; // 40 = unassigned |
780 | |
781 | fPDGCode[fNPDGCodes++]=-99; // 41 = unassigned |
782 | |
783 | Gspart(42, "RHO +", 4, 0.768, 1., 4.353e-24); |
784 | fPDGCode[fNPDGCodes++]=213; // 42 = RHO+ |
785 | |
786 | Gspart(43, "RHO -", 4, 0.768, -1., 4.353e-24); |
787 | fPDGCode[fNPDGCodes++]=-213; // 40 = RHO- |
788 | |
789 | Gspart(44, "RHO 0", 3, 0.768, 0., 4.353e-24); |
790 | fPDGCode[fNPDGCodes++]=113; // 37 = D0 |
791 | |
792 | // |
793 | // Use ENDF-6 mapping for ions = 10000*z+10*a+iso |
794 | // and add 1 000 000 |
795 | // and numbers above 5 000 000 for special applications |
796 | // |
797 | |
798 | const Int_t kion=10000000; |
799 | |
800 | const Int_t kspe=50000000; |
801 | |
802 | TDatabasePDG *pdgDB = TDatabasePDG::Instance(); |
803 | |
804 | const Double_t autogev=0.9314943228; |
805 | const Double_t hslash = 1.0545726663e-27; |
806 | const Double_t erggev = 1/1.6021773349e-3; |
807 | const Double_t hshgev = hslash*erggev; |
808 | const Double_t yearstosec = 3600*24*365.25; |
809 | |
810 | |
811 | pdgDB->AddParticle("Deuteron","Deuteron",2*autogev+8.071e-3,kTRUE, |
812 | 0,1,"Ion",kion+10020); |
813 | fPDGCode[fNPDGCodes++]=kion+10020; // 45 = Deuteron |
814 | |
815 | pdgDB->AddParticle("Triton","Triton",3*autogev+14.931e-3,kFALSE, |
816 | hshgev/(12.33*yearstosec),1,"Ion",kion+10030); |
817 | fPDGCode[fNPDGCodes++]=kion+10030; // 46 = Triton |
818 | |
819 | pdgDB->AddParticle("Alpha","Alpha",4*autogev+2.424e-3,kTRUE, |
820 | hshgev/(12.33*yearstosec),2,"Ion",kion+20040); |
821 | fPDGCode[fNPDGCodes++]=kion+20040; // 47 = Alpha |
822 | |
823 | fPDGCode[fNPDGCodes++]=0; // 48 = geantino mapped to rootino |
824 | |
825 | pdgDB->AddParticle("HE3","HE3",3*autogev+14.931e-3,kFALSE, |
826 | 0,2,"Ion",kion+20030); |
827 | fPDGCode[fNPDGCodes++]=kion+20030; // 49 = HE3 |
828 | |
829 | pdgDB->AddParticle("Cherenkov","Cherenkov",0,kFALSE, |
830 | 0,0,"Special",kspe+50); |
831 | fPDGCode[fNPDGCodes++]=kspe+50; // 50 = Cherenkov |
832 | |
833 | /* --- Define additional decay modes --- */ |
834 | /* --- omega(783) --- */ |
835 | for (kz = 0; kz < 6; ++kz) { |
836 | bratio[kz] = 0.; |
837 | mode[kz] = 0; |
838 | } |
839 | ipa = 33; |
840 | bratio[0] = 89.; |
841 | bratio[1] = 8.5; |
842 | bratio[2] = 2.5; |
843 | mode[0] = 70809; |
844 | mode[1] = 107; |
845 | mode[2] = 908; |
846 | Gsdk(ipa, bratio, mode); |
847 | /* --- phi(1020) --- */ |
848 | for (kz = 0; kz < 6; ++kz) { |
849 | bratio[kz] = 0.; |
850 | mode[kz] = 0; |
851 | } |
852 | ipa = 34; |
853 | bratio[0] = 49.; |
854 | bratio[1] = 34.4; |
855 | bratio[2] = 12.9; |
856 | bratio[3] = 2.4; |
857 | bratio[4] = 1.3; |
858 | mode[0] = 1112; |
859 | mode[1] = 1610; |
860 | mode[2] = 4407; |
861 | mode[3] = 90807; |
862 | mode[4] = 1701; |
863 | Gsdk(ipa, bratio, mode); |
864 | /* --- D+ --- */ |
865 | for (kz = 0; kz < 6; ++kz) { |
866 | bratio[kz] = 0.; |
867 | mode[kz] = 0; |
868 | } |
869 | ipa = 35; |
870 | bratio[0] = 25.; |
871 | bratio[1] = 25.; |
872 | bratio[2] = 25.; |
873 | bratio[3] = 25.; |
874 | mode[0] = 80809; |
875 | mode[1] = 120808; |
876 | mode[2] = 111208; |
877 | mode[3] = 110809; |
878 | Gsdk(ipa, bratio, mode); |
879 | /* --- D- --- */ |
880 | for (kz = 0; kz < 6; ++kz) { |
881 | bratio[kz] = 0.; |
882 | mode[kz] = 0; |
883 | } |
884 | ipa = 36; |
885 | bratio[0] = 25.; |
886 | bratio[1] = 25.; |
887 | bratio[2] = 25.; |
888 | bratio[3] = 25.; |
889 | mode[0] = 90908; |
890 | mode[1] = 110909; |
891 | mode[2] = 121109; |
892 | mode[3] = 120908; |
893 | Gsdk(ipa, bratio, mode); |
894 | /* --- D0 --- */ |
895 | for (kz = 0; kz < 6; ++kz) { |
896 | bratio[kz] = 0.; |
897 | mode[kz] = 0; |
898 | } |
899 | ipa = 37; |
900 | bratio[0] = 33.; |
901 | bratio[1] = 33.; |
902 | bratio[2] = 33.; |
903 | mode[0] = 809; |
904 | mode[1] = 1208; |
905 | mode[2] = 1112; |
906 | Gsdk(ipa, bratio, mode); |
907 | /* --- Anti D0 --- */ |
908 | for (kz = 0; kz < 6; ++kz) { |
909 | bratio[kz] = 0.; |
910 | mode[kz] = 0; |
911 | } |
912 | ipa = 38; |
913 | bratio[0] = 33.; |
914 | bratio[1] = 33.; |
915 | bratio[2] = 33.; |
916 | mode[0] = 809; |
917 | mode[1] = 1109; |
918 | mode[2] = 1112; |
919 | Gsdk(ipa, bratio, mode); |
920 | /* --- rho+ --- */ |
921 | for (kz = 0; kz < 6; ++kz) { |
922 | bratio[kz] = 0.; |
923 | mode[kz] = 0; |
924 | } |
925 | ipa = 42; |
926 | bratio[0] = 100.; |
927 | mode[0] = 807; |
928 | Gsdk(ipa, bratio, mode); |
929 | /* --- rho- --- */ |
930 | for (kz = 0; kz < 6; ++kz) { |
931 | bratio[kz] = 0.; |
932 | mode[kz] = 0; |
933 | } |
934 | ipa = 43; |
935 | bratio[0] = 100.; |
936 | mode[0] = 907; |
937 | Gsdk(ipa, bratio, mode); |
938 | /* --- rho0 --- */ |
939 | for (kz = 0; kz < 6; ++kz) { |
940 | bratio[kz] = 0.; |
941 | mode[kz] = 0; |
942 | } |
943 | ipa = 44; |
944 | bratio[0] = 100.; |
945 | mode[0] = 707; |
946 | Gsdk(ipa, bratio, mode); |
947 | /* |
948 | // --- jpsi --- |
949 | for (kz = 0; kz < 6; ++kz) { |
950 | bratio[kz] = 0.; |
951 | mode[kz] = 0; |
952 | } |
953 | ipa = 113; |
954 | bratio[0] = 50.; |
955 | bratio[1] = 50.; |
956 | mode[0] = 506; |
957 | mode[1] = 605; |
958 | Gsdk(ipa, bratio, mode); |
959 | // --- upsilon --- |
960 | ipa = 114; |
961 | Gsdk(ipa, bratio, mode); |
962 | // --- phi --- |
963 | ipa = 115; |
964 | Gsdk(ipa, bratio, mode); |
965 | */ |
966 | |
967 | } |
968 | |
fe4da5cc |
969 | //_____________________________________________________________________________ |
970 | Int_t TGeant3::VolId(Text_t *name) const |
971 | { |
972 | // |
973 | // Return the unique numeric identifier for volume name |
974 | // |
975 | Int_t gname, i; |
976 | strncpy((char *) &gname, name, 4); |
977 | for(i=1; i<=fGcnum->nvolum; i++) |
978 | if(gname == fZiq[fGclink->jvolum+i]) return i; |
979 | printf("VolId: Volume %s not found\n",name); |
980 | return 0; |
981 | } |
982 | |
983 | //_____________________________________________________________________________ |
1f97a957 |
984 | Int_t TGeant3::NofVolumes() const |
fe4da5cc |
985 | { |
986 | // |
987 | // Return total number of volumes in the geometry |
988 | // |
989 | return fGcnum->nvolum; |
990 | } |
991 | |
992 | //_____________________________________________________________________________ |
099385a4 |
993 | const char* TGeant3::VolName(Int_t id) const |
fe4da5cc |
994 | { |
995 | // |
996 | // Return the volume name given the volume identifier |
997 | // |
9006703b |
998 | const char name[5]="NULL"; |
fe4da5cc |
999 | if(id<1 || id > fGcnum->nvolum || fGclink->jvolum<=0) |
9006703b |
1000 | return name; |
fe4da5cc |
1001 | else |
9006703b |
1002 | return fVolNames[id-1]; |
fe4da5cc |
1003 | } |
1004 | |
d5a6b28b |
1005 | //_____________________________________________________________________________ |
1006 | Float_t TGeant3::Xsec(char* reac, Float_t energy, Int_t part, Int_t mate) |
1007 | { |
1008 | Int_t gpart = IdFromPDG(part); |
1009 | if(!strcmp(reac,"PHOT")) |
1010 | { |
1011 | if(part!=22) { |
1012 | Error("Xsec","Can calculate photoelectric only for photons\n"); |
1013 | } |
1014 | } |
1015 | return 0; |
1016 | } |
1017 | |
fe4da5cc |
1018 | //_____________________________________________________________________________ |
0a6d8768 |
1019 | void TGeant3::TrackPosition(TLorentzVector &xyz) const |
fe4da5cc |
1020 | { |
1021 | // |
1022 | // Return the current position in the master reference frame of the |
1023 | // track being transported |
1024 | // |
1025 | xyz[0]=fGctrak->vect[0]; |
1026 | xyz[1]=fGctrak->vect[1]; |
1027 | xyz[2]=fGctrak->vect[2]; |
0a6d8768 |
1028 | xyz[3]=fGctrak->tofg; |
fe4da5cc |
1029 | } |
1030 | |
1031 | //_____________________________________________________________________________ |
1032 | Float_t TGeant3::TrackTime() const |
1033 | { |
1034 | // |
1035 | // Return the current time of flight of the track being transported |
1036 | // |
1037 | return fGctrak->tofg; |
1038 | } |
1039 | |
1040 | //_____________________________________________________________________________ |
0a6d8768 |
1041 | void TGeant3::TrackMomentum(TLorentzVector &xyz) const |
fe4da5cc |
1042 | { |
1043 | // |
1044 | // Return the direction and the momentum (GeV/c) of the track |
1045 | // currently being transported |
1046 | // |
0a6d8768 |
1047 | Double_t ptot=fGctrak->vect[6]; |
1048 | xyz[0]=fGctrak->vect[3]*ptot; |
1049 | xyz[1]=fGctrak->vect[4]*ptot; |
1050 | xyz[2]=fGctrak->vect[5]*ptot; |
1051 | xyz[3]=fGctrak->getot; |
fe4da5cc |
1052 | } |
1053 | |
1054 | //_____________________________________________________________________________ |
1055 | Float_t TGeant3::TrackCharge() const |
1056 | { |
1057 | // |
1058 | // Return charge of the track currently transported |
1059 | // |
1060 | return fGckine->charge; |
1061 | } |
1062 | |
1063 | //_____________________________________________________________________________ |
1064 | Float_t TGeant3::TrackMass() const |
1065 | { |
1066 | // |
1067 | // Return the mass of the track currently transported |
1068 | // |
1069 | return fGckine->amass; |
1070 | } |
1071 | |
1072 | //_____________________________________________________________________________ |
1073 | Int_t TGeant3::TrackPid() const |
1074 | { |
1075 | // |
1076 | // Return the id of the particle transported |
1077 | // |
85f1cd76 |
1078 | return PDGFromId(fGckine->ipart); |
fe4da5cc |
1079 | } |
1080 | |
1081 | //_____________________________________________________________________________ |
1082 | Float_t TGeant3::TrackStep() const |
1083 | { |
1084 | // |
1085 | // Return the length in centimeters of the current step |
1086 | // |
1087 | return fGctrak->step; |
1088 | } |
1089 | |
1090 | //_____________________________________________________________________________ |
1091 | Float_t TGeant3::TrackLength() const |
1092 | { |
1093 | // |
1094 | // Return the length of the current track from its origin |
1095 | // |
1096 | return fGctrak->sleng; |
1097 | } |
1098 | |
1099 | //_____________________________________________________________________________ |
0a6d8768 |
1100 | Bool_t TGeant3::IsTrackInside() const |
fe4da5cc |
1101 | { |
1102 | // |
1103 | // True if the track is not at the boundary of the current volume |
1104 | // |
1105 | return (fGctrak->inwvol==0); |
1106 | } |
1107 | |
1108 | //_____________________________________________________________________________ |
0a6d8768 |
1109 | Bool_t TGeant3::IsTrackEntering() const |
fe4da5cc |
1110 | { |
1111 | // |
1112 | // True if this is the first step of the track in the current volume |
1113 | // |
1114 | return (fGctrak->inwvol==1); |
1115 | } |
1116 | |
1117 | //_____________________________________________________________________________ |
0a6d8768 |
1118 | Bool_t TGeant3::IsTrackExiting() const |
fe4da5cc |
1119 | { |
1120 | // |
1121 | // True if this is the last step of the track in the current volume |
1122 | // |
1123 | return (fGctrak->inwvol==2); |
1124 | } |
1125 | |
1126 | //_____________________________________________________________________________ |
0a6d8768 |
1127 | Bool_t TGeant3::IsTrackOut() const |
fe4da5cc |
1128 | { |
1129 | // |
1130 | // True if the track is out of the setup |
1131 | // |
1132 | return (fGctrak->inwvol==3); |
1133 | } |
1134 | |
1135 | //_____________________________________________________________________________ |
0a6d8768 |
1136 | Bool_t TGeant3::IsTrackStop() const |
fe4da5cc |
1137 | { |
1138 | // |
1139 | // True if the track energy has fallen below the threshold |
1140 | // |
1141 | return (fGctrak->istop==2); |
1142 | } |
1143 | |
1144 | //_____________________________________________________________________________ |
1145 | Int_t TGeant3::NSecondaries() const |
1146 | { |
1147 | // |
1148 | // Number of secondary particles generated in the current step |
1149 | // |
1150 | return fGcking->ngkine; |
1151 | } |
1152 | |
1153 | //_____________________________________________________________________________ |
1154 | Int_t TGeant3::CurrentEvent() const |
1155 | { |
1156 | // |
1157 | // Number of the current event |
1158 | // |
1159 | return fGcflag->idevt; |
1160 | } |
1161 | |
1162 | //_____________________________________________________________________________ |
6a935c13 |
1163 | const char* TGeant3::ProdProcess() const |
fe4da5cc |
1164 | { |
1165 | // |
1166 | // Name of the process that has produced the secondary particles |
1167 | // in the current step |
1168 | // |
6a935c13 |
1169 | static char proc[5]; |
fe4da5cc |
1170 | const Int_t ipmec[13] = { 5,6,7,8,9,10,11,12,21,23,25,105,108 }; |
1171 | Int_t mec, km, im; |
1172 | // |
1173 | if(fGcking->ngkine>0) { |
1174 | for (km = 0; km < fGctrak->nmec; ++km) { |
1175 | for (im = 0; im < 13; ++im) { |
1176 | if (fGctrak->lmec[km] == ipmec[im]) { |
1177 | mec = fGctrak->lmec[km]; |
1178 | if (0 < mec && mec < 31) { |
1179 | strncpy(proc,(char *)&fGctrak->namec[mec - 1],4); |
1180 | } else if (mec - 100 <= 30 && mec - 100 > 0) { |
1181 | strncpy(proc,(char *)&fGctpol->namec1[mec - 101],4); |
1182 | } |
1183 | proc[4]='\0'; |
6a935c13 |
1184 | return proc; |
fe4da5cc |
1185 | } |
1186 | } |
1187 | } |
1188 | strcpy(proc,"UNKN"); |
1189 | } else strcpy(proc,"NONE"); |
6a935c13 |
1190 | return proc; |
fe4da5cc |
1191 | } |
1192 | |
1193 | //_____________________________________________________________________________ |
5d84196c |
1194 | void TGeant3::GetSecondary(Int_t isec, Int_t& ipart, |
1195 | TLorentzVector &x, TLorentzVector &p) |
fe4da5cc |
1196 | { |
1197 | // |
1198 | // Get the parameters of the secondary track number isec produced |
1199 | // in the current step |
1200 | // |
1201 | Int_t i; |
1202 | if(-1<isec && isec<fGcking->ngkine) { |
1203 | ipart=Int_t (fGcking->gkin[isec][4] +0.5); |
1204 | for(i=0;i<3;i++) { |
1205 | x[i]=fGckin3->gpos[isec][i]; |
1206 | p[i]=fGcking->gkin[isec][i]; |
1207 | } |
1208 | x[3]=fGcking->tofd[isec]; |
1209 | p[3]=fGcking->gkin[isec][3]; |
1210 | } else { |
1211 | printf(" * TGeant3::GetSecondary * Secondary %d does not exist\n",isec); |
1212 | x[0]=x[1]=x[2]=x[3]=p[0]=p[1]=p[2]=p[3]=0; |
1213 | ipart=0; |
1214 | } |
1215 | } |
1216 | |
1217 | //_____________________________________________________________________________ |
1218 | void TGeant3::InitLego() |
1219 | { |
1220 | SetSWIT(4,0); |
