36b81802 |
1 | // Implementation of the interface for THBTprocessor |
2 | // which is a wrapper itself to Fortran |
3 | // program "HBT processor" written by Lanny Ray |
4 | // Author: Piotr Krzysztof Skowronski <Piotr.Skowronski@cern.ch> |
5 | // |
6 | /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
7 | * See cxx source for full Copyright notice */ |
8 | |
9 | /* $Id$ */ |
10 | |
11 | #ifndef ALIGENHBTPROCESSOR_H |
12 | #define ALIGENHBTPROCESSOR_H |
13 | |
36b81802 |
14 | #include "AliGenerator.h" |
88cb7938 |
15 | #include "TPDGCode.h" |
36b81802 |
16 | |
17 | class THBTprocessor; |
18 | class TClonesArray; |
88cb7938 |
19 | class TParticle; |
36b81802 |
20 | |
21 | enum {kHBTPMaxParticleTypes = 50}; |
22 | |
23 | class AliGenHBTprocessor : public AliGenerator |
24 | { |
25 | //Wrapper class for THBTProcessor |
26 | //which is a wrapper itself to Fortran |
27 | //program "HBT processor" written by Lanny Ray |
28 | // |
29 | //Piotr.Skowronski@cern.ch |
30 | |
31 | public: |
32 | AliGenHBTprocessor(); |
33 | AliGenHBTprocessor(const AliGenHBTprocessor& in); |
34 | virtual ~AliGenHBTprocessor(); |
35 | |
36 | virtual void Init(); |
37 | virtual void Generate(); |
38 | virtual void GetParticles(TClonesArray * particles) const; |
39 | Int_t IdFromPDG(Int_t pdg) const; |
40 | Int_t PDGFromId(Int_t id) const; |
41 | |
42 | Int_t GetHbtPStatusCode(Int_t part) const; |
43 | void SetHbtPStatusCode(Int_t hbtstatcode, Int_t part); |
44 | /************* S E T T E R S ******************/ |
45 | |
46 | virtual void SetTrackRejectionFactor(Float_t trf = 1.0); |
47 | |
48 | virtual void SetRefControl(Int_t rc =2); |
49 | virtual void SetPIDs(Int_t pid1 = kPiPlus,Int_t pid2 = kPiMinus); //PDG Codes of particles to be processed, default \\Pi^{+} and \\Pi^{-} |
50 | virtual void SetNPIDtypes(Int_t npidt = 2); //Number ofparticle types to be processed |
51 | virtual void SetDeltap(Float_t deltp = 0.1); //maximum range for random momentum shifts in GeV/c; |
52 | //px,py,pz independent; Default = 0.1 GeV/c. |
53 | virtual void SetMaxIterations(Int_t maxiter = 50);// |
54 | virtual void SetDelChi(Float_t dc = 0.1); |
55 | virtual void SetIRand(Int_t irnd = 76564) ; |
56 | |
57 | virtual void SetLambda(Float_t lam = 0.6); |
58 | virtual void SetR1d(Float_t r = 7.0) ; |
59 | virtual void SetRSide(Float_t rs = 6.0); |
60 | virtual void SetROut(Float_t ro = 7.0) ; |
61 | virtual void SetRLong(Float_t rl = 4.0) ; |
62 | virtual void SetRPerp(Float_t rp = 6.0); |
63 | virtual void SetRParallel(Float_t rprl = 4.0); |
64 | virtual void SetR0(Float_t r0 = 4.0) ; |
65 | virtual void SetQ0(Float_t q0 = 9.0) ; |
66 | virtual void SetSwitch1D(Int_t s1d = 3); |
67 | virtual void SetSwitch3D(Int_t s3d = 0) ; |
68 | virtual void SetSwitchType(Int_t st = 3); |
69 | virtual void SetSwitchCoherence(Int_t sc = 0); |
70 | virtual void SetSwitchCoulomb(Int_t scol = 2); |
71 | virtual void SetSwitchFermiBose(Int_t sfb = 1); |
72 | |
73 | virtual void SetMomentumRange(Float_t pmin=0, Float_t pmax=0); //Dummy method |
74 | virtual void SetPtRange(Float_t ptmin = 0.1, Float_t ptmax = 0.98); |
75 | virtual void SetPxRange(Float_t pxmin = -1.0, Float_t pxmax = 1.0); |
76 | virtual void SetPyRange(Float_t pymin = -1.0, Float_t pymax = 1.0); |
77 | virtual void SetPzRange(Float_t pzmin = -3.6, Float_t pzmax = 3.6); |
78 | |
88cb7938 |
79 | virtual void SetPhiRange(Float_t phimin = -180.0, Float_t phimax = 180.0);//Phi angle |
36b81802 |
80 | virtual void SetEtaRange(Float_t etamin = -1.5, Float_t etamax = 1.5);//Pseudorapidity |
81 | void SetThetaRange(Float_t thetamin = 0, Float_t thetamax = 180); //Azimuthal angle, override AliGenerator method |
82 | //which uses this, core fortran HBTProcessor uses Eta (pseudorapidity) |
83 | //so these methods has to be synchronized |
84 | |
85 | virtual void SetNPtBins(Int_t nptbin = 50); |
86 | virtual void SetNPhiBins(Int_t nphibin = 50); |
87 | virtual void SetNEtaBins(Int_t netabin = 50); |
