]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFGeometry.cxx
Using enum to initaialize static ints in the header file, the initialization of stati...
[u/mrichter/AliRoot.git] / TOF / AliTOFGeometry.cxx
CommitLineData
0f4a7374 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
58eb5b61 18Revision 1.1 2003/12/29 15:18:03 decaro
19TOF geometry updating (addition of AliTOFGeometry)
20
0f4a7374 21Revision 0.01 2003/12/04 S.Arcelli
22Revision 0.02 2003/12/10 S.Arcelli:
23 Implement Global methods GetPos & GetDetID
24Revision 0.03 2003/12/14 S.Arcelli
25 Set Phi range [-180,180]->[0,360]
26*/
27
28#include <stdlib.h>
29#include <Riostream.h>
30///////////////////////////////////////////////////////////////////////////////
31// //
32// TOF Geometry class //
33// //
34///////////////////////////////////////////////////////////////////////////////
35
36#include "AliConst.h"
37#include "AliTOFGeometry.h"
38
39ClassImp(AliTOFGeometry)
40
58eb5b61 41static const Int_t fgkTimeDiff = 25000;// Min signal separation (ps)
42
43static const Float_t fgkRmin = 370.; // Inner radius of the TOF (cm)
44static const Float_t fgkRmax = 399; // Outer radius of the TOF (cm)
45static const Float_t fgkZlenA = 106.0;// length (cm) of the A module
46static const Float_t fgkZlenB = 141.0;// length (cm) of the B module
47static const Float_t fgkZlenC = 177.5;// length (cm) of the C module
48static const Float_t fgkXPad = 2.5; // Pad size in the x direction (cm)
49static const Float_t fgkZPad = 3.5; // Pad size in the z direction (cm)
50static const Float_t fgkMaxhZtof = 371.5;// Max half z-size of TOF (cm)
51
52
53static const Float_t fgkSigmaForTail1= 2.;//Sig1 for simulation of TDC tails
54static const Float_t fgkSigmaForTail2= 0.5;//Sig2 for simulation of TDC tails
55static const Float_t fgkSpeedOfLight = 0.299792458;// c (10^9 m/s)
56static const Float_t fgkPionMass = 0.13957;// pion mass (Gev/c^2)
57static const Float_t fgkKaonMass = 0.49368;// kaon mass (Gev/c^2)
58static const Float_t fgkProtonMass = 0.93827;// proton mass (Gev/c^2)
59static const Float_t fgkElectronMass = 0.00051;// electron mass (Gev/c^2)
60static const Float_t fgkMuonMass = 0.10566;// muon mass (Gev/c^2)
61
62
63static const Float_t fgkDprecMin = 0.0000075;//num.prec.tolerance on Thmin
64static const Float_t fgkDprecMax = 0.0000100;//num.prec.tolerance on Thma
65static const Float_t fgkDprecCen = 0.0000005;//num.prec.tolerance on <Theta>
66
0f4a7374 67//_____________________________________________________________________________
68AliTOFGeometry::AliTOFGeometry()
69{
70 //
71 // AliTOFGeometry default constructor
72 //
73 Init();
74
75}
76
77//_____________________________________________________________________________
78AliTOFGeometry::~AliTOFGeometry()
79{
80 //
81 // AliTOFGeometry destructor
82 //
83
84}
85//_____________________________________________________________________________
86void AliTOFGeometry::Init()
87{
88 //
89 // Initialize strip Tilt Angles and Heights
90 //
91 // Strips Tilt Angles
92
93 const Float_t angles[fgkNPlates][fgkMaxNstrip] ={
94
95 {44.494, 43.725, 42.946, 42.156, 41.357, 40.548, 39.729, 38.899,
96 38.060, 37.211, 36.353, 35.484, 34.606, 33.719, 32.822, 31.916,
97 31.001, 30.077, 29.144, 28.202 },
98
99 {26.884, 25.922, 24.952, 23.975, 22.989, 22.320, 21.016, 20.309,
100 19.015, 18.270, 16.989, 16.205, 14.941, 14.117, 12.871, 12.008,