1221 | SetDEBU(0,0,0); //do not print a message |
1222 | } |
1223 | |
1224 | //_____________________________________________________________________________ |
0a6d8768 |
1225 | Bool_t TGeant3::IsTrackDisappeared() const |
fe4da5cc |
1226 | { |
1227 | // |
1228 | // True if the current particle has disappered |
1229 | // either because it decayed or because it underwent |
1230 | // an inelastic collision |
1231 | // |
1232 | return (fGctrak->istop==1); |
1233 | } |
1234 | |
1235 | //_____________________________________________________________________________ |
0a6d8768 |
1236 | Bool_t TGeant3::IsTrackAlive() const |
fe4da5cc |
1237 | { |
1238 | // |
1239 | // True if the current particle is alive and will continue to be |
1240 | // transported |
1241 | // |
1242 | return (fGctrak->istop==0); |
1243 | } |
1244 | |
1245 | //_____________________________________________________________________________ |
1246 | void TGeant3::StopTrack() |
1247 | { |
1248 | // |
1249 | // Stop the transport of the current particle and skip to the next |
1250 | // |
1251 | fGctrak->istop=1; |
1252 | } |
1253 | |
1254 | //_____________________________________________________________________________ |
1255 | void TGeant3::StopEvent() |
1256 | { |
1257 | // |
1258 | // Stop simulation of the current event and skip to the next |
1259 | // |
1260 | fGcflag->ieotri=1; |
1261 | } |
1262 | |
1263 | //_____________________________________________________________________________ |
1264 | Float_t TGeant3::MaxStep() const |
1265 | { |
1266 | // |
1267 | // Return the maximum step length in the current medium |
1268 | // |
1269 | return fGctmed->stemax; |
1270 | } |
1271 | |
1272 | //_____________________________________________________________________________ |
1273 | void TGeant3::SetColors() |
1274 | { |
1275 | // |
1276 | // Set the colors for all the volumes |
1277 | // this is done sequentially for all volumes |
1278 | // based on the number of their medium |
1279 | // |
1280 | Int_t kv, icol; |
1281 | Int_t jvolum=fGclink->jvolum; |
1282 | //Int_t jtmed=fGclink->jtmed; |
1283 | //Int_t jmate=fGclink->jmate; |
1284 | Int_t nvolum=fGcnum->nvolum; |
1285 | char name[5]; |
1286 | // |
1287 | // Now for all the volumes |
1288 | for(kv=1;kv<=nvolum;kv++) { |
1289 | // Get the tracking medium |
1290 | Int_t itm=Int_t (fZq[fZlq[jvolum-kv]+4]); |
1291 | // Get the material |
1292 | //Int_t ima=Int_t (fZq[fZlq[jtmed-itm]+6]); |
1293 | // Get z |
1294 | //Float_t z=fZq[fZlq[jmate-ima]+7]; |
1295 | // Find color number |
1296 | //icol = Int_t(z)%6+2; |
1297 | //icol = 17+Int_t(z*150./92.); |
1298 | //icol = kv%6+2; |
1299 | icol = itm%6+2; |
1300 | strncpy(name,(char*)&fZiq[jvolum+kv],4); |
1301 | name[4]='\0'; |
1302 | Gsatt(name,"COLO",icol); |
1303 | } |
1304 | } |
1305 | |
1306 | //_____________________________________________________________________________ |
1307 | void TGeant3::SetMaxStep(Float_t maxstep) |
1308 | { |
1309 | // |
1310 | // Set the maximum step allowed till the particle is in the current medium |
1311 | // |
1312 | fGctmed->stemax=maxstep; |
1313 | } |
1314 | |
1315 | //_____________________________________________________________________________ |
1316 | void TGeant3::SetMaxNStep(Int_t maxnstp) |
1317 | { |
1318 | // |
1319 | // Set the maximum number of steps till the particle is in the current medium |
1320 | // |
1321 | fGctrak->maxnst=maxnstp; |
1322 | } |
1323 | |
1324 | //_____________________________________________________________________________ |
1325 | Int_t TGeant3::GetMaxNStep() const |
1326 | { |
1327 | // |
1328 | // Maximum number of steps allowed in current medium |
1329 | // |
1330 | return fGctrak->maxnst; |
1331 | } |
1332 | |
1333 | //_____________________________________________________________________________ |
1334 | void TGeant3::Material(Int_t& kmat, const char* name, Float_t a, Float_t z, |
1335 | Float_t dens, Float_t radl, Float_t absl, Float_t* buf, |
1336 | Int_t nwbuf) |
1337 | { |
1338 | // |
1339 | // Defines a Material |
1340 | // |
1341 | // kmat number assigned to the material |
1342 | // name material name |
1343 | // a atomic mass in au |
1344 | // z atomic number |
1345 | // dens density in g/cm3 |
1346 | // absl absorbtion length in cm |
1347 | // if >=0 it is ignored and the program |
1348 | // calculates it, if <0. -absl is taken |
1349 | // radl radiation length in cm |
1350 | // if >=0 it is ignored and the program |
1351 | // calculates it, if <0. -radl is taken |
1352 | // buf pointer to an array of user words |
1353 | // nbuf number of user words |
1354 | // |
1355 | Int_t jmate=fGclink->jmate; |
1356 | kmat=1; |
1357 | Int_t ns, i; |
1358 | if(jmate>0) { |
1359 | ns=fZiq[jmate-2]; |
1360 | kmat=ns+1; |
1361 | for(i=1; i<=ns; i++) { |
1362 | if(fZlq[jmate-i]==0) { |
1363 | kmat=i; |
1364 | break; |
1365 | } |
1366 | } |
1367 | } |
1368 | gsmate(kmat,PASSCHARD(name), a, z, dens, radl, absl, buf, |
1369 | nwbuf PASSCHARL(name)); |
1370 | } |
1371 | |
1372 | //_____________________________________________________________________________ |
1373 | void TGeant3::Mixture(Int_t& kmat, const char* name, Float_t* a, Float_t* z, |
1374 | Float_t dens, Int_t nlmat, Float_t* wmat) |
1375 | { |
1376 | // |
1377 | // Defines mixture OR COMPOUND IMAT as composed by |
1378 | // THE BASIC NLMAT materials defined by arrays A,Z and WMAT |
1379 | // |
1380 | // If NLMAT > 0 then wmat contains the proportion by |
1381 | // weights of each basic material in the mixture. |
1382 | // |
1383 | // If nlmat < 0 then WMAT contains the number of atoms |
1384 | // of a given kind into the molecule of the COMPOUND |
1385 | // In this case, WMAT in output is changed to relative |
1386 | // weigths. |
1387 | // |
1388 | Int_t jmate=fGclink->jmate; |
1389 | kmat=1; |
1390 | Int_t ns, i; |
1391 | if(jmate>0) { |
1392 | ns=fZiq[jmate-2]; |
1393 | kmat=ns+1; |
1394 | for(i=1; i<=ns; i++) { |
1395 | if(fZlq[jmate-i]==0) { |
1396 | kmat=i; |
1397 | break; |
1398 | } |
1399 | } |
1400 | } |
1401 | gsmixt(kmat,PASSCHARD(name), a, z,dens, nlmat,wmat PASSCHARL(name)); |
1402 | } |
1403 | |
1404 | //_____________________________________________________________________________ |
1405 | void TGeant3::Medium(Int_t& kmed, const char* name, Int_t nmat, Int_t isvol, |
1406 | Int_t ifield, Float_t fieldm, Float_t tmaxfd, |
1407 | Float_t stemax, Float_t deemax, Float_t epsil, |
1408 | Float_t stmin, Float_t* ubuf, Int_t nbuf) |
1409 | { |
1410 | // |
1411 | // kmed tracking medium number assigned |
1412 | // name tracking medium name |
1413 | // nmat material number |
1414 | // isvol sensitive volume flag |
1415 | // ifield magnetic field |
1416 | // fieldm max. field value (kilogauss) |
1417 | // tmaxfd max. angle due to field (deg/step) |
1418 | // stemax max. step allowed |
1419 | // deemax max. fraction of energy lost in a step |
1420 | // epsil tracking precision (cm) |
1421 | // stmin min. step due to continuos processes (cm) |
1422 | // |
1423 | // ifield = 0 if no magnetic field; ifield = -1 if user decision in guswim; |
1424 | // ifield = 1 if tracking performed with grkuta; ifield = 2 if tracking |
1425 | // performed with ghelix; ifield = 3 if tracking performed with ghelx3. |
1426 | // |
1427 | Int_t jtmed=fGclink->jtmed; |
1428 | kmed=1; |
1429 | Int_t ns, i; |
1430 | if(jtmed>0) { |
1431 | ns=fZiq[jtmed-2]; |
1432 | kmed=ns+1; |
1433 | for(i=1; i<=ns; i++) { |
1434 | if(fZlq[jtmed-i]==0) { |
1435 | kmed=i; |
1436 | break; |
1437 | } |
1438 | } |
1439 | } |
1440 | gstmed(kmed, PASSCHARD(name), nmat, isvol, ifield, fieldm, tmaxfd, stemax, |
1441 | deemax, epsil, stmin, ubuf, nbuf PASSCHARL(name)); |
1442 | } |
1443 | |
1444 | //_____________________________________________________________________________ |
1445 | void TGeant3::Matrix(Int_t& krot, Float_t thex, Float_t phix, Float_t they, |
1446 | Float_t phiy, Float_t thez, Float_t phiz) |
1447 | { |
1448 | // |
1449 | // krot rotation matrix number assigned |
1450 | // theta1 polar angle for axis i |
1451 | // phi1 azimuthal angle for axis i |
1452 | // theta2 polar angle for axis ii |
1453 | // phi2 azimuthal angle for axis ii |
1454 | // theta3 polar angle for axis iii |
1455 | // phi3 azimuthal angle for axis iii |
1456 | // |
1457 | // it defines the rotation matrix number irot. |
1458 | // |
1459 | Int_t jrotm=fGclink->jrotm; |
1460 | krot=1; |
1461 | Int_t ns, i; |
1462 | if(jrotm>0) { |
1463 | ns=fZiq[jrotm-2]; |
1464 | krot=ns+1; |
1465 | for(i=1; i<=ns; i++) { |
1466 | if(fZlq[jrotm-i]==0) { |
1467 | krot=i; |
1468 | break; |
1469 | } |
1470 | } |
1471 | } |
1472 | gsrotm(krot, thex, phix, they, phiy, thez, phiz); |
1473 | } |
1474 | |
fe4da5cc |
1475 | //_____________________________________________________________________________ |
1476 | Int_t TGeant3::GetMedium() const |
1477 | { |
1478 | // |
1479 | // Return the number of the current medium |
1480 | // |
1481 | return fGctmed->numed; |
1482 | } |
1483 | |
1484 | //_____________________________________________________________________________ |
1485 | Float_t TGeant3::Edep() const |
1486 | { |
1487 | // |
1488 | // Return the energy lost in the current step |
1489 | // |
1490 | return fGctrak->destep; |
1491 | } |
1492 | |
1493 | //_____________________________________________________________________________ |
1494 | Float_t TGeant3::Etot() const |
1495 | { |
1496 | // |
1497 | // Return the total energy of the current track |
1498 | // |
1499 | return fGctrak->getot; |
1500 | } |
1501 | |
1502 | //_____________________________________________________________________________ |
1503 | void TGeant3::Rndm(Float_t* r, const Int_t n) const |
1504 | { |
1505 | // |
1506 | // Return an array of n random numbers uniformly distributed |
1507 | // between 0 and 1 not included |
1508 | // |
1509 | Grndm(r,n); |
1510 | } |
1511 | |
1512 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1513 | // |
1514 | // Functions from GBASE |
1515 | // |
1516 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1517 | |
1518 | //____________________________________________________________________________ |
1519 | void TGeant3::Gfile(const char *filename, const char *option) |
1520 | { |
1521 | // |
1522 | // Routine to open a GEANT/RZ data base. |
1523 | // |
1524 | // LUN logical unit number associated to the file |
1525 | // |
1526 | // CHFILE RZ file name |
1527 | // |
1528 | // CHOPT is a character string which may be |
1529 | // N To create a new file |
1530 | // U to open an existing file for update |
1531 | // " " to open an existing file for read only |
1532 | // Q The initial allocation (default 1000 records) |
1533 | // is given in IQUEST(10) |
1534 | // X Open the file in exchange format |
1535 | // I Read all data structures from file to memory |
1536 | // O Write all data structures from memory to file |
1537 | // |
1538 | // Note: |
1539 | // If options "I" or "O" all data structures are read or |
1540 | // written from/to file and the file is closed. |
1541 | // See routine GRMDIR to create subdirectories |
1542 | // See routines GROUT,GRIN to write,read objects |
1543 | // |
1544 | grfile(21, PASSCHARD(filename), PASSCHARD(option) PASSCHARL(filename) |
1545 | PASSCHARL(option)); |
1546 | } |
1547 | |
1548 | //____________________________________________________________________________ |
1549 | void TGeant3::Gpcxyz() |
1550 | { |
1551 | // |
1552 | // Print track and volume parameters at current point |
1553 | // |
1554 | gpcxyz(); |
1555 | } |
1556 | |
1557 | //_____________________________________________________________________________ |
1558 | void TGeant3::Ggclos() |
1559 | { |
1560 | // |
1561 | // Closes off the geometry setting. |
1562 | // Initializes the search list for the contents of each |
1563 | // volume following the order they have been positioned, and |
1564 | // inserting the content '0' when a call to GSNEXT (-1) has |
1565 | // been required by the user. |
1566 | // Performs the development of the JVOLUM structure for all |
1567 | // volumes with variable parameters, by calling GGDVLP. |
1568 | // Interprets the user calls to GSORD, through GGORD. |
1569 | // Computes and stores in a bank (next to JVOLUM mother bank) |
1570 | // the number of levels in the geometrical tree and the |
1571 | // maximum number of contents per level, by calling GGNLEV. |
1572 | // Sets status bit for CONCAVE volumes, through GGCAVE. |
1573 | // Completes the JSET structure with the list of volume names |
1574 | // which identify uniquely a given physical detector, the |
1575 | // list of bit numbers to pack the corresponding volume copy |
1576 | // numbers, and the generic path(s) in the JVOLUM tree, |
1577 | // through the routine GHCLOS. |
1578 | // |
1579 | ggclos(); |
9006703b |
1580 | // Create internal list of volumes |
1581 | fVolNames = new char[fGcnum->nvolum][5]; |
1582 | Int_t i; |
1583 | for(i=0; i<fGcnum->nvolum; ++i) { |
1584 | strncpy(fVolNames[i], (char *) &fZiq[fGclink->jvolum+i+1], 4); |
1585 | fVolNames[i][4]='\0'; |
1586 | } |
fe4da5cc |
1587 | } |
1588 | |
1589 | //_____________________________________________________________________________ |
1590 | void TGeant3::Glast() |
1591 | { |
1592 | // |
1593 | // Finish a Geant run |
1594 | // |
1595 | glast(); |
1596 | } |
1597 | |
1598 | //_____________________________________________________________________________ |
1599 | void TGeant3::Gprint(const char *name) |
1600 | { |
1601 | // |
1602 | // Routine to print data structures |
1603 | // CHNAME name of a data structure |
1604 | // |
1605 | char vname[5]; |
1606 | Vname(name,vname); |
1607 | gprint(PASSCHARD(vname),0 PASSCHARL(vname)); |
1608 | } |
1609 | |
1610 | //_____________________________________________________________________________ |
1611 | void TGeant3::Grun() |
1612 | { |
1613 | // |
1614 | // Steering function to process one run |
1615 | // |
1616 | grun(); |
1617 | } |
1618 | |
1619 | //_____________________________________________________________________________ |
1620 | void TGeant3::Gtrig() |
1621 | { |
1622 | // |
1623 | // Steering function to process one event |
1624 | // |
1625 | gtrig(); |
1626 | } |
1627 | |