88 | virtual void SetNPxBins(Int_t npxbin = 20); |
89 | virtual void SetNPyBins(Int_t npybin = 20); |
90 | virtual void SetNPzBins(Int_t npzbin = 70); |
91 | |
92 | |
93 | virtual void SetNBins1DFineMesh(Int_t n = 10); |
94 | virtual void SetBinSize1DFineMesh(Float_t x=0.01); |
95 | |
96 | virtual void SetNBins1DCoarseMesh(Int_t n =2 ); |
97 | virtual void SetBinSize1DCoarseMesh(Float_t x=0.05); |
98 | |
99 | virtual void SetNBins3DFineMesh(Int_t n = 8); |
100 | virtual void SetBinSize3DFineMesh(Float_t x=0.01); |
101 | |
102 | virtual void SetNBins3DCoarseMesh(Int_t n = 2); |
103 | virtual void SetBinSize3DCoarseMesh(Float_t x=0.08); |
104 | |
105 | virtual void SetNBins3DFineProjectMesh(Int_t n =3 ); |
88cb7938 |
106 | |
107 | virtual void SetPrintFull(Int_t flag = 1); |
108 | |
109 | /************* E V E N T M E R G E ******************/ |
110 | |
111 | Int_t GetNumberOfEvents(); |
112 | Int_t GetNumberOfTracks(); |
113 | void SetActiveEventNumber(Int_t n); |
114 | TParticle* GetTrack(Int_t n); |
115 | void SetNEventsToMerge(Int_t nev); |
36b81802 |
116 | /***********************************************************************/ |
117 | /* * * * * * * P R O T E C T E D A R E A * * * * * * * * * * * */ |
118 | /***********************************************************************/ |
119 | protected: |
120 | |
121 | THBTprocessor * fHBTprocessor; //pointer to generator (TGenerator) |
122 | Int_t **fHbtPStatCodes; //! hbtp status codes of particles |
123 | Int_t fNPDGCodes; //! Number of defined particles |
124 | Int_t fPDGCode[kHBTPMaxParticleTypes]; //! PDG codes (for conversion PDG<->Geant) |
125 | void DefineParticles(); //initiates array with PDG codes |
126 | void InitStatusCodes(); //Initiates status codes (allocates memory and sets everything to zero) |
127 | void CleanStatusCodes(); //deletes array with status codes |
128 | /********** P A R A M E T E R S OF THE GENERATOR****************/ |
129 | |
130 | Float_t fTrackRejectionFactor; //variates in range 0.0 <-> 1.0 |
131 | //Describes the factor of particles rejected from the output. |
132 | //Used only in case of low muliplicity particles e.g. lambdas. |
133 | //Processor generates addisional particles and builds the |
134 | //correletions on such a statistics. |
135 | //At the end these particels are left in the event according |
136 | //to this factor: 1==all particles are left |
137 | // 0==all are removed |
138 | Int_t fReferenceControl; //switch wether read reference histograms from file =1 |
139 | // compute from input events =2 - default |
140 | Int_t fPrintFull; // Full print out option - each event |
141 | Int_t fPrintSectorData; // Print sector overflow diagnostics |
142 | Int_t fNPidTypes; // # particle ID types to correlate |
143 | Int_t fPid[2]; // Geant particle ID #s, max of 2 types |
144 | Int_t fNevents ; // # events in input event text file |
145 | Int_t fSwitch1d; // Include 1D correlations |
146 | Int_t fSwitch3d; // Include 3D correlations |
147 | Int_t fSwitchType ; // For like, unlike or both PID pairs |
148 | Int_t fSwitchCoherence; // To include incoh/coher mixed source |
149 | Int_t fSwitchCoulomb; // Coulomb correction selection options |
150 | Int_t fSwitchFermiBose; // For fermions or bosons |
151 | |
152 | // Counters: |
153 | |
154 | Int_t fEventLineCounter; // Input event text file line counter |
155 | Int_t fMaxit; // Max # iterations in track adjustment |
156 | Int_t fIrand; // Random # starting seed (Def=12345) |
157 | // // line counter |
158 | |
159 | // Correlation Model Parameters: |
160 | |
161 | Float_t fLambda; // Chaoticity parameter |
162 | Float_t fR1d; // Spherical source radius (fm) |
163 | Float_t fRside; // 3D Bertsch-Pratt source 'side' R (fm) |
164 | Float_t fRout; // 3D Bertsch-Pratt source 'out' R (fm) |
165 | Float_t fRlong; // 3D Bertsch-Pratt source 'long' R (fm) |
166 | Float_t fRperp; // 3D YKP source transverse radius (fm) |
167 | Float_t fRparallel; // 3D YKP source longitudinal radius(fm) |