101 10.784, 9.8807, 8.681, 0.0 },
102
103 { 7.5835, 6.4124, 5.4058, 4.2809, 3.2448, 2.1424, 1.078, -0., -1.078,
104 -2.1424, -3.2448, -4.2809, -5.4058, -6.4124, -7.5835, 0.0, 0.0, 0.0,
105 0.0, 0.0 },
106
107 {-8.681, -9.8807, -10.784, -12.008, -12.871, -14.117, -14.941, -16.205,
108 -16.989, -18.27, -19.015, -20.309, -21.016, -22.32, -22.989,
109 -23.975, -24.952, -25.922, -26.884, 0. },
110
111 {-28.202, -29.144, -30.077, -31.001, -31.916, -32.822, -33.719, -34.606,
112 -35.484, -36.353, -37.211, -38.06, -38.899, -39.729, -40.548,
113 -41.357, -42.156, -42.946, -43.725, -44.494 }};
114
115
116 //Strips Heights
117
118 const Float_t heights[fgkNPlates][fgkMaxNstrip]= {
119
120 {-5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5,
121 -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5 },
122
123 {-6.3, -7.1, -7.9, -8.7, -9.5, -3, -9.5, -3, -9.5, -3,
124 -9.5, -3.0, -9.5, -3.0, -9.5, -3, -9.5, -3, -9 , 0.},
125
126 { -3, -9, -4.5, -9, -4.5, -9, -4.5, -9, -4.5, -9,
127 -4.5, -9, -4.5, -9, -3, 0.0, 0.0, 0.0, 0.0, 0.0 },
128
129 { -9, -3, -9.5, -3, -9.5, -3, -9.5, -3, -9.5, -3, -9.5,
130 -3, -9.5, -3, -9.5, -8.7, -7.9, -7.1, -6.3, 0. },
131
132 {-5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5,
133 -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5 }};
134
135
136 // Deposit in fAngles, fHeights
137
138 for (Int_t iplate = 0; iplate < fgkNPlates; iplate++) {
139 for (Int_t istrip = 0; istrip < fgkMaxNstrip; istrip++) {
140 fAngles[iplate][istrip] = angles[iplate][istrip];
141 fHeights[iplate][istrip] = heights[iplate][istrip];
142 }
143 }
144
145 fPhiSec = 360./fgkNSectors;
146}
147
148//_____________________________________________________________________________
149void AliTOFGeometry::GetPos(Int_t *det, Float_t *pos)
150{
151//
152// Returns space point coor (x,y,z) (cm) for Detector
153// Indices (iSect,iPlate,iStrip,iPadX,iPadZ)
154//
155
156 pos[0]=GetX(det);
157 pos[1]=GetY(det);
158 pos[2]=GetZ(det);
159
160}
161//_____________________________________________________________________________
162void AliTOFGeometry::GetDetID( Float_t *pos, Int_t *det)
163{
164 //
165 // Returns Detector Indices (iSect,iPlate,iStrip,iPadX,iPadZ)
166 // space point coor (x,y,z) (cm)
167
168
169 det[0]=GetSector(pos);
170 det[1]=GetPlate(pos);
171 det[2]=GetStrip(pos);
172 det[3]=GetPadZ(pos);
173 det[4]=GetPadX(pos);
174
175}
176//_____________________________________________________________________________
177Float_t AliTOFGeometry::GetX(Int_t *det)
178{
179 //
180 // Returns X coordinate (cm)
181 //
182
183 Int_t isector = det[0];
184 Int_t iplate = det[1];
185 Int_t istrip = det[2];
186 Int_t ipadz = det[3];
187 Int_t ipadx = det[4];
188
189 // Find out distance d on the plane wrt median phi:
190 Float_t d = (ipadx+0.5)*fgkXPad-(fgkNpadX*fgkXPad)*0.5;
191
192 // The radius r in xy plane:
193 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
194 (ipadz-0.5)*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
195
196 // local azimuthal angle in the sector philoc
197 Float_t philoc = TMath:: ATan(d/r);
198
199 // azimuthal angle in the global frame phi
200 Float_t phi = philoc*kRaddeg+(isector+0.5 )*fPhiSec;
201
202 Float_t xCoor = r/TMath::Cos(philoc)*TMath::Cos(phi/kRaddeg);
203 return xCoor;
204
205}
206//_____________________________________________________________________________
207Float_t AliTOFGeometry::GetY(Int_t *det)
208{
209 //