1628 | //_____________________________________________________________________________ |
1629 | void TGeant3::Gtrigc() |
1630 | { |
1631 | // |
1632 | // Clear event partition |
1633 | // |
1634 | gtrigc(); |
1635 | } |
1636 | |
1637 | //_____________________________________________________________________________ |
1638 | void TGeant3::Gtrigi() |
1639 | { |
1640 | // |
1641 | // Initialises event partition |
1642 | // |
1643 | gtrigi(); |
1644 | } |
1645 | |
1646 | //_____________________________________________________________________________ |
1647 | void TGeant3::Gwork(Int_t nwork) |
1648 | { |
1649 | // |
1650 | // Allocates workspace in ZEBRA memory |
1651 | // |
1652 | gwork(nwork); |
1653 | } |
1654 | |
1655 | //_____________________________________________________________________________ |
1656 | void TGeant3::Gzinit() |
1657 | { |
1658 | // |
1659 | // To initialise GEANT/ZEBRA data structures |
1660 | // |
1661 | gzinit(); |
1662 | } |
1663 | |
1664 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1665 | // |
1666 | // Functions from GCONS |
1667 | // |
1668 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1669 | |
1670 | //_____________________________________________________________________________ |
1671 | void TGeant3::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z, |
1672 | Float_t &dens, Float_t &radl, Float_t &absl, |
1673 | Float_t* ubuf, Int_t& nbuf) |
1674 | { |
1675 | // |
1676 | // Return parameters for material IMAT |
1677 | // |
1678 | gfmate(imat, PASSCHARD(name), a, z, dens, radl, absl, ubuf, nbuf |
1679 | PASSCHARL(name)); |
1680 | } |
1681 | |
1682 | //_____________________________________________________________________________ |
1683 | void TGeant3::Gfpart(Int_t ipart, char *name, Int_t &itrtyp, |
1684 | Float_t &amass, Float_t &charge, Float_t &tlife) |
1685 | { |
1686 | // |
1687 | // Return parameters for particle of type IPART |
1688 | // |
1689 | Float_t *ubuf=0; |
1690 | Int_t nbuf; |
c880e780 |
1691 | Int_t igpart = IdFromPDG(ipart); |
1692 | gfpart(igpart, PASSCHARD(name), itrtyp, amass, charge, tlife, ubuf, nbuf |
fe4da5cc |
1693 | PASSCHARL(name)); |
1694 | } |
1695 | |
1696 | //_____________________________________________________________________________ |
1697 | void TGeant3::Gftmed(Int_t numed, char *name, Int_t &nmat, Int_t &isvol, |
1698 | Int_t &ifield, Float_t &fieldm, Float_t &tmaxfd, |
1699 | Float_t &stemax, Float_t &deemax, Float_t &epsil, |
1700 | Float_t &stmin, Float_t *ubuf, Int_t *nbuf) |
1701 | { |
1702 | // |
1703 | // Return parameters for tracking medium NUMED |
1704 | // |
1705 | gftmed(numed, PASSCHARD(name), nmat, isvol, ifield, fieldm, tmaxfd, stemax, |
1706 | deemax, epsil, stmin, ubuf, nbuf PASSCHARL(name)); |
1707 | } |
1708 | |
1709 | //_____________________________________________________________________________ |
1710 | void TGeant3::Gmate() |
1711 | { |
1712 | // |
1713 | // Define standard GEANT materials |
1714 | // |
1715 | gmate(); |
1716 | } |
1717 | |
1718 | //_____________________________________________________________________________ |
1719 | void TGeant3::Gpart() |
1720 | { |
1721 | // |
1722 | // Define standard GEANT particles plus selected decay modes |
1723 | // and branching ratios. |
1724 | // |
1725 | gpart(); |
1726 | } |
1727 | |
1728 | //_____________________________________________________________________________ |
1729 | void TGeant3::Gsdk(Int_t ipart, Float_t *bratio, Int_t *mode) |
1730 | { |
1731 | // Defines branching ratios and decay modes for standard |
1732 | // GEANT particles. |
1733 | gsdk(ipart,bratio,mode); |
1734 | } |
1735 | |
1736 | //_____________________________________________________________________________ |
1737 | void TGeant3::Gsmate(Int_t imat, const char *name, Float_t a, Float_t z, |
1738 | Float_t dens, Float_t radl, Float_t absl) |
1739 | { |
1740 | // |
1741 | // Defines a Material |
1742 | // |
1743 | // kmat number assigned to the material |
1744 | // name material name |
1745 | // a atomic mass in au |
1746 | // z atomic number |
1747 | // dens density in g/cm3 |
1748 | // absl absorbtion length in cm |
1749 | // if >=0 it is ignored and the program |
1750 | // calculates it, if <0. -absl is taken |
1751 | // radl radiation length in cm |
1752 | // if >=0 it is ignored and the program |
1753 | // calculates it, if <0. -radl is taken |
1754 | // buf pointer to an array of user words |
1755 | // nbuf number of user words |
1756 | // |
1757 | Float_t *ubuf=0; |
1758 | Int_t nbuf=0; |
1759 | gsmate(imat,PASSCHARD(name), a, z, dens, radl, absl, ubuf, nbuf |
1760 | PASSCHARL(name)); |
1761 | } |
1762 | |
1763 | //_____________________________________________________________________________ |
1764 | void TGeant3::Gsmixt(Int_t imat, const char *name, Float_t *a, Float_t *z, |
1765 | Float_t dens, Int_t nlmat, Float_t *wmat) |
1766 | { |
1767 | // |
1768 | // Defines mixture OR COMPOUND IMAT as composed by |
1769 | // THE BASIC NLMAT materials defined by arrays A,Z and WMAT |
1770 | // |
1771 | // If NLMAT.GT.0 then WMAT contains the PROPORTION BY |
1772 | // WEIGTHS OF EACH BASIC MATERIAL IN THE MIXTURE. |
1773 | // |
1774 | // If NLMAT.LT.0 then WMAT contains the number of atoms |
1775 | // of a given kind into the molecule of the COMPOUND |
1776 | // In this case, WMAT in output is changed to relative |
1777 | // weigths. |
1778 | // |
1779 | gsmixt(imat,PASSCHARD(name), a, z,dens, nlmat,wmat PASSCHARL(name)); |
1780 | } |
1781 | |
1782 | //_____________________________________________________________________________ |
1783 | void TGeant3::Gspart(Int_t ipart, const char *name, Int_t itrtyp, |
1784 | Float_t amass, Float_t charge, Float_t tlife) |
1785 | { |
1786 | // |
1787 | // Store particle parameters |
1788 | // |
1789 | // ipart particle code |
1790 | // name particle name |
1791 | // itrtyp transport method (see GEANT manual) |
1792 | // amass mass in GeV/c2 |
1793 | // charge charge in electron units |
1794 | // tlife lifetime in seconds |
1795 | // |
1796 | Float_t *ubuf=0; |
1797 | Int_t nbuf=0; |
1798 | gspart(ipart,PASSCHARD(name), itrtyp, amass, charge, tlife, ubuf, nbuf |
1799 | PASSCHARL(name)); |
1800 | } |
1801 | |
1802 | //_____________________________________________________________________________ |
1803 | void TGeant3::Gstmed(Int_t numed, const char *name, Int_t nmat, Int_t isvol, |
1804 | Int_t ifield, Float_t fieldm, Float_t tmaxfd, |
1805 | Float_t stemax, Float_t deemax, Float_t epsil, |
1806 | Float_t stmin) |
1807 | { |
1808 | // |
1809 | // NTMED Tracking medium number |
1810 | // NAME Tracking medium name |
1811 | // NMAT Material number |
1812 | // ISVOL Sensitive volume flag |
1813 | // IFIELD Magnetic field |
1814 | // FIELDM Max. field value (Kilogauss) |
1815 | // TMAXFD Max. angle due to field (deg/step) |
1816 | // STEMAX Max. step allowed |
1817 | // DEEMAX Max. fraction of energy lost in a step |
1818 | // EPSIL Tracking precision (cm) |
1819 | // STMIN Min. step due to continuos processes (cm) |
1820 | // |
1821 | // IFIELD = 0 if no magnetic field; IFIELD = -1 if user decision in GUSWIM; |
1822 | // IFIELD = 1 if tracking performed with GRKUTA; IFIELD = 2 if tracking |
1823 | // performed with GHELIX; IFIELD = 3 if tracking performed with GHELX3. |
1824 | // |
1825 | Float_t *ubuf=0; |
1826 | Int_t nbuf=0; |
1827 | gstmed(numed,PASSCHARD(name), nmat, isvol, ifield, fieldm, tmaxfd, stemax, |
1828 | deemax, epsil, stmin, ubuf, nbuf PASSCHARL(name)); |
1829 | } |
1830 | |
1831 | //_____________________________________________________________________________ |
1832 | void TGeant3::Gsckov(Int_t itmed, Int_t npckov, Float_t *ppckov, |
1833 | Float_t *absco, Float_t *effic, Float_t *rindex) |
1834 | { |
1835 | // |
1836 | // Stores the tables for UV photon tracking in medium ITMED |
1837 | // Please note that it is the user's responsability to |
1838 | // provide all the coefficients: |
1839 | // |
1840 | // |
1841 | // ITMED Tracking medium number |
1842 | // NPCKOV Number of bins of each table |
1843 | // PPCKOV Value of photon momentum (in GeV) |
1844 | // ABSCO Absorbtion coefficients |
1845 | // dielectric: absorbtion length in cm |
1846 | // metals : absorbtion fraction (0<=x<=1) |
1847 | // EFFIC Detection efficiency for UV photons |
1848 | // RINDEX Refraction index (if=0 metal) |
1849 | // |
1850 | gsckov(itmed,npckov,ppckov,absco,effic,rindex); |
1851 | } |
1852 | |
1853 | //_____________________________________________________________________________ |
1854 | void TGeant3::Gstpar(Int_t itmed, const char *param, Float_t parval) |
1855 | { |
1856 | // |
1857 | // To change the value of cut or mechanism "CHPAR" |
1858 | // to a new value PARVAL for tracking medium ITMED |
1859 | // The data structure JTMED contains the standard tracking |
1860 | // parameters (CUTS and flags to control the physics processes) which |
1861 | // are used by default for all tracking media. It is possible to |
1862 | // redefine individually with GSTPAR any of these parameters for a |
1863 | // given tracking medium. |
1864 | // ITMED tracking medium number |
1865 | // CHPAR is a character string (variable name) |
1866 | // PARVAL must be given as a floating point. |
1867 | // |
1868 | gstpar(itmed,PASSCHARD(param), parval PASSCHARL(param)); |
1869 | } |
1870 | |
1871 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1872 | // |
1873 | // Functions from GCONS |
1874 | // |
1875 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1876 | |
1877 | //_____________________________________________________________________________ |
1878 | void TGeant3::Gfkine(Int_t itra, Float_t *vert, Float_t *pvert, Int_t &ipart, |
1879 | Int_t &nvert) |
1880 | { |
1881 | // Storing/Retrieving Vertex and Track parameters |
1882 | // ---------------------------------------------- |
1883 | // |
1884 | // Stores vertex parameters. |
1885 | // VERT array of (x,y,z) position of the vertex |
1886 | // NTBEAM beam track number origin of the vertex |
1887 | // =0 if none exists |
1888 | // NTTARG target track number origin of the vertex |
1889 | // UBUF user array of NUBUF floating point numbers |
1890 | // NUBUF |
1891 | // NVTX new vertex number (=0 in case of error). |
1892 | // Prints vertex parameters. |
1893 | // IVTX for vertex IVTX. |
1894 | // (For all vertices if IVTX=0) |
1895 | // Stores long life track parameters. |
1896 | // PLAB components of momentum |
1897 | // IPART type of particle (see GSPART) |
1898 | // NV vertex number origin of track |
1899 | // UBUF array of NUBUF floating point user parameters |
1900 | // NUBUF |
1901 | // NT track number (if=0 error). |
1902 | // Retrieves long life track parameters. |
1903 | // ITRA track number for which parameters are requested |
1904 | // VERT vector origin of the track |
1905 | // PVERT 4 momentum components at the track origin |
1906 | // IPART particle type (=0 if track ITRA does not exist) |
1907 | // NVERT vertex number origin of the track |
1908 | // UBUF user words stored in GSKINE. |
1909 | // Prints initial track parameters. |
1910 | // ITRA for track ITRA |
1911 | // (For all tracks if ITRA=0) |
1912 | // |
1913 | Float_t *ubuf=0; |
1914 | Int_t nbuf; |
1915 | gfkine(itra,vert,pvert,ipart,nvert,ubuf,nbuf); |
1916 | } |
1917 | |
1918 | //_____________________________________________________________________________ |
1919 | void TGeant3::Gfvert(Int_t nvtx, Float_t *v, Int_t &ntbeam, Int_t &nttarg, |
1920 | Float_t &tofg) |
1921 | { |
1922 | // |
1923 | // Retrieves the parameter of a vertex bank |
1924 | // Vertex is generated from tracks NTBEAM NTTARG |
1925 | // NVTX is the new vertex number |
1926 | // |
1927 | Float_t *ubuf=0; |
1928 | Int_t nbuf; |
1929 | gfvert(nvtx,v,ntbeam,nttarg,tofg,ubuf,nbuf); |
1930 | } |
1931 | |
1932 | //_____________________________________________________________________________ |
1933 | Int_t TGeant3::Gskine(Float_t *plab, Int_t ipart, Int_t nv, Float_t *buf, |
1934 | Int_t nwbuf) |
1935 | { |
1936 | // |
1937 | // Store kinematics of track NT into data structure |
1938 | // Track is coming from vertex NV |
1939 | // |
1940 | Int_t nt = 0; |
1941 | gskine(plab, ipart, nv, buf, nwbuf, nt); |
1942 | return nt; |
1943 | } |
1944 | |
1945 | //_____________________________________________________________________________ |
1946 | Int_t TGeant3::Gsvert(Float_t *v, Int_t ntbeam, Int_t nttarg, Float_t *ubuf, |
1947 | Int_t nwbuf) |
1948 | { |
1949 | // |
1950 | // Creates a new vertex bank |
1951 | // Vertex is generated from tracks NTBEAM NTTARG |
1952 | // NVTX is the new vertex number |
1953 | // |
1954 | Int_t nwtx = 0; |
1955 | gsvert(v, ntbeam, nttarg, ubuf, nwbuf, nwtx); |
1956 | return nwtx; |
1957 | } |
1958 | |
1959 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1960 | // |
1961 | // Functions from GPHYS |
1962 | // |
1963 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1964 | |
1965 | //_____________________________________________________________________________ |
1966 | void TGeant3::Gphysi() |
1967 | { |
1968 | // |
1969 | // Initialise material constants for all the physics |
1970 | // mechanisms used by GEANT |
1971 | // |
1972 | gphysi(); |
1973 | } |
1974 | |
1975 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1976 | // |
1977 | // Functions from GTRAK |
1978 | // |
1979 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
1980 | |
1981 | //_____________________________________________________________________________ |
1982 | void TGeant3::Gdebug() |
1983 | { |
1984 | // |
1985 | // Debug the current step |
1986 | // |
1987 | gdebug(); |
1988 | } |
1989 | |
1990 | //_____________________________________________________________________________ |
1991 | void TGeant3::Gekbin() |
1992 | { |
1993 | // |
1994 | // To find bin number in kinetic energy table |
1995 | // stored in ELOW(NEKBIN) |
1996 | // |
1997 | gekbin(); |
1998 | } |
1999 | |
2000 | //_____________________________________________________________________________ |
2001 | void TGeant3::Gfinds() |
2002 | { |
2003 | // |
2004 | // Returns the set/volume parameters corresponding to |
2005 | // the current space point in /GCTRAK/ |
2006 | // and fill common /GCSETS/ |