168 | Float_t fR0; // 3D YKP source emission time durat(fm) |
169 | Float_t fQ0; // NA35 Coulomb parameter (GeV/c) or |
170 | // // Coul radius for Pratt finite src (fm) |
171 | |
172 | // Search Control Parameters: |
173 | |
174 | |
175 | Float_t fDeltap; // Max limit for x,y,z momt shifts(GeV/c) |
176 | Float_t fDelchi; // Min% change in Chi-Sq to stop iterat. |
177 | |
178 | |
179 | // Particle Masses: |
180 | |
181 | |
182 | /********** M E S H ****************/ |
183 | |
184 | |
185 | Int_t fNPtBins; // # one-body pt bins |
186 | Int_t fNPhiBins; // # one-body phi bins |
187 | Int_t fNEtaBins; // # one-body eta bins |
188 | |
189 | Int_t fN1dFine; // # bins for 1D, Fine Mesh |
190 | Int_t fN1dCoarse; // # bins for 1D, Coarse Mesh |
191 | Int_t fN1dTotal; // Total # bins for 1D |
192 | Int_t fN3dFine ; // # bins for 3D, Fine Mesh |
193 | Int_t fN3dCoarse; // # bins for 3D, Coarse Mesh |
194 | Int_t fN3dTotal; // Total # bins for 3D |
195 | Int_t fN3dFineProject; // # 3D fine mesh bins to sum over for |
196 | |
197 | // Momentum Space Sectors for Track Sorting: |
198 | |
199 | Int_t fNPxBins; // # sector bins in px |
200 | Int_t fNPyBins; // # sector bins in py |
201 | Int_t fNPzBins; // # sector bins in pz |
202 | Int_t fNSectors; // Total # sectors in 3D momentum space |
203 | |
204 | |
205 | Float_t fPtBinSize ; // One-body pt bin size in (GeV/c) |
206 | |
207 | |
208 | Float_t fPhiBinSize; // One-body phi bin size in (degrees) |
209 | |
210 | Float_t fEtaBinSize ; // One-body eta bin size |
211 | Float_t fEtaMin; // One-body eta min |
212 | Float_t fEtaMax; // One-body eta max |
213 | // Two-Body Histograms and Correlation Mesh for 1D and 3D distributions: |
214 | // // projections onto single axis. |
215 | |
216 | Float_t fBinsize1dFine; // Bin Size - 1D, Fine Mesh in (GeV/c) |
217 | Float_t fBinsize1dCoarse; // Bin Size - 1D, Coarse Mesh in (GeV/c) |
218 | Float_t fQmid1d; // q (GeV/c) at fine-coarse mesh boundary |
219 | Float_t fQmax1d; // Max q (GeV/c) for 1D distributions |
220 | Float_t fBinsize3dFine; // Bin Size - 3D, Fine Mesh in (GeV/c) |
221 | Float_t fBinsize3dCoarse; // Bin Size - 3D, Coarse Mesh in (GeV/c) |
222 | Float_t fQmid3d; // q (GeV/c) at fine-coarse mesh boundary |
223 | Float_t fQmax3d; // Max q (GeV/c) for 3D distributions |
224 | |
225 | Float_t fPxMin; // Sector range in px in GeV/c |
226 | Float_t fPxMax; //--//-- |
227 | Float_t fDelpx; // Mom. space sector cell size - px(GeV/c) |
228 | |
229 | Float_t fPyMin; // Sector range in py in GeV/c |
230 | Float_t fPyMax; // --//-- |
231 | Float_t fDelpy; // Mom. space sector cell size - py(GeV/c) |
232 | |
233 | Float_t fPzMin; // Sector range in pz in GeV/c min |
234 | Float_t fPzMax; // Sector range in pz in GeV/c max |
235 | Float_t fDelpz; // Mom. space sector cell size - pz(GeV/c) |
236 | |
237 | |
88cb7938 |
238 | Int_t fEventMerge; //number of events that are masked as an one event |
239 | Int_t fActiveStack; |
36b81802 |
240 | /******* P R O T E C T E D M E T H O D S *****/ |
88cb7938 |
241 | void GetTrackEventIndex(Int_t n, Int_t &evno, Int_t &index) const; //returns event(stack) number and |
36b81802 |
242 | private: |
243 | public: |
244 | //conveerts Eta (pseudorapidity) to etha(azimuthal angle). Returns radians |
245 | static Double_t EtaToTheta(Double_t arg){return 2.*TMath::ATan(TMath::Exp(-arg));} |
246 | //converts etha(azimuthal angle) to Eta (pseudorapidity). Argument in radians |
247 | static Double_t ThetaToEta(Double_t arg); |
248 | //converts Degrees To Radians |
249 | static Double_t DegreesToRadians(Double_t arg){return arg*TMath::Pi()/180.;} |
250 | //converts Radians To Degrees |
251 | static Double_t RadiansToDegrees(Double_t arg){return arg*180./TMath::Pi();} |
88cb7938 |
252 | static Int_t fgDebug; |
36b81802 |
253 | ClassDef(AliGenHBTprocessor,1) // Interface class for AliMevsim |
254 | |
255 | }; |
256 | #include <Riostream.h> |
257 | #endif |