2007 | // |
2008 | // IHSET user set identifier |
2009 | // IHDET user detector identifier |
2010 | // ISET set number in JSET |
2011 | // IDET detector number in JS=LQ(JSET-ISET) |
2012 | // IDTYPE detector type (1,2) |
2013 | // NUMBV detector volume numbers (array of length NVNAME) |
2014 | // NVNAME number of volume levels |
2015 | // |
2016 | gfinds(); |
2017 | } |
2018 | |
2019 | //_____________________________________________________________________________ |
2020 | void TGeant3::Gsking(Int_t igk) |
2021 | { |
2022 | // |
2023 | // Stores in stack JSTAK either the IGKth track of /GCKING/, |
2024 | // or the NGKINE tracks when IGK is 0. |
2025 | // |
2026 | gsking(igk); |
2027 | } |
2028 | |
2029 | //_____________________________________________________________________________ |
2030 | void TGeant3::Gskpho(Int_t igk) |
2031 | { |
2032 | // |
2033 | // Stores in stack JSTAK either the IGKth Cherenkov photon of |
2034 | // /GCKIN2/, or the NPHOT tracks when IGK is 0. |
2035 | // |
2036 | gskpho(igk); |
2037 | } |
2038 | |
2039 | //_____________________________________________________________________________ |
2040 | void TGeant3::Gsstak(Int_t iflag) |
2041 | { |
2042 | // |
2043 | // Stores in auxiliary stack JSTAK the particle currently |
2044 | // described in common /GCKINE/. |
2045 | // |
2046 | // On request, creates also an entry in structure JKINE : |
2047 | // IFLAG = |
2048 | // 0 : No entry in JKINE structure required (user) |
2049 | // 1 : New entry in JVERTX / JKINE structures required (user) |
2050 | // <0 : New entry in JKINE structure at vertex -IFLAG (user) |
2051 | // 2 : Entry in JKINE structure exists already (from GTREVE) |
2052 | // |
2053 | gsstak(iflag); |
2054 | } |
2055 | |
2056 | //_____________________________________________________________________________ |
2057 | void TGeant3::Gsxyz() |
2058 | { |
2059 | // |
2060 | // Store space point VECT in banks JXYZ |
2061 | // |
2062 | gsxyz(); |
2063 | } |
2064 | |
2065 | //_____________________________________________________________________________ |
2066 | void TGeant3::Gtrack() |
2067 | { |
2068 | // |
2069 | // Controls tracking of current particle |
2070 | // |
2071 | gtrack(); |
2072 | } |
2073 | |
2074 | //_____________________________________________________________________________ |
2075 | void TGeant3::Gtreve() |
2076 | { |
2077 | // |
2078 | // Controls tracking of all particles belonging to the current event |
2079 | // |
2080 | gtreve(); |
2081 | } |
2082 | |
1578254f |
2083 | //_____________________________________________________________________________ |
2084 | void TGeant3::Gtreve_root() |
2085 | { |
2086 | // |
2087 | // Controls tracking of all particles belonging to the current event |
2088 | // |
2089 | gtreve_root(); |
2090 | } |
2091 | |
fe4da5cc |
2092 | //_____________________________________________________________________________ |
2093 | void TGeant3::Grndm(Float_t *rvec, const Int_t len) const |
2094 | { |
2095 | // |
2096 | // To generate a vector RVECV of LEN random numbers |
2097 | // Copy of the CERN Library routine RANECU |
2098 | grndm(rvec,len); |
2099 | } |
2100 | |
2101 | //_____________________________________________________________________________ |
2102 | void TGeant3::Grndmq(Int_t &is1, Int_t &is2, const Int_t iseq, |
2103 | const Text_t *chopt) |
2104 | { |
2105 | // |
2106 | // To set/retrieve the seed of the random number generator |
2107 | // |
2108 | grndmq(is1,is2,iseq,PASSCHARD(chopt) PASSCHARL(chopt)); |
2109 | } |
2110 | |
2111 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
2112 | // |
2113 | // Functions from GDRAW |
2114 | // |
2115 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
2116 | |
2117 | //_____________________________________________________________________________ |
2118 | void TGeant3::Gdxyz(Int_t it) |
2119 | { |
2120 | // |
2121 | // Draw the points stored with Gsxyz relative to track it |
2122 | // |
2123 | gdxyz(it); |
2124 | } |
2125 | |
2126 | //_____________________________________________________________________________ |
2127 | void TGeant3::Gdcxyz() |
2128 | { |
2129 | // |
2130 | // Draw the position of the current track |
2131 | // |
2132 | gdcxyz(); |
2133 | } |
2134 | |
2135 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
2136 | // |
2137 | // Functions from GGEOM |
2138 | // |
2139 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
2140 | |
2141 | //_____________________________________________________________________________ |
2142 | void TGeant3::Gdtom(Float_t *xd, Float_t *xm, Int_t iflag) |
2143 | { |
2144 | // |
2145 | // Computes coordinates XM (Master Reference System |
2146 | // knowing the coordinates XD (Detector Ref System) |
2147 | // The local reference system can be initialized by |
2148 | // - the tracking routines and GDTOM used in GUSTEP |
2149 | // - a call to GSCMED(NLEVEL,NAMES,NUMBER) |
2150 | // (inverse routine is GMTOD) |
2151 | // |
2152 | // If IFLAG=1 convert coordinates |
2153 | // IFLAG=2 convert direction cosinus |
2154 | // |
2155 | gdtom(xd, xm, iflag); |
2156 | } |
2157 | |
2158 | //_____________________________________________________________________________ |
2159 | void TGeant3::Glmoth(const char* iudet, Int_t iunum, Int_t &nlev, Int_t *lvols, |
2160 | Int_t *lindx) |
2161 | { |
2162 | // |
2163 | // Loads the top part of the Volume tree in LVOLS (IVO's), |
2164 | // LINDX (IN indices) for a given volume defined through |
2165 | // its name IUDET and number IUNUM. |
2166 | // |
2167 | // The routine stores only upto the last level where JVOLUM |
2168 | // data structure is developed. If there is no development |
2169 | // above the current level, it returns NLEV zero. |
2170 | Int_t *idum=0; |
2171 | glmoth(PASSCHARD(iudet), iunum, nlev, lvols, lindx, idum PASSCHARL(iudet)); |
2172 | } |
2173 | |
2174 | //_____________________________________________________________________________ |
2175 | void TGeant3::Gmedia(Float_t *x, Int_t &numed) |
2176 | { |
2177 | // |
2178 | // Finds in which volume/medium the point X is, and updates the |
2179 | // common /GCVOLU/ and the structure JGPAR accordingly. |
2180 | // |
2181 | // NUMED returns the tracking medium number, or 0 if point is |
2182 | // outside the experimental setup. |
2183 | // |
2184 | gmedia(x,numed); |
2185 | } |
2186 | |
2187 | //_____________________________________________________________________________ |
2188 | void TGeant3::Gmtod(Float_t *xm, Float_t *xd, Int_t iflag) |
2189 | { |
2190 | // |
2191 | // Computes coordinates XD (in DRS) |
2192 | // from known coordinates XM in MRS |
2193 | // The local reference system can be initialized by |
2194 | // - the tracking routines and GMTOD used in GUSTEP |
2195 | // - a call to GMEDIA(XM,NUMED) |
2196 | // - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) |
2197 | // (inverse routine is GDTOM) |
2198 | // |
2199 | // If IFLAG=1 convert coordinates |
2200 | // IFLAG=2 convert direction cosinus |
2201 | // |
2202 | gmtod(xm, xd, iflag); |
2203 | } |
2204 | |
2205 | //_____________________________________________________________________________ |
2206 | void TGeant3::Gsdvn(const char *name, const char *mother, Int_t ndiv, |
2207 | Int_t iaxis) |
2208 | { |
2209 | // |
2210 | // Create a new volume by dividing an existing one |
2211 | // |
2212 | // NAME Volume name |
2213 | // MOTHER Mother volume name |
2214 | // NDIV Number of divisions |
2215 | // IAXIS Axis value |
2216 | // |
2217 | // X,Y,Z of CAXIS will be translated to 1,2,3 for IAXIS. |
2218 | // It divides a previously defined volume. |
2219 | // |
2220 | char vname[5]; |
2221 | Vname(name,vname); |
2222 | char vmother[5]; |
2223 | Vname(mother,vmother); |
2224 | gsdvn(PASSCHARD(vname), PASSCHARD(vmother), ndiv, iaxis PASSCHARL(vname) |
2225 | PASSCHARL(vmother)); |
2226 | } |
2227 | |
2228 | //_____________________________________________________________________________ |
2229 | void TGeant3::Gsdvn2(const char *name, const char *mother, Int_t ndiv, |
2230 | Int_t iaxis, Float_t c0i, Int_t numed) |
2231 | { |
2232 | // |
2233 | // Create a new volume by dividing an existing one |
2234 | // |
2235 | // Divides mother into ndiv divisions called name |
2236 | // along axis iaxis starting at coordinate value c0. |
2237 | // the new volume created will be medium number numed. |
2238 | // |
2239 | char vname[5]; |
2240 | Vname(name,vname); |
2241 | char vmother[5]; |
2242 | Vname(mother,vmother); |
2243 | gsdvn2(PASSCHARD(vname), PASSCHARD(vmother), ndiv, iaxis, c0i, numed |
2244 | PASSCHARL(vname) PASSCHARL(vmother)); |
2245 | } |
2246 | |
2247 | //_____________________________________________________________________________ |
2248 | void TGeant3::Gsdvs(const char *name, const char *mother, Float_t step, |
2249 | Int_t iaxis, Int_t numed) |
2250 | { |
2251 | // |
2252 | // Create a new volume by dividing an existing one |
2253 | // |
2254 | char vname[5]; |
2255 | Vname(name,vname); |
2256 | char vmother[5]; |
2257 | Vname(mother,vmother); |
2258 | gsdvs(PASSCHARD(vname), PASSCHARD(vmother), step, iaxis, numed |
2259 | PASSCHARL(vname) PASSCHARL(vmother)); |
2260 | } |
2261 | |
2262 | //_____________________________________________________________________________ |
2263 | void TGeant3::Gsdvs2(const char *name, const char *mother, Float_t step, |
2264 | Int_t iaxis, Float_t c0, Int_t numed) |
2265 | { |
2266 | // |
2267 | // Create a new volume by dividing an existing one |
2268 | // |
2269 | char vname[5]; |
2270 | Vname(name,vname); |
2271 | char vmother[5]; |
2272 | Vname(mother,vmother); |
2273 | gsdvs2(PASSCHARD(vname), PASSCHARD(vmother), step, iaxis, c0, numed |
2274 | PASSCHARL(vname) PASSCHARL(vmother)); |
2275 | } |
2276 | |
2277 | //_____________________________________________________________________________ |
2278 | void TGeant3::Gsdvt(const char *name, const char *mother, Float_t step, |
2279 | Int_t iaxis, Int_t numed, Int_t ndvmx) |
2280 | { |
2281 | // |
2282 | // Create a new volume by dividing an existing one |
2283 | // |
2284 | // Divides MOTHER into divisions called NAME along |
2285 | // axis IAXIS in steps of STEP. If not exactly divisible |
2286 | // will make as many as possible and will centre them |
2287 | // with respect to the mother. Divisions will have medium |
2288 | // number NUMED. If NUMED is 0, NUMED of MOTHER is taken. |
2289 | // NDVMX is the expected maximum number of divisions |
2290 | // (If 0, no protection tests are performed) |
2291 | // |
2292 | char vname[5]; |
2293 | Vname(name,vname); |
2294 | char vmother[5]; |
2295 | Vname(mother,vmother); |
2296 | gsdvt(PASSCHARD(vname), PASSCHARD(vmother), step, iaxis, numed, ndvmx |
2297 | PASSCHARL(vname) PASSCHARL(vmother)); |
2298 | } |
2299 | |
2300 | //_____________________________________________________________________________ |
2301 | void TGeant3::Gsdvt2(const char *name, const char *mother, Float_t step, |
2302 | Int_t iaxis, Float_t c0, Int_t numed, Int_t ndvmx) |
2303 | { |
2304 | // |
2305 | // Create a new volume by dividing an existing one |
2306 | // |
2307 | // Divides MOTHER into divisions called NAME along |
2308 | // axis IAXIS starting at coordinate value C0 with step |
2309 | // size STEP. |
2310 | // The new volume created will have medium number NUMED. |
2311 | // If NUMED is 0, NUMED of mother is taken. |
2312 | // NDVMX is the expected maximum number of divisions |
2313 | // (If 0, no protection tests are performed) |
2314 | // |
2315 | char vname[5]; |
2316 | Vname(name,vname); |
2317 | char vmother[5]; |
2318 | Vname(mother,vmother); |
2319 | gsdvt2(PASSCHARD(vname), PASSCHARD(vmother), step, iaxis, c0, |
2320 | numed, ndvmx PASSCHARL(vname) PASSCHARL(vmother)); |
2321 | } |
2322 | |
2323 | //_____________________________________________________________________________ |
2324 | void TGeant3::Gsord(const char *name, Int_t iax) |
2325 | { |
2326 | // |
2327 | // Flags volume CHNAME whose contents will have to be ordered |
2328 | // along axis IAX, by setting the search flag to -IAX |
2329 | // IAX = 1 X axis |
2330 | // IAX = 2 Y axis |
2331 | // IAX = 3 Z axis |
2332 | // IAX = 4 Rxy (static ordering only -> GTMEDI) |
2333 | // IAX = 14 Rxy (also dynamic ordering -> GTNEXT) |
2334 | // IAX = 5 Rxyz (static ordering only -> GTMEDI) |
2335 | // IAX = 15 Rxyz (also dynamic ordering -> GTNEXT) |
2336 | // IAX = 6 PHI (PHI=0 => X axis) |
2337 | // IAX = 7 THETA (THETA=0 => Z axis) |
2338 | // |
2339 | char vname[5]; |
2340 | Vname(name,vname); |
2341 | gsord(PASSCHARD(vname), iax PASSCHARL(vname)); |
2342 | } |
2343 | |
2344 | //_____________________________________________________________________________ |
2345 | void TGeant3::Gspos(const char *name, Int_t nr, const char *mother, Float_t x, |
2346 | Float_t y, Float_t z, Int_t irot, const char *konly) |
2347 | { |
2348 | // |
2349 | // Position a volume into an existing one |
2350 | // |
2351 | // NAME Volume name |
2352 | // NUMBER Copy number of the volume |
2353 | // MOTHER Mother volume name |
2354 | // X X coord. of the volume in mother ref. sys. |
2355 | // Y Y coord. of the volume in mother ref. sys. |
2356 | // Z Z coord. of the volume in mother ref. sys. |
2357 | // IROT Rotation matrix number w.r.t. mother ref. sys. |
2358 | // ONLY ONLY/MANY flag |
2359 | // |
2360 | // It positions a previously defined volume in the mother. |
2361 | // |
2362 | char vname[5]; |
2363 | Vname(name,vname); |
2364 | char vmother[5]; |
2365 | Vname(mother,vmother); |
2366 | gspos(PASSCHARD(vname), nr, PASSCHARD(vmother), x, y, z, irot, |
2367 | PASSCHARD(konly) PASSCHARL(vname) PASSCHARL(vmother) |
2368 | PASSCHARL(konly)); |
2369 | } |
2370 | |
2371 | //_____________________________________________________________________________ |
2372 | void TGeant3::Gsposp(const char *name, Int_t nr, const char *mother, |
2373 | Float_t x, Float_t y, Float_t z, Int_t irot, |
2374 | const char *konly, Float_t *upar, Int_t np ) |
2375 | { |
2376 | // |
2377 | // Place a copy of generic volume NAME with user number |
2378 | // NR inside MOTHER, with its parameters UPAR(1..NP) |
2379 | // |
2380 | char vname[5]; |
2381 | Vname(name,vname); |
2382 | char vmother[5]; |
2383 | Vname(mother,vmother); |
2384 | gsposp(PASSCHARD(vname), nr, PASSCHARD(vmother), x, y, z, irot, |
2385 | PASSCHARD(konly), upar, np PASSCHARL(vname) PASSCHARL(vmother) |
2386 | PASSCHARL(konly)); |
2387 | } |
2388 | |
2389 | //_____________________________________________________________________________ |
2390 | void TGeant3::Gsrotm(Int_t nmat, Float_t theta1, Float_t phi1, Float_t theta2, |
2391 | Float_t phi2, Float_t theta3, Float_t phi3) |
2392 | { |
2393 | // |
2394 | // nmat Rotation matrix number |
2395 | // THETA1 Polar angle for axis I |
2396 | // PHI1 Azimuthal angle for axis I |
2397 | // THETA2 Polar angle for axis II |
2398 | // PHI2 Azimuthal angle for axis II |
2399 | // THETA3 Polar angle for axis III |
2400 | // PHI3 Azimuthal angle for axis III |
2401 | // |
2402 | // It defines the rotation matrix number IROT. |
2403 | // |
2404 | gsrotm(nmat, theta1, phi1, theta2, phi2, theta3, phi3); |
2405 | } |
2406 | |
2407 | //_____________________________________________________________________________ |
2408 | void TGeant3::Gprotm(Int_t nmat) |
2409 | { |
2410 | // |
2411 | // To print rotation matrices structure JROTM |
2412 | // nmat Rotation matrix number |
2413 | // |
2414 | gprotm(nmat); |
2415 | } |
2416 | |
2417 | //_____________________________________________________________________________ |
2418 | Int_t TGeant3::Gsvolu(const char *name, const char *shape, Int_t nmed, |
2419 | Float_t *upar, Int_t npar) |
2420 | { |
2421 | // |
2422 | // NAME Volume name |
2423 | // SHAPE Volume type |
2424 | // NUMED Tracking medium number |
2425 | // NPAR Number of shape parameters |
2426 | // UPAR Vector containing shape parameters |
2427 | // |
2428 | // It creates a new volume in the JVOLUM data structure. |
2429 | // |
2430 | Int_t ivolu = 0; |
2431 | char vname[5]; |
2432 | Vname(name,vname); |
2433 | char vshape[5]; |
2434 | Vname(shape,vshape); |
2435 | gsvolu(PASSCHARD(vname), PASSCHARD(vshape), nmed, upar, npar, ivolu |
2436 | PASSCHARL(vname) PASSCHARL(vshape)); |
2437 | return ivolu; |
2438 | } |
2439 | |
2440 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
2441 | // |
2442 | // T H E D R A W I N G P A C K A G E |
2443 | // ====================================== |
2444 | // Drawing functions. These functions allow the visualization in several ways |
2445 | // of the volumes defined in the geometrical data structure. It is possible |
2446 | // to draw the logical tree of volumes belonging to the detector (DTREE), |
2447 | // to show their geometrical specification (DSPEC,DFSPC), to draw them |
2448 | // and their cut views (DRAW, DCUT). Moreover, it is possible to execute |
2449 | // these commands when the hidden line removal option is activated; in |
2450 | // this case, the volumes can be also either translated in the space |
2451 | // (SHIFT), or clipped by boolean operation (CVOL). In addition, it is |
2452 | // possible to fill the surfaces of the volumes |
2453 | // with solid colours when the shading option (SHAD) is activated. |
2454 | // Several tools (ZOOM, LENS) have been developed to zoom detailed parts |
2455 | // of the detectors or to scan physical events as well. |
2456 | // Finally, the command MOVE will allow the rotation, translation and zooming |
2457 | // on real time parts of the detectors or tracks and hits of a simulated event. |
2458 | // Ray-tracing commands. In case the command (DOPT RAYT ON) is executed, |
2459 | // the drawing is performed by the Geant ray-tracing; |
2460 | // automatically, the color is assigned according to the tracking medium of each |
2461 | // volume and the volumes with a density lower/equal than the air are considered |
2462 | // transparent; if the option (USER) is set (ON) (again via the command (DOPT)), |
2463 | // the user can set color and visibility for the desired volumes via the command |
2464 | // (SATT), as usual, relatively to the attributes (COLO) and (SEEN). |
2465 | // The resolution can be set via the command (SATT * FILL VALUE), where (VALUE) |
2466 | // is the ratio between the number of pixels drawn and 20 (user coordinates). |
2467 | // Parallel view and perspective view are possible (DOPT PROJ PARA/PERS); in the |
2468 | // first case, we assume that the first mother volume of the tree is a box with |
2469 | // dimensions 10000 X 10000 X 10000 cm and the view point (infinetely far) is |
2470 | // 5000 cm far from the origin along the Z axis of the user coordinates; in the |
2471 | // second case, the distance between the observer and the origin of the world |
2472 | // reference system is set in cm by the command (PERSP NAME VALUE); grand-angle |
2473 | // or telescopic effects can be achieved changing the scale factors in the command |
2474 | // (DRAW). When the final picture does not occupy the full window, |
2475 | // mapping the space before tracing can speed up the drawing, but can also |
2476 | // produce less precise results; values from 1 to 4 are allowed in the command |
2477 | // (DOPT MAPP VALUE), the mapping being more precise for increasing (VALUE); for |
2478 | // (VALUE = 0) no mapping is performed (therefore max precision and lowest speed). |
2479 | // The command (VALCUT) allows the cutting of the detector by three planes |
2480 | // ortogonal to the x,y,z axis. The attribute (LSTY) can be set by the command |
2481 | // SATT for any desired volume and can assume values from 0 to 7; it determines |
2482 | // the different light processing to be performed for different materials: |
2483 | // 0 = dark-matt, 1 = bright-matt, 2 = plastic, 3 = ceramic, 4 = rough-metals, |
2484 | // 5 = shiny-metals, 6 = glass, 7 = mirror. The detector is assumed to be in the |
2485 | // dark, the ambient light luminosity is 0.2 for each basic hue (the saturation |
2486 | // is 0.9) and the observer is assumed to have a light source (therefore he will |
2487 | // produce parallel light in the case of parallel view and point-like-source |
2488 | // light in the case of perspective view). |
2489 | // |
2490 | //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* |
2491 | |
2492 | //_____________________________________________________________________________ |
2493 | void TGeant3::Gsatt(const char *name, const char *att, Int_t val) |
2494 | { |
2495 | // |
2496 | // NAME Volume name |
2497 | // IOPT Name of the attribute to be set |
2498 | // IVAL Value to which the attribute is to be set |
2499 | // |
2500 | // name= "*" stands for all the volumes. |
2501 | // iopt can be chosen among the following : |
2502 | // |
2503 | // WORK 0=volume name is inactive for the tracking |
2504 | // 1=volume name is active for the tracking (default) |
2505 | // |
2506 | // SEEN 0=volume name is invisible |
2507 | // 1=volume name is visible (default) |
2508 | // -1=volume invisible with all its descendants in the tree |
2509 | // -2=volume visible but not its descendants in the tree |
2510 | // |
2511 | // LSTY line style 1,2,3,... (default=1) |
2512 | // LSTY=7 will produce a very precise approximation for |
2513 | // revolution bodies. |
2514 | // |
2515 | // LWID line width -7,...,1,2,3,..7 (default=1) |
2516 | // LWID<0 will act as abs(LWID) was set for the volume |
2517 | // and for all the levels below it. When SHAD is 'ON', LWID |
2518 | // represent the linewidth of the scan lines filling the surfaces |
2519 | // (whereas the FILL value represent their number). Therefore |
2520 | // tuning this parameter will help to obtain the desired |
2521 | // quality/performance ratio. |
2522 | // |
2523 | // COLO colour code -166,...,1,2,..166 (default=1) |
2524 | // n=1=black |
2525 | // n=2=red; n=17+m, m=0,25, increasing luminosity according to 'm'; |
2526 | // n=3=green; n=67+m, m=0,25, increasing luminosity according to 'm'; |
2527 | // n=4=blue; n=117+m, m=0,25, increasing luminosity according to 'm'; |
2528 | // n=5=yellow; n=42+m, m=0,25, increasing luminosity according to 'm'; |
2529 | // n=6=violet; n=142+m, m=0,25, increasing luminosity according to 'm'; |
2530 | // n=7=lightblue; n=92+m, m=0,25, increasing luminosity according to 'm'; |
2531 | // colour=n*10+m, m=1,2,...9, will produce the same colour |
2532 | // as 'n', but with increasing luminosity according to 'm'; |
2533 | // COLO<0 will act as if abs(COLO) was set for the volume |
2534 | // and for all the levels below it. |
2535 | // When for a volume the attribute FILL is > 1 (and the |
2536 | // option SHAD is on), the ABS of its colour code must be < 8 |
2537 | // because an automatic shading of its faces will be |
2538 | // performed. |
2539 | // |
2540 | // FILL (1992) fill area -7,...,0,1,...7 (default=0) |
2541 | // when option SHAD is "on" the FILL attribute of any |
2542 | // volume can be set different from 0 (normal drawing); |
2543 | // if it is set to 1, the faces of such volume will be filled |
2544 | // with solid colours; if ABS(FILL) is > 1, then a light |
2545 | // source is placed along the observer line, and the faces of |
2546 | // such volumes will be painted by colours whose luminosity |
2547 | // will depend on the amount of light reflected; |
2548 | // if ABS(FILL) = 1, then it is possible to use all the 166 |
2549 | // colours of the colour table, becouse the automatic shading |
2550 | // is not performed; |
2551 | // for increasing values of FILL the drawing will be performed |
2552 | // with higher and higher resolution improving the quality (the |
2553 | // number of scan lines used to fill the faces increases with FILL); |
2554 | // it is possible to set different values of FILL |
2555 | // for different volumes, in order to optimize at the same time |
2556 | // the performance and the quality of the picture; |
2557 | // FILL<0 will act as if abs(FILL) was set for the volume |
2558 | // and for all the levels below it. |
2559 | // This kind of drawing can be saved in 'picture files' |
2560 | // or in view banks. |
2561 | // 0=drawing without fill area |
2562 | // 1=faces filled with solid colours and resolution = 6 |
2563 | // 2=lowest resolution (very fast) |
2564 | // 3=default resolution |
2565 | // 4=................. |
2566 | // 5=................. |
2567 | // 6=................. |
2568 | // 7=max resolution |
2569 | // Finally, if a coloured background is desired, the FILL |
2570 | // attribute for the first volume of the tree must be set |
2571 | // equal to -abs(colo), colo being >0 and <166. |
2572 | // |
2573 | // SET set number associated to volume name |
2574 | // DET detector number associated to volume name |
2575 | // DTYP detector type (1,2) |
2576 | // |
2577 | InitHIGZ(); |
2578 | char vname[5]; |
2579 | Vname(name,vname); |
2580 | char vatt[5]; |
2581 | Vname(att,vatt); |
2582 | gsatt(PASSCHARD(vname), PASSCHARD(vatt), val PASSCHARL(vname) |
2583 | PASSCHARL(vatt)); |
2584 | } |
2585 | |
2586 | //_____________________________________________________________________________ |
2587 | void TGeant3::Gfpara(const char *name, Int_t number, Int_t intext, Int_t& npar, |
2588 | Int_t& natt, Float_t* par, Float_t* att) |
2589 | { |
2590 | // |
2591 | // Find the parameters of a volume |
2592 | // |
2593 | gfpara(PASSCHARD(name), number, intext, npar, natt, par, att |
2594 | PASSCHARL(name)); |
2595 | } |
2596 | |
2597 | //_____________________________________________________________________________ |
2598 | void TGeant3::Gckpar(Int_t ish, Int_t npar, Float_t* par) |
2599 | { |
2600 | // |
2601 | // Check the parameters of a shape |
2602 | // |
2603 | gckpar(ish,npar,par); |
2604 | } |
2605 | |
2606 | //_____________________________________________________________________________ |
2607 | void TGeant3::Gckmat(Int_t itmed, char* natmed) |
2608 | { |
2609 | // |
2610 | // Check the parameters of a tracking medium |
2611 | // |
2612 | gckmat(itmed, PASSCHARD(natmed) PASSCHARL(natmed)); |
2613 | } |
2614 | |
2615 | //_____________________________________________________________________________ |
2616 | void TGeant3::Gdelete(Int_t iview) |
2617 | { |
2618 | // |
2619 | // IVIEW View number |
2620 | // |
2621 | // It deletes a view bank from memory. |
2622 | // |
2623 | gdelet(iview); |
2624 | } |
2625 | |
2626 | //_____________________________________________________________________________ |
2627 | void TGeant3::Gdopen(Int_t iview) |
2628 | { |
2629 | // |
2630 | // IVIEW View number |
2631 | // |
2632 | // When a drawing is very complex and requires a long time to be |
2633 | // executed, it can be useful to store it in a view bank: after a |
2634 | // call to DOPEN and the execution of the drawing (nothing will |
2635 | // appear on the screen), and after a necessary call to DCLOSE, |
2636 | // the contents of the bank can be displayed in a very fast way |
2637 | // through a call to DSHOW; therefore, the detector can be easily |
2638 | // zoomed many times in different ways. Please note that the pictures |
2639 | // with solid colours can now be stored in a view bank or in 'PICTURE FILES' |
2640 | // |
2641 | InitHIGZ(); |
2642 | higz->Clear(); |
2643 | gdopen(iview); |
2644 | } |
2645 | |
2646 | //_____________________________________________________________________________ |
2647 | void TGeant3::Gdclose() |
2648 | { |
2649 | // |
2650 | // It closes the currently open view bank; it must be called after the |
2651 | // end of the drawing to be stored. |
2652 | // |
2653 | gdclos(); |
2654 | } |
2655 | |
2656 | //_____________________________________________________________________________ |
2657 | void TGeant3::Gdshow(Int_t iview) |
2658 | { |
2659 | // |
2660 | // IVIEW View number |
2661 | // |
2662 | // It shows on the screen the contents of a view bank. It |
2663 | // can be called after a view bank has been closed. |
2664 | // |
2665 | gdshow(iview); |
2666 | } |
2667 | |
2668 | //_____________________________________________________________________________ |
2669 | void TGeant3::Gdopt(const char *name,const char *value) |
2670 | { |
2671 | // |
2672 | // NAME Option name |
2673 | // VALUE Option value |
2674 | // |
2675 | // To set/modify the drawing options. |
2676 | // IOPT IVAL Action |
2677 | // |
2678 | // THRZ ON Draw tracks in R vs Z |
2679 | // OFF (D) Draw tracks in X,Y,Z |
2680 | // 180 |
2681 | // 360 |
2682 | // PROJ PARA (D) Parallel projection |
2683 | // PERS Perspective |
2684 | // TRAK LINE (D) Trajectory drawn with lines |
2685 | // POIN " " with markers |
2686 | // HIDE ON Hidden line removal using the CG package |
2687 | // OFF (D) No hidden line removal |
2688 | // SHAD ON Fill area and shading of surfaces. |
2689 | // OFF (D) Normal hidden line removal. |
2690 | // RAYT ON Ray-tracing on. |
2691 | // OFF (D) Ray-tracing off. |
2692 | // EDGE OFF Does not draw contours when shad is on. |
2693 | // ON (D) Normal shading. |
2694 | // MAPP 1,2,3,4 Mapping before ray-tracing. |
2695 | // 0 (D) No mapping. |
2696 | // USER ON User graphics options in the raytracing. |
2697 | // OFF (D) Automatic graphics options. |
2698 | // |
2699 | InitHIGZ(); |
2700 | char vname[5]; |
2701 | Vname(name,vname); |
2702 | char vvalue[5]; |
2703 | Vname(value,vvalue); |
2704 | gdopt(PASSCHARD(vname), PASSCHARD(vvalue) PASSCHARL(vname) |
2705 | PASSCHARL(vvalue)); |
2706 | } |
2707 | |
2708 | //_____________________________________________________________________________ |
2709 | void TGeant3::Gdraw(const char *name,Float_t theta, Float_t phi, Float_t psi, |
2710 | Float_t u0,Float_t v0,Float_t ul,Float_t vl) |
2711 | { |
2712 | // |
2713 | // NAME Volume name |
2714 | // + |
2715 | // THETA Viewing angle theta (for 3D projection) |
2716 | // PHI Viewing angle phi (for 3D projection) |
2717 | // PSI Viewing angle psi (for 2D rotation) |
2718 | // U0 U-coord. (horizontal) of volume origin |
2719 | // V0 V-coord. (vertical) of volume origin |
2720 | // SU Scale factor for U-coord. |
2721 | // SV Scale factor for V-coord. |
2722 | // |
2723 | // This function will draw the volumes, |
2724 | // selected with their graphical attributes, set by the Gsatt |
2725 | // facility. The drawing may be performed with hidden line removal |
2726 | // and with shading effects according to the value of the options HIDE |
2727 | // and SHAD; if the option SHAD is ON, the contour's edges can be |
2728 | // drawn or not. If the option HIDE is ON, the detector can be |
2729 | // exploded (BOMB), clipped with different shapes (CVOL), and some |
2730 | // of its parts can be shifted from their original |
2731 | // position (SHIFT). When HIDE is ON, if |
2732 | // the drawing requires more than the available memory, the program |
2733 | // will evaluate and display the number of missing words |
2734 | // (so that the user can increase the |
2735 | // size of its ZEBRA store). Finally, at the end of each drawing (with HIDE on), |
2736 | // the program will print messages about the memory used and |
2737 | // statistics on the volumes' visibility. |
2738 | // The following commands will produce the drawing of a green |
2739 | // volume, specified by NAME, without using the hidden line removal |
2740 | // technique, using the hidden line removal technique, |
2741 | // with different linewidth and colour (red), with |
2742 | // solid colour, with shading of surfaces, and without edges. |
2743 | // Finally, some examples are given for the ray-tracing. (A possible |
2744 | // string for the NAME of the volume can be found using the command DTREE). |
2745 | // |
2746 | InitHIGZ(); |
2747 | higz->Clear(); |
2748 | char vname[5]; |
2749 | Vname(name,vname); |
2750 | if (fGcvdma->raytra != 1) { |
2751 | gdraw(PASSCHARD(vname), theta,phi,psi,u0,v0,ul,vl PASSCHARL(vname)); |
2752 | } else { |
2753 | gdrayt(PASSCHARD(vname), theta,phi,psi,u0,v0,ul,vl PASSCHARL(vname)); |
2754 | } |
2755 | } |
2756 | |
2757 | //_____________________________________________________________________________ |
2758 | void TGeant3::Gdrawc(const char *name,Int_t axis, Float_t cut,Float_t u0, |
2759 | Float_t v0,Float_t ul,Float_t vl) |
2760 | { |
2761 | // |
2762 | // NAME Volume name |
2763 | // CAXIS Axis value |
2764 | // CUTVAL Cut plane distance from the origin along the axis |
2765 | // + |
2766 | // U0 U-coord. (horizontal) of volume origin |
2767 | // V0 V-coord. (vertical) of volume origin |
2768 | // SU Scale factor for U-coord. |
2769 | // SV Scale factor for V-coord. |
2770 | // |
2771 | // The cut plane is normal to caxis (X,Y,Z), corresponding to iaxis (1,2,3), |
2772 | // and placed at the distance cutval from the origin. |
2773 | // The resulting picture is seen from the the same axis. |
2774 | // When HIDE Mode is ON, it is possible to get the same effect with |
2775 | // the CVOL/BOX function. |
2776 | // |
2777 | InitHIGZ(); |
2778 | higz->Clear(); |
2779 | char vname[5]; |
2780 | Vname(name,vname); |
2781 | gdrawc(PASSCHARD(vname), axis,cut,u0,v0,ul,vl PASSCHARL(vname)); |
2782 | } |
2783 | |
2784 | //_____________________________________________________________________________ |
2785 | void TGeant3::Gdrawx(const char *name,Float_t cutthe, Float_t cutphi, |
2786 | Float_t cutval, Float_t theta, Float_t phi, Float_t u0, |
2787 | Float_t v0,Float_t ul,Float_t vl) |
2788 | { |
2789 | // |
2790 | // NAME Volume name |
2791 | // CUTTHE Theta angle of the line normal to cut plane |
2792 | // CUTPHI Phi angle of the line normal to cut plane |
2793 | // CUTVAL Cut plane distance from the origin along the axis |
2794 | // + |
2795 | // THETA Viewing angle theta (for 3D projection) |
2796 | // PHI Viewing angle phi (for 3D projection) |
2797 | // U0 U-coord. (horizontal) of volume origin |
2798 | // V0 V-coord. (vertical) of volume origin |
2799 | // SU Scale factor for U-coord. |
2800 | // SV Scale factor for V-coord. |
2801 | // |
2802 | // The cut plane is normal to the line given by the cut angles |
2803 | // cutthe and cutphi and placed at the distance cutval from the origin. |
2804 | // The resulting picture is seen from the viewing angles theta,phi. |
2805 | // |
2806 | InitHIGZ(); |
2807 | higz->Clear(); |
2808 | char vname[5]; |
2809 | Vname(name,vname); |
2810 | gdrawx(PASSCHARD(vname), cutthe,cutphi,cutval,theta,phi,u0,v0,ul,vl |
2811 | PASSCHARL(vname)); |
2812 | } |
2813 | |
2814 | //_____________________________________________________________________________ |
2815 | void TGeant3::Gdhead(Int_t isel, const char *name, Float_t chrsiz) |
2816 | { |
2817 | // |
2818 | // Parameters |
2819 | // + |
2820 | // ISEL Option flag D=111110 |
2821 | // NAME Title |
2822 | // CHRSIZ Character size (cm) of title NAME D=0.6 |
2823 | // |
2824 | // ISEL = |
2825 | // 0 to have only the header lines |
2826 | // xxxxx1 to add the text name centered on top of header |
2827 | // xxxx1x to add global detector name (first volume) on left |
2828 | // xxx1xx to add date on right |
2829 | // xx1xxx to select thick characters for text on top of header |
2830 | // x1xxxx to add the text 'EVENT NR x' on top of header |
2831 | // 1xxxxx to add the text 'RUN NR x' on top of header |
2832 | // NOTE that ISEL=x1xxx1 or ISEL=1xxxx1 are illegal choices, |
2833 | // i.e. they generate overwritten text. |
2834 | // |
2835 | gdhead(isel,PASSCHARD(name),chrsiz PASSCHARL(name)); |
2836 | } |
2837 | |
2838 | //_____________________________________________________________________________ |
2839 | void TGeant3::Gdman(Float_t u, Float_t v, const char *type) |
2840 | { |
2841 | // |
2842 | // Draw a 2D-man at position (U0,V0) |
2843 | // Parameters |
2844 | // U U-coord. (horizontal) of the centre of man' R |
2845 | // V V-coord. (vertical) of the centre of man' R |
2846 | // TYPE D='MAN' possible values: 'MAN,WM1,WM2,WM3' |
2847 | // |
2848 | // CALL GDMAN(u,v),CALL GDWMN1(u,v),CALL GDWMN2(u,v),CALL GDWMN2(u,v) |
2849 | // It superimposes the picure of a man or of a woman, chosen among |
2850 | // three different ones, with the same scale factors as the detector |
2851 | // in the current drawing. |
2852 | // |
2853 | TString opt = type; |
2854 | if (opt.Contains("WM1")) { |
2855 | gdwmn1(u,v); |
2856 | } else if (opt.Contains("WM3")) { |
2857 | gdwmn3(u,v); |
2858 | } else if (opt.Contains("WM2")) { |
2859 | gdwmn2(u,v); |
2860 | } else { |
2861 | gdman(u,v); |
2862 | } |
2863 | } |
2864 | |
2865 | //_____________________________________________________________________________ |
2866 | void TGeant3::Gdspec(const char *name) |
2867 | { |
2868 | // |
2869 | // NAME Volume name |
2870 | // |
2871 | // Shows 3 views of the volume (two cut-views and a 3D view), together with |
2872 | // its geometrical specifications. The 3D drawing will |
2873 | // be performed according the current values of the options HIDE and |
2874 | // SHAD and according the current SetClipBox clipping parameters for that |
2875 | // volume. |
2876 | // |
2877 | InitHIGZ(); |
2878 | higz->Clear(); |
2879 | char vname[5]; |
2880 | Vname(name,vname); |
2881 | gdspec(PASSCHARD(vname) PASSCHARL(vname)); |
2882 | } |
2883 | |
2884 | //_____________________________________________________________________________ |
2885 | void TGeant3::DrawOneSpec(const char *name) |
2886 | { |
2887 | // |
2888 | // Function called when one double-clicks on a volume name |
2889 | // in a TPavelabel drawn by Gdtree. |
2890 | // |
2891 | THIGZ *higzSave = higz; |
2892 | higzSave->SetName("higzSave"); |
2893 | THIGZ *higzSpec = (THIGZ*)gROOT->FindObject("higzSpec"); |
2894 | //printf("DrawOneSpec, higz=%x, higzSpec=%x\n",higz,higzSpec); |
2895 | if (higzSpec) higz = higzSpec; |
2896 | else higzSpec = new THIGZ(defSize); |
2897 | higzSpec->SetName("higzSpec"); |
2898 | higzSpec->cd(); |
2899 | higzSpec->Clear(); |
2900 | char vname[5]; |
2901 | Vname(name,vname); |
2902 | gdspec(PASSCHARD(vname) PASSCHARL(vname)); |
2903 | higzSpec->Update(); |
2904 | higzSave->cd(); |
2905 | higzSave->SetName("higz"); |
2906 | higz = higzSave; |
2907 | } |
2908 | |
2909 | //_____________________________________________________________________________ |
2910 | void TGeant3::Gdtree(const char *name,Int_t levmax, Int_t isel) |
2911 | { |
2912 | // |
2913 | // NAME Volume name |
2914 | // LEVMAX Depth level |
2915 | // ISELT Options |
2916 | // |
2917 | // This function draws the logical tree, |
2918 | // Each volume in the tree is represented by a TPaveTree object. |
2919 | // Double-clicking on a TPaveTree draws the specs of the corresponding volume. |
2920 | // Use TPaveTree pop-up menu to select: |
2921 | // - drawing specs |
2922 | // - drawing tree |
2923 | // - drawing tree of parent |
2924 | // |
2925 | InitHIGZ(); |
2926 | higz->Clear(); |
2927 | char vname[5]; |
2928 | Vname(name,vname); |
2929 | gdtree(PASSCHARD(vname), levmax, isel PASSCHARL(vname)); |
2930 | higz->fPname = ""; |
2931 | } |
2932 | |
2933 | //_____________________________________________________________________________ |
2934 | void TGeant3::GdtreeParent(const char *name,Int_t levmax, Int_t isel) |
2935 | { |
2936 | // |
2937 | // NAME Volume name |
2938 | // LEVMAX Depth level |
2939 | // ISELT Options |
2940 | // |
2941 | // This function draws the logical tree of the parent of name. |
2942 | // |
2943 | InitHIGZ(); |
2944 | higz->Clear(); |
2945 | // Scan list of volumes in JVOLUM |
2946 | char vname[5]; |
2947 | Int_t gname, i, jvo, in, nin, jin, num; |
2948 | strncpy((char *) &gname, name, 4); |
2949 | for(i=1; i<=fGcnum->nvolum; i++) { |
2950 | jvo = fZlq[fGclink->jvolum-i]; |
2951 | nin = Int_t(fZq[jvo+3]); |
2952 | if (nin == -1) nin = 1; |
2953 | for (in=1;in<=nin;in++) { |
2954 | jin = fZlq[jvo-in]; |
2955 | num = Int_t(fZq[jin+2]); |
2956 | if(gname == fZiq[fGclink->jvolum+num]) { |
2957 | strncpy(vname,(char*)&fZiq[fGclink->jvolum+i],4); |
2958 | vname[4] = 0; |
2959 | gdtree(PASSCHARD(vname), levmax, isel PASSCHARL(vname)); |
2960 | higz->fPname = ""; |
2961 | return; |
2962 | } |
2963 | } |
2964 | } |
2965 | } |
2966 | |
2967 | //_____________________________________________________________________________ |
2968 | void TGeant3::SetABAN(Int_t par) |
2969 | { |
2970 | // |
2971 | // par = 1 particles will be stopped according to their residual |
2972 | // range if they are not in a sensitive material and are |
2973 | // far enough from the boundary |
2974 | // 0 particles are transported normally |
2975 | // |
2976 | fGcphys->dphys1 = par; |
2977 | } |
2978 | |
2979 | |
2980 | //_____________________________________________________________________________ |
2981 | void TGeant3::SetANNI(Int_t par) |
2982 | { |
2983 | // |
2984 | // To control positron annihilation. |
2985 | // par =0 no annihilation |
2986 | // =1 annihilation. Decays processed. |
2987 | // =2 annihilation. No decay products stored. |
2988 | // |
2989 | fGcphys->ianni = par; |
2990 | } |
2991 | |
2992 | |
2993 | //_____________________________________________________________________________ |
2994 | void TGeant3::SetAUTO(Int_t par) |
2995 | { |
2996 | // |
2997 | // To control automatic calculation of tracking medium parameters: |
2998 | // par =0 no automatic calculation; |
2999 | // =1 automati calculation. |
3000 | // |
3001 | fGctrak->igauto = par; |
3002 | } |
3003 | |
3004 | |
3005 | //_____________________________________________________________________________ |
3006 | void TGeant3::SetBOMB(Float_t boom) |
3007 | { |
3008 | // |
3009 | // BOOM : Exploding factor for volumes position |
3010 | // |
3011 | // To 'explode' the detector. If BOOM is positive (values smaller |
3012 | // than 1. are suggested, but any value is possible) |
3013 | // all the volumes are shifted by a distance |
3014 | // proportional to BOOM along the direction between their centre |
3015 | // and the origin of the MARS; the volumes which are symmetric |
3016 | // with respect to this origin are simply not shown. |
3017 | // BOOM equal to 0 resets the normal mode. |
3018 | // A negative (greater than -1.) value of |
3019 | // BOOM will cause an 'implosion'; for even lower values of BOOM |
3020 | // the volumes' positions will be reflected respect to the origin. |
3021 | // This command can be useful to improve the 3D effect for very |
3022 | // complex detectors. The following commands will make explode the |
3023 | // detector: |
3024 | // |
3025 | InitHIGZ(); |
3026 | setbomb(boom); |
3027 | } |
3028 | |
3029 | //_____________________________________________________________________________ |
3030 | void TGeant3::SetBREM(Int_t par) |
3031 | { |
3032 | // |
3033 | // To control bremstrahlung. |
3034 | // par =0 no bremstrahlung |
3035 | // =1 bremstrahlung. Photon processed. |
3036 | // =2 bremstrahlung. No photon stored. |
3037 | // |
3038 | fGcphys->ibrem = par; |
3039 | } |
3040 | |
3041 | |
3042 | //_____________________________________________________________________________ |
3043 | void TGeant3::SetCKOV(Int_t par) |
3044 | { |
3045 | // |
3046 | // To control Cerenkov production |
3047 | // par =0 no Cerenkov; |
3048 | // =1 Cerenkov; |
3049 | // =2 Cerenkov with primary stopped at each step. |
3050 | // |
3051 | fGctlit->itckov = par; |
3052 | } |
3053 | |
3054 | |
3055 | //_____________________________________________________________________________ |
3056 | void TGeant3::SetClipBox(const char *name,Float_t xmin,Float_t xmax, |
3057 | Float_t ymin,Float_t ymax,Float_t zmin,Float_t zmax) |
3058 | { |
3059 | // |
3060 | // The hidden line removal technique is necessary to visualize properly |
3061 | // very complex detectors. At the same time, it can be useful to visualize |
3062 | // the inner elements of a detector in detail. This function allows |
3063 | // subtractions (via boolean operation) of BOX shape from any part of |
3064 | // the detector, therefore showing its inner contents. |
3065 | // If "*" is given as the name of the |
3066 | // volume to be clipped, all volumes are clipped by the given box. |
3067 | // A volume can be clipped at most twice. |
3068 | // if a volume is explicitely clipped twice, |
3069 | // the "*" will not act on it anymore. Giving "." as the name |
3070 | // of the volume to be clipped will reset the clipping. |
3071 | // Parameters |
3072 | // NAME Name of volume to be clipped |
3073 | // + |
3074 | // XMIN Lower limit of the Shape X coordinate |
3075 | // XMAX Upper limit of the Shape X coordinate |
3076 | // YMIN Lower limit of the Shape Y coordinate |
3077 | // YMAX Upper limit of the Shape Y coordinate |
3078 | // ZMIN Lower limit of the Shape Z coordinate |
3079 | // ZMAX Upper limit of the Shape Z coordinate |
3080 | // |
3081 | // This function performs a boolean subtraction between the volume |
3082 | // NAME and a box placed in the MARS according the values of the given |
3083 | // coordinates. |
3084 | |
3085 | InitHIGZ(); |
3086 | char vname[5]; |
3087 | Vname(name,vname); |
3088 | setclip(PASSCHARD(vname),xmin,xmax,ymin,ymax,zmin,zmax PASSCHARL(vname)); |
3089 | } |
3090 | |
3091 | //_____________________________________________________________________________ |
3092 | void TGeant3::SetCOMP(Int_t par) |
3093 | { |
3094 | // |
3095 | // To control Compton scattering |
3096 | // par =0 no Compton |
3097 | // =1 Compton. Electron processed. |
3098 | // =2 Compton. No electron stored. |
3099 | // |
3100 | // |
3101 | fGcphys->icomp = par; |
3102 | } |
3103 | |
3104 | //_____________________________________________________________________________ |
3105 | void TGeant3::SetCUTS(Float_t cutgam,Float_t cutele,Float_t cutneu, |
3106 | Float_t cuthad,Float_t cutmuo ,Float_t bcute , |
3107 | Float_t bcutm ,Float_t dcute ,Float_t dcutm , |
3108 | Float_t ppcutm, Float_t tofmax) |
3109 | { |
3110 | // |
3111 | // CUTGAM Cut for gammas D=0.001 |
3112 | // CUTELE Cut for electrons D=0.001 |
3113 | // CUTHAD Cut for charged hadrons D=0.01 |
3114 | // CUTNEU Cut for neutral hadrons D=0.01 |
3115 | // CUTMUO Cut for muons D=0.01 |
3116 | // BCUTE Cut for electron brems. D=-1. |
3117 | // BCUTM Cut for muon brems. D=-1. |
3118 | // DCUTE Cut for electron delta-rays D=-1. |
3119 | // DCUTM Cut for muon delta-rays D=-1. |
3120 | // PPCUTM Cut for e+e- pairs by muons D=0.01 |
3121 | // TOFMAX Time of flight cut D=1.E+10 |
3122 | // |
3123 | // If the default values (-1.) for BCUTE ,BCUTM ,DCUTE ,DCUTM |
3124 | // are not modified, they will be set to CUTGAM,CUTGAM,CUTELE,CUTELE |
3125 | // respectively. |
3126 | // If one of the parameters from CUTGAM to PPCUTM included |
3127 | // is modified, cross-sections and energy loss tables must be |
3128 | // recomputed via the function Gphysi. |
3129 | // |
3130 | fGccuts->cutgam = cutgam; |
3131 | fGccuts->cutele = cutele; |
3132 | fGccuts->cutneu = cutneu; |
3133 | fGccuts->cuthad = cuthad; |
3134 | fGccuts->cutmuo = cutmuo; |
3135 | fGccuts->bcute = bcute; |
3136 | fGccuts->bcutm = bcutm; |
3137 | fGccuts->dcute = dcute; |
3138 | fGccuts->dcutm = dcutm; |
3139 | fGccuts->ppcutm = ppcutm; |
3140 | fGccuts->tofmax = tofmax; |
3141 | } |
3142 | |
3143 | //_____________________________________________________________________________ |
3144 | void TGeant3::SetDCAY(Int_t par) |
3145 | { |
3146 | // |
3147 | // To control Decay mechanism. |
3148 | // par =0 no decays. |
3149 | // =1 Decays. secondaries processed. |
3150 | // =2 Decays. No secondaries stored. |
3151 | // |
3152 | fGcphys->idcay = par; |
3153 | } |
3154 | |
3155 | |
3156 | //_____________________________________________________________________________ |
3157 | void TGeant3::SetDEBU(Int_t emin, Int_t emax, Int_t emod) |
3158 | { |
3159 | // |
3160 | // Set the debug flag and frequency |
3161 | // Selected debug output will be printed from |
3162 | // event emin to even emax each emod event |
3163 | // |
3164 | fGcflag->idemin = emin; |
3165 | fGcflag->idemax = emax; |
3166 | fGcflag->itest = emod; |
3167 | } |
3168 | |
3169 | |
3170 | //_____________________________________________________________________________ |
3171 | void TGeant3::SetDRAY(Int_t par) |
3172 | { |
3173 | // |
3174 | // To control delta rays mechanism. |
3175 | // par =0 no delta rays. |
3176 | // =1 Delta rays. secondaries processed. |
3177 | // =2 Delta rays. No secondaries stored. |
3178 | // |
3179 | fGcphys->idray = par; |
3180 | } |
3181 | |
3182 | //_____________________________________________________________________________ |
3183 | void TGeant3::SetHADR(Int_t par) |
3184 | { |
3185 | // |
3186 | // To control hadronic interactions. |
3187 | // par =0 no hadronic interactions. |
3188 | // =1 Hadronic interactions. secondaries processed. |
3189 | // =2 Hadronic interactions. No secondaries stored. |
3190 | // |
3191 | fGcphys->ihadr = par; |
3192 | } |
3193 | |
3194 | //_____________________________________________________________________________ |
3195 | void TGeant3::SetKINE(Int_t kine, Float_t xk1, Float_t xk2, Float_t xk3, |
3196 | Float_t xk4, Float_t xk5, Float_t xk6, Float_t xk7, |
3197 | Float_t xk8, Float_t xk9, Float_t xk10) |
3198 | { |
3199 | // |
3200 | // Set the variables in /GCFLAG/ IKINE, PKINE(10) |
3201 | // Their meaning is user defined |
3202 | // |
3203 | fGckine->ikine = kine; |
3204 | fGckine->pkine[0] = xk1; |
3205 | fGckine->pkine[1] = xk2; |
3206 | fGckine->pkine[2] = xk3; |
3207 | fGckine->pkine[3] = xk4; |
3208 | fGckine->pkine[4] = xk5; |
3209 | fGckine->pkine[5] = xk6; |
3210 | fGckine->pkine[6] = xk7; |
3211 | fGckine->pkine[7] = xk8; |
3212 | fGckine->pkine[8] = xk9; |
3213 | fGckine->pkine[9] = xk10; |
3214 | } |
3215 | |
3216 | //_____________________________________________________________________________ |
3217 | void TGeant3::SetLOSS(Int_t par) |
3218 | { |
3219 | // |
3220 | // To control energy loss. |
3221 | // par =0 no energy loss; |
3222 | // =1 restricted energy loss fluctuations; |
3223 | // =2 complete energy loss fluctuations; |
3224 | // =3 same as 1; |
3225 | // =4 no energy loss fluctuations. |
3226 | // If the value ILOSS is changed, then cross-sections and energy loss |
3227 | // tables must be recomputed via the command 'PHYSI'. |
3228 | // |
3229 | fGcphys->iloss = par; |
3230 | } |
3231 | |
3232 | |
3233 | //_____________________________________________________________________________ |
3234 | void TGeant3::SetMULS(Int_t par) |
3235 | { |
3236 | // |
3237 | // To control multiple scattering. |
3238 | // par =0 no multiple scattering. |
3239 | // =1 Moliere or Coulomb scattering. |
3240 | // =2 Moliere or Coulomb scattering. |
3241 | // =3 Gaussian scattering. |
3242 | // |
3243 | fGcphys->imuls = par; |
3244 | } |
3245 | |
3246 | |
3247 | //_____________________________________________________________________________ |
3248 | void TGeant3::SetMUNU(Int_t par) |
3249 | { |
3250 | // |
3251 | // To control muon nuclear interactions. |
3252 | // par =0 no muon-nuclear interactions. |
3253 | // =1 Nuclear interactions. Secondaries processed. |
3254 | // =2 Nuclear interactions. Secondaries not processed. |
3255 | // |
3256 | fGcphys->imunu = par; |
3257 | } |
3258 | |
3259 | //_____________________________________________________________________________ |
3260 | void TGeant3::SetOPTI(Int_t par) |
3261 | { |
3262 | // |
3263 | // This flag controls the tracking optimisation performed via the |
3264 | // GSORD routine: |
3265 | // 1 no optimisation at all; GSORD calls disabled; |
3266 | // 0 no optimisation; only user calls to GSORD kept; |
3267 | // 1 all non-GSORDered volumes are ordered along the best axis; |
3268 | // 2 all volumes are ordered along the best axis. |
3269 | // |
3270 | fGcopti->ioptim = par; |
3271 | } |
3272 | |
3273 | //_____________________________________________________________________________ |
3274 | void TGeant3::SetPAIR(Int_t par) |
3275 | { |
3276 | // |
3277 | // To control pair production mechanism. |
3278 | // par =0 no pair production. |
3279 | // =1 Pair production. secondaries processed. |
3280 | // =2 Pair production. No secondaries stored. |
3281 | // |
3282 | fGcphys->ipair = par; |
3283 | } |
3284 | |
3285 | |
3286 | //_____________________________________________________________________________ |
3287 | void TGeant3::SetPFIS(Int_t par) |
3288 | { |
3289 | // |
3290 | // To control photo fission mechanism. |
3291 | // par =0 no photo fission. |
3292 | // =1 Photo fission. secondaries processed. |
3293 | // =2 Photo fission. No secondaries stored. |
3294 | // |
3295 | fGcphys->ipfis = par; |
3296 | } |
3297 | |
3298 | //_____________________________________________________________________________ |
3299 | void TGeant3::SetPHOT(Int_t par) |
3300 | { |
3301 | // |
3302 | // To control Photo effect. |
3303 | // par =0 no photo electric effect. |
3304 | // =1 Photo effect. Electron processed. |
3305 | // =2 Photo effect. No electron stored. |
3306 | // |
3307 | fGcphys->iphot = par; |
3308 | } |
3309 | |
3310 | //_____________________________________________________________________________ |
3311 | void TGeant3::SetRAYL(Int_t par) |
3312 | { |
3313 | // |
3314 | // To control Rayleigh scattering. |
3315 | // par =0 no Rayleigh scattering. |
3316 | // =1 Rayleigh. |
3317 | // |
3318 | fGcphys->irayl = par; |
3319 | } |
3320 | |
3321 | //_____________________________________________________________________________ |
3322 | void TGeant3::SetSWIT(Int_t sw, Int_t val) |
3323 | { |
3324 | // |
3325 | // sw Switch number |
3326 | // val New switch value |
3327 | // |
3328 | // Change one element of array ISWIT(10) in /GCFLAG/ |
3329 | // |
3330 | if (sw <= 0 || sw > 10) return; |
3331 | fGcflag->iswit[sw-1] = val; |
3332 | } |
3333 | |
3334 | |
3335 | //_____________________________________________________________________________ |
3336 | void TGeant3::SetTRIG(Int_t nevents) |
3337 | { |
3338 | // |
3339 | // Set number of events to be run |
3340 | // |
3341 | fGcflag->nevent = nevents; |
3342 | } |
3343 | |
7ac3f11b |
3344 | //_____________________________________________________________________________ |
1578254f |
3345 | void TGeant3::SetUserDecay(Int_t pdg) |
7ac3f11b |
3346 | { |
3347 | // |
3348 | // Force the decays of particles to be done with Pythia |
3349 | // and not with the Geant routines. |
3350 | // just kill pointers doing mzdrop |
3351 | // |
1578254f |
3352 | Int_t ipart = IdFromPDG(pdg); |
3353 | if(ipart<0) { |
3354 | printf("Particle %d not in geant\n",pdg); |
3355 | return; |
3356 | } |
7ac3f11b |
3357 | Int_t jpart=fGclink->jpart; |
3358 | Int_t jpa=fZlq[jpart-ipart]; |
3359 | // |
3360 | if(jpart && jpa) { |
3361 | Int_t jpa1=fZlq[jpa-1]; |
3362 | if(jpa1) |
3363 | mzdrop(fGcbank->ixcons,jpa1,PASSCHARD(" ") PASSCHARL(" ")); |
3364 | Int_t jpa2=fZlq[jpa-2]; |
3365 | if(jpa2) |
3366 | mzdrop(fGcbank->ixcons,jpa2,PASSCHARD(" ") PASSCHARL(" ")); |
3367 | } |
3368 | } |
3369 | |
fe4da5cc |
3370 | //______________________________________________________________________________ |
3371 | void TGeant3::Vname(const char *name, char *vname) |
3372 | { |
3373 | // |
3374 | // convert name to upper case. Make vname at least 4 chars |
3375 | // |
3376 | Int_t l = strlen(name); |
3377 | Int_t i; |
3378 | l = l < 4 ? l : 4; |
3379 | for (i=0;i<l;i++) vname[i] = toupper(name[i]); |
3380 | for (i=l;i<4;i++) vname[i] = ' '; |
3381 | vname[4] = 0; |
3382 | } |
3383 | |
6991054d |
3384 | //______________________________________________________________________________ |
3385 | void TGeant3::Ertrgo() |
3386 | { |
3387 | ertrgo(); |
3388 | } |
3389 | |
3390 | //______________________________________________________________________________ |
3391 | void TGeant3::Ertrak(const Float_t *const x1, const Float_t *const p1, |
3392 | const Float_t *x2, const Float_t *p2, |
3393 | Int_t ipa, Option_t *chopt) |
3394 | { |
3395 | ertrak(x1,p1,x2,p2,ipa,PASSCHARD(chopt) PASSCHARL(chopt)); |
3396 | } |
3397 | |
fe4da5cc |
3398 | //_____________________________________________________________________________ |
3399 | void TGeant3::WriteEuclid(const char* filnam, const char* topvol, |
3400 | Int_t number, Int_t nlevel) |
3401 | { |
3402 | // |
3403 | // |
3404 | // ****************************************************************** |
3405 | // * * |
3406 | // * Write out the geometry of the detector in EUCLID file format * |
3407 | // * * |
3408 | // * filnam : will be with the extension .euc * |
3409 | // * topvol : volume name of the starting node * |
3410 | // * number : copy number of topvol (relevant for gsposp) * |
3411 | // * nlevel : number of levels in the tree structure * |
3412 | // * to be written out, starting from topvol * |
3413 | // * * |
3414 | // * Author : M. Maire * |
3415 | // * * |
3416 | // ****************************************************************** |
3417 | // |
3418 | // File filnam.tme is written out with the definitions of tracking |
3419 | // medias and materials. |
3420 | // As to restore original numbers for materials and medias, program |
3421 | // searches in the file euc_medi.dat and comparing main parameters of |
3422 | // the mat. defined inside geant and the one in file recognizes them |
3423 | // and is able to take number from file. If for any material or medium, |
3424 | // this procedure fails, ordering starts from 1. |
3425 | // Arrays IOTMED and IOMATE are used for this procedure |
3426 | // |
3427 | const char shape[][5]={"BOX ","TRD1","TRD2","TRAP","TUBE","TUBS","CONE", |
3428 | "CONS","SPHE","PARA","PGON","PCON","ELTU","HYPE", |
3429 | "GTRA","CTUB"}; |
3430 | Int_t i, end, itm, irm, jrm, k, nmed; |
3431 | Int_t imxtmed=0; |
3432 | Int_t imxmate=0; |
3433 | FILE *lun; |
3434 | char *filext, *filetme; |
3435 | char natmed[21], namate[21]; |
3436 | char natmedc[21], namatec[21]; |
3437 | char key[5], name[5], mother[5], konly[5]; |
3438 | char card[133]; |
3439 | Int_t iadvol, iadtmd, iadrot, nwtot, iret; |
3440 | Int_t mlevel, numbr, natt, numed, nin, ndata; |
3441 | Int_t iname, ivo, ish, jvo, nvstak, ivstak; |
3442 | Int_t jdiv, ivin, in, jin, jvin, irot; |
3443 | Int_t jtm, imat, jma, flag=0, imatc; |
3444 | Float_t az, dens, radl, absl, a, step, x, y, z; |
3445 | Int_t npar, ndvmx, left; |
3446 | Float_t zc, densc, radlc, abslc, c0, tmaxfd; |
3447 | Int_t nparc, numb; |
3448 | Int_t iomate[100], iotmed[100]; |
3449 | Float_t par[50], att[20], ubuf[50]; |
3450 | Float_t *qws; |
3451 | Int_t *iws; |
3452 | Int_t level, ndiv, iaxe; |
3453 | Int_t itmedc, nmatc, isvolc, ifieldc, nwbufc, isvol, nmat, ifield, nwbuf; |
3454 | Float_t fieldmc, tmaxfdc, stemaxc, deemaxc, epsilc, stminc, fieldm; |
3455 | Float_t tmaxf, stemax, deemax, epsil, stmin; |
3456 | const char *f10000="!\n%s\n!\n"; |
3457 | //Open the input file |
3458 | end=strlen(filnam); |
3459 | for(i=0;i<end;i++) if(filnam[i]=='.') { |
3460 | end=i; |
3461 | break; |
3462 | } |
176551d7 |
3463 | filext=new char[end+5]; |
3464 | filetme=new char[end+5]; |
fe4da5cc |
3465 | strncpy(filext,filnam,end); |
3466 | strncpy(filetme,filnam,end); |
3467 | // |
3468 | // *** The output filnam name will be with extension '.euc' |
3469 | strcpy(&filext[end],".euc"); |
3470 | strcpy(&filetme[end],".tme"); |
3471 | lun=fopen(filext,"w"); |
3472 | // |
3473 | // *** Initialisation of the working space |
3474 | iadvol=fGcnum->nvolum; |
3475 | iadtmd=iadvol+fGcnum->nvolum; |
3476 | iadrot=iadtmd+fGcnum->ntmed; |
3477 | if(fGclink->jrotm) { |
3478 | fGcnum->nrotm=fZiq[fGclink->jrotm-2]; |
3479 | } else { |
3480 | fGcnum->nrotm=0; |
3481 | } |
3482 | nwtot=iadrot+fGcnum->nrotm; |
3483 | qws = new float[nwtot+1]; |
3484 | for (i=0;i<nwtot+1;i++) qws[i]=0; |
3485 | iws = (Int_t*) qws; |
3486 | mlevel=nlevel; |
3487 | if(nlevel==0) mlevel=20; |
3488 | // |
3489 | // *** find the top volume and put it in the stak |
3490 | numbr = number>0 ? number : 1; |
3491 | Gfpara(topvol,numbr,1,npar,natt,par,att); |
3492 | if(npar <= 0) { |
3493 | printf(" *** GWEUCL *** top volume : %s number : %3d can not be a valid root\n", |
3494 | topvol, numbr); |
3495 | return; |
3496 | } |
3497 | // |
3498 | // *** authorized shape ? |
3499 | strncpy((char *)&iname, topvol, 4); |
3500 | ivo=0; |
3501 | for(i=1; i<=fGcnum->nvolum; i++) if(fZiq[fGclink->jvolum+i]==iname) { |
3502 | ivo=i; |
3503 | break; |
3504 | } |
3505 | jvo = fZlq[fGclink->jvolum-ivo]; |
3506 | ish = Int_t (fZq[jvo+2]); |
3507 | if(ish > 12) { |
3508 | printf(" *** GWEUCL *** top volume : %s number : %3d can not be a valid root\n", |
3509 | topvol, numbr); |
3510 | } |
3511 | // |
3512 | level = 1; |
3513 | nvstak = 1; |
3514 | iws[nvstak] = ivo; |
3515 | iws[iadvol+ivo] = level; |
3516 | ivstak = 0; |
3517 | // |
3518 | //*** flag all volumes and fill the stak |
3519 | // |
3520 | L10: |
3521 | // |
3522 | // pick the next volume in stak |
3523 | ivstak += 1; |
3524 | ivo = TMath::Abs(iws[ivstak]); |
3525 | jvo = fZlq[fGclink->jvolum - ivo]; |
3526 | // |
3527 | // flag the tracking medium |
3528 | numed = Int_t (fZq[jvo + 4]); |
3529 | iws[iadtmd + numed] = 1; |
3530 | // |
3531 | // get the daughters ... |
3532 | level = iws[iadvol+ivo]; |
3533 | if (level < mlevel) { |
3534 | level += 1; |
3535 | nin = Int_t (fZq[jvo + 3]); |
3536 | // |
3537 | // from division ... |
3538 | if (nin < 0) { |
3539 | jdiv = fZlq[jvo - 1]; |
3540 | ivin = Int_t (fZq[jdiv + 2]); |
3541 | nvstak += 1; |
3542 | iws[nvstak] = -ivin; |
3543 | iws[iadvol+ivin] = level; |
3544 | // |
3545 | // from position ... |
3546 | } else if (nin > 0) { |
3547 | for(in=1; in<=nin; in++) { |
3548 | jin = fZlq[jvo - in]; |
3549 | ivin = Int_t (fZq[jin + 2 ]); |
3550 | jvin = fZlq[fGclink->jvolum - ivin]; |
3551 | ish = Int_t (fZq[jvin + 2]); |
3552 | // authorized shape ? |
3553 | if (ish <= 12) { |
3554 | // not yet flagged ? |
3555 | if (iws[iadvol+ivin]==0) { |
3556 | nvstak += 1; |
3557 | iws[nvstak] = ivin; |
3558 | iws[iadvol+ivin] = level; |
3559 | } |
3560 | // flag the rotation matrix |
3561 | irot = Int_t ( fZq[jin + 4 ]); |
3562 | if (irot > 0) iws[iadrot+irot] = 1; |
3563 | } |
3564 | } |
3565 | } |
3566 | } |
3567 | // |
3568 | // next volume in stak ? |
3569 | if (ivstak < nvstak) goto L10; |
3570 | // |
3571 | // *** restore original material and media numbers |
3572 | // file euc_medi.dat is needed to compare materials and medias |
3573 | // |
3574 | FILE* luncor=fopen("euc_medi.dat","r"); |
3575 | // |
3576 | if(luncor) { |
3577 | for(itm=1; itm<=fGcnum->ntmed; itm++) { |
3578 | if (iws[iadtmd+itm] > 0) { |
3579 | jtm = fZlq[fGclink->jtmed-itm]; |
3580 | strncpy(natmed,(char *)&fZiq[jtm+1],20); |
3581 | imat = Int_t (fZq[jtm+6]); |
3582 | jma = fZlq[fGclink->jmate-imat]; |
3583 | if (jma <= 0) { |
3584 | printf(" *** GWEUCL *** material not defined for tracking medium %5i %s\n",itm,natmed); |
3585 | flag=1; |
3586 | } else { |
3587 | strncpy(namate,(char *)&fZiq[jma+1],20); |
3588 | } |
3589 | //* |
3590 | //** find the material original number |
3591 | rewind(luncor); |
3592 | L23: |
3593 | iret=fscanf(luncor,"%4s,%130s",key,card); |
3594 | if(iret<=0) goto L26; |
3595 | flag=0; |
3596 | if(!strcmp(key,"MATE")) { |
3597 | sscanf(card,"%d %s %f %f %f %f %f %d",&imatc,namatec,&az,&zc,&densc,&radlc,&abslc,&nparc); |
3598 | Gfmate(imat,namate,a,z,dens,radl,absl,par,npar); |
3599 | if(!strcmp(namatec,namate)) { |
3600 | if(az==a && zc==z && densc==dens && radlc==radl |
3601 | && abslc==absl && nparc==nparc) { |
3602 | iomate[imat]=imatc; |
3603 | flag=1; |
3604 | printf("*** GWEUCL *** material : %3d '%s' restored as %3d\n",imat,namate,imatc); |
3605 | } else { |
3606 | printf("*** GWEUCL *** different definitions for material: %s\n",namate); |
3607 | } |
3608 | } |
3609 | } |
3610 | if(strcmp(key,"END") && !flag) goto L23; |
3611 | if (!flag) { |
3612 | printf("*** GWEUCL *** cannot restore original number for material: %s\n",namate); |
3613 | } |
3614 | //* |
3615 | //* |
3616 | //*** restore original tracking medium number |
3617 | rewind(luncor); |
3618 | L24: |
3619 | iret=fscanf(luncor,"%4s,%130s",key,card); |
3620 | if(iret<=0) goto L26; |
3621 | flag=0; |
3622 | if (!strcmp(key,"TMED")) { |
3623 | sscanf(card,"%d %s %d %d %d %f %f %f %f %f %f %d\n", |
3624 | &itmedc,natmedc,&nmatc,&isvolc,&ifieldc,&fieldmc, |
3625 | &tmaxfdc,&stemaxc,&deemaxc,&epsilc,&stminc,&nwbufc); |
3626 | Gftmed(itm,natmed,nmat,isvol,ifield,fieldm,tmaxf,stemax,deemax, |
3627 | epsil,stmin,ubuf,&nwbuf); |
3628 | if(!strcmp(natmedc,natmed)) { |
3629 | if (iomate[nmat]==nmatc && nwbuf==nwbufc) { |
3630 | iotmed[itm]=itmedc; |
3631 | flag=1; |
3632 | printf("*** GWEUCL *** medium : %3d '%20s' restored as %3d\n", |
3633 | itm,natmed,itmedc); |
3634 | } else { |
3635 | printf("*** GWEUCL *** different definitions for tracking medium: %s\n",natmed); |
3636 | } |
3637 | } |
3638 | } |
3639 | if(strcmp(key,"END") && !flag) goto L24; |
3640 | if(!flag) { |
3641 | printf("cannot restore original number for medium : %s\n",natmed); |
3642 | goto L27; |
3643 | } |
3644 | } |
3645 | } |
3646 | goto L29; |
3647 | //* |
3648 | } |
3649 | L26: printf("*** GWEUCL *** cannot read the data file\n"); |
3650 | L27: flag=2; |
3651 | L29: if(luncor) fclose (luncor); |
3652 | // |
3653 | // |
3654 | // *** write down the tracking medium definition |
3655 | // |
3656 | strcpy(card,"! Tracking medium"); |
3657 | fprintf(lun,f10000,card); |
3658 | // |
3659 | for(itm=1;itm<=fGcnum->ntmed;itm++) { |
3660 | if (iws[iadtmd+itm]>0) { |
3661 | jtm = fZlq[fGclink->jtmed-itm]; |
3662 | strncpy(natmed,(char *)&fZiq[jtm+1],20); |
3663 | natmed[20]='\0'; |
3664 | imat = Int_t (fZq[jtm+6]); |
3665 | jma = fZlq[fGclink->jmate-imat]; |
3666 | //* order media from one, if comparing with database failed |
3667 | if (flag==2) { |
3668 | iotmed[itm]=++imxtmed; |
3669 | iomate[imat]=++imxmate; |
3670 | } |
3671 | //* |
3672 | if(jma<=0) { |
3673 | strcpy(namate," "); |
3674 | printf(" *** GWEUCL *** material not defined for tracking medium %5d %s\n", |
3675 | itm,natmed); |
3676 | } else { |
3677 | strncpy(namate,(char *)&fZiq[jma+1],20); |
3678 | namate[20]='\0'; |
3679 | } |
3680 | fprintf(lun,"TMED %3d '%20s' %3d '%20s'\n",iotmed[itm],natmed,iomate[imat],namate); |
3681 | } |
3682 | } |
3683 | //* |
3684 | //* *** write down the rotation matrix |
3685 | //* |
3686 | strcpy(card,"! Reperes"); |
3687 | fprintf(lun,f10000,card); |
3688 | // |
3689 | for(irm=1;irm<=fGcnum->nrotm;irm++) { |
3690 | if (iws[iadrot+irm]>0) { |
3691 | jrm = fZlq[fGclink->jrotm-irm]; |
3692 | fprintf(lun,"ROTM %3d",irm); |
3693 | for(k=11;k<=16;k++) fprintf(lun," %8.3f",fZq[jrm+k]); |
3694 | fprintf(lun,"\n"); |
3695 | } |
3696 | } |
3697 | //* |
3698 | //* *** write down the volume definition |
3699 | //* |
3700 | strcpy(card,"! Volumes"); |
3701 | fprintf(lun,f10000,card); |
3702 | //* |
3703 | for(ivstak=1;ivstak<=nvstak;ivstak++) { |
3704 | ivo = iws[ivstak]; |
3705 | if (ivo>0) { |
3706 | strncpy(name,(char *)&fZiq[fGclink->jvolum+ivo],4); |
3707 | name[4]='\0'; |
3708 | jvo = fZlq[fGclink->jvolum-ivo]; |
3709 | ish = Int_t (fZq[jvo+2]); |
3710 | nmed = Int_t (fZq[jvo+4]); |
3711 | npar = Int_t (fZq[jvo+5]); |
3712 | if (npar>0) { |
3713 | if (ivstak>1) for(i=0;i<npar;i++) par[i]=fZq[jvo+7+i]; |
3714 | Gckpar (ish,npar,par); |
3715 | fprintf(lun,"VOLU '%4s' '%4s' %3d %3d\n",name,shape[ish-1],iotmed[nmed],npar); |
3716 | for(i=0;i<(npar-1)/6+1;i++) { |
3717 | fprintf(lun," "); |
3718 | left=npar-i*6; |
3719 | for(k=0;k<(left<6?left:6);k++) fprintf(lun," %11.5f",par[i*6+k]); |
3720 | fprintf(lun,"\n"); |
3721 | } |
3722 | } else { |
3723 | fprintf(lun,"VOLU '%4s' '%4s' %3d %3d\n",name,shape[ish-1],iotmed[nmed],npar); |
3724 | } |
3725 | } |
3726 | } |
3727 | //* |
3728 | //* *** write down the division of volumes |
3729 | //* |
3730 | fprintf(lun,f10000,"! Divisions"); |
3731 | for(ivstak=1;ivstak<=nvstak;ivstak++) { |
3732 | ivo = TMath::Abs(iws[ivstak]); |
3733 | jvo = fZlq[fGclink->jvolum-ivo]; |
3734 | ish = Int_t (fZq[jvo+2]); |
3735 | nin = Int_t (fZq[jvo+3]); |
3736 | //* this volume is divided ... |
3737 | if (nin<0) { |
3738 | jdiv = fZlq[jvo-1]; |
3739 | iaxe = Int_t ( fZq[jdiv+1]); |
3740 | ivin = Int_t ( fZq[jdiv+2]); |
3741 | ndiv = Int_t ( fZq[jdiv+3]); |
3742 | c0 = fZq[jdiv+4]; |
3743 | step = fZq[jdiv+5]; |
3744 | jvin = fZlq[fGclink->jvolum-ivin]; |
3745 | nmed = Int_t ( fZq[jvin+4]); |
3746 | strncpy(mother,(char *)&fZiq[fGclink->jvolum+ivo ],4); |
3747 | mother[4]='\0'; |
3748 | strncpy(name,(char *)&fZiq[fGclink->jvolum+ivin],4); |
3749 | name[4]='\0'; |
3750 | if ((step<=0.)||(ish>=11)) { |
3751 | //* volume with negative parameter or gsposp or pgon ... |
3752 | fprintf(lun,"DIVN '%4s' '%4s' %3d %3d\n",name,mother,ndiv,iaxe); |
3753 | } else if ((ndiv<=0)||(ish==10)) { |
3754 | //* volume with negative parameter or gsposp or para ... |
3755 | ndvmx = TMath::Abs(ndiv); |
3756 | fprintf(lun,"DIVT '%4s' '%4s' %11.5f %3d %3d %3d\n", |
3757 | name,mother,step,iaxe,iotmed[nmed],ndvmx); |
3758 | } else { |
3759 | //* normal volume : all kind of division are equivalent |
3760 | fprintf(lun,"DVT2 '%4s' '%4s' %11.5f %3d %11.5f %3d %3d\n", |
3761 | name,mother,step,iaxe,c0,iotmed[nmed],ndiv); |
3762 | } |
3763 | } |
3764 | } |
3765 | //* |
3766 | //* *** write down the the positionnement of volumes |
3767 | //* |
3768 | fprintf(lun,f10000,"! Positionnements\n"); |
3769 | // |
3770 | for(ivstak = 1;ivstak<=nvstak;ivstak++) { |
3771 | ivo = TMath::Abs(iws[ivstak]); |
3772 | strncpy(mother,(char*)&fZiq[fGclink->jvolum+ivo ],4); |
3773 | mother[4]='\0'; |
3774 | jvo = fZlq[fGclink->jvolum-ivo]; |
3775 | nin = Int_t( fZq[jvo+3]); |
3776 | //* this volume has daughters ... |
3777 | if (nin>0) { |
3778 | for (in=1;in<=nin;in++) { |
3779 | jin = fZlq[jvo-in]; |
3780 | ivin = Int_t (fZq[jin +2]); |
3781 | numb = Int_t (fZq[jin +3]); |
3782 | irot = Int_t (fZq[jin +4]); |
3783 | x = fZq[jin +5]; |
3784 | y = fZq[jin +6]; |
3785 | z = fZq[jin +7]; |
3786 | strcpy(konly,"ONLY"); |
3787 | if (fZq[jin+8]!=1.) strcpy(konly,"MANY"); |
3788 | strncpy(name,(char*)&fZiq[fGclink->jvolum+ivin],4); |
3789 | name[4]='\0'; |
3790 | jvin = fZlq[fGclink->jvolum-ivin]; |
3791 | ish = Int_t (fZq[jvin+2]); |
3792 | //* gspos or gsposp ? |
3793 | ndata = fZiq[jin-1]; |
3794 | if (ndata==8) { |
3795 | fprintf(lun,"POSI '%4s' %4d '%4s' %11.5f %11.5f %11.5f %3d '%4s'\n", |
3796 | name,numb,mother,x,y,z,irot,konly); |
3797 | } else { |
3798 | npar = Int_t (fZq[jin+9]); |
3799 | for(i=0;i<npar;i++) par[i]=fZq[jin+10+i]; |
3800 | Gckpar (ish,npar,par); |
3801 | fprintf(lun,"POSP '%4s' %4d '%4s' %11.5f %11.5f %11.5f %3d '%4s' %3d\n", |
3802 | name,numb,mother,x,y,z,irot,konly,npar); |
3803 | fprintf(lun," "); |
3804 | for(i=0;i<npar;i++) fprintf(lun," %11.5f",par[i]); |
3805 | fprintf(lun,"\n"); |
3806 | } |
3807 | } |
3808 | } |
3809 | } |
3810 | //* |
3811 | fprintf(lun,"END\n"); |
3812 | fclose(lun); |
3813 | //* |
3814 | //****** write down the materials and medias ***** |
3815 | //* |
3816 | lun=fopen(filetme,"w"); |
3817 | //* |
3818 | for(itm=1;itm<=fGcnum->ntmed;itm++) { |
|