210 // Returns Y coordinate (cm)
211 //
212
213 Int_t isector = det[0];
214 Int_t iplate = det[1];
215 Int_t istrip = det[2];
216 Int_t ipadz = det[3];
217 Int_t ipadx = det[4];
218
219 // Find out distance d on the plane wrt median phi:
220 Float_t d = (ipadx+0.5)*fgkXPad-(fgkNpadX*fgkXPad)*0.5;
221
222 // The radius r in xy plane:
223 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
224 (ipadz-0.5)*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
225
226 // local azimuthal angle in the sector philoc
227 Float_t philoc = TMath:: ATan(d/r);
228
229 // azimuthal angle in the global frame phi
230 Float_t phi = philoc*kRaddeg+(isector+0.5 )*fPhiSec;
231
232 Float_t yCoor = r/TMath::Cos(philoc)*TMath::Sin(phi/kRaddeg);
233 return yCoor;
234
235}
236
237//_____________________________________________________________________________
238Float_t AliTOFGeometry::GetZ(Int_t *det)
239{
240 //
241 // Returns Z coordinate (cm)
242 //
243
244 Int_t iplate = det[1];
245 Int_t istrip = det[2];
246 Int_t ipadz = det[3];
247
248
249 // The radius r in xy plane:
250 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip];
251
252 Float_t zCoor = r*TMath::Tan(0.5*TMath::Pi()-GetStripTheta(iplate, istrip))-
253 (ipadz-0.5)*fgkZPad*TMath::Cos(fAngles[iplate][istrip]/kRaddeg);
254 return zCoor;
255
256}
257//_____________________________________________________________________________
258Int_t AliTOFGeometry::GetSector(Float_t *pos)
259{
260 //
261 // Returns the Sector index
262 //
263
264 Int_t iSect = -1;
265
266 Float_t x = pos[0];
267 Float_t y = pos[1];
268
269 Float_t phi = TMath::ATan2(y,x);
270 if(phi<0.) phi=2.*TMath::Pi()+phi;
271 iSect = (Int_t) (phi*kRaddeg/fPhiSec);
272
273 return iSect;
274
275}
276//_____________________________________________________________________________
277Int_t AliTOFGeometry::GetPadX(Float_t *pos)
278{
279 //
280 // Returns the Pad index along X
281 //
282
283 Int_t iPadX = -1;
284
285 Float_t x = pos[0];
286 Float_t y = pos[1];
287 Float_t z = pos[2];
288
289 Int_t isector = GetSector(pos);
290 if(isector == -1){
291 cout << "Detector Index could not be determined" << endl;
292 return iPadX;}
293 Int_t iplate = GetPlate(pos);
294 if(iplate == -1){
295 cout << "Detector Index could not be determined" << endl;
296 return iPadX;}
297 Int_t istrip = GetStrip(pos);
298 if(istrip == -1){
299 cout << "Detector Index could not be determined" << endl;
300 return iPadX;}
301
302
303 Float_t rho=TMath::Sqrt(x*x+y*y);
304 Float_t phi = TMath::ATan2(y,x);
305 if(phi<0.) phi=2.*TMath::Pi()+phi;
306
307 // Get the local angle in the sector philoc
308 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
309 philoc*=TMath::Pi()/180.;
310 // theta projected on the median of the sector
311 Float_t theta = TMath::ATan2(rho*TMath::Cos(philoc),z);
312 // The radius r in xy plane:
313 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
314 (theta-GetStripTheta(iplate, istrip))/
315 (GetMaxStripTheta(iplate, istrip)-GetMinStripTheta(iplate, istrip))
316 * 2.*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
317
318 // Find out distance projected onto the strip plane
319 Float_t d = (r*TMath::Tan(philoc)+(fgkNpadX*fgkXPad)*0.5);
320
321 iPadX = (Int_t) ( d/fgkXPad);
322 return iPadX;
323
324}
325//_____________________________________________________________________________
326Int_t AliTOFGeometry::GetPlate(Float_t *pos)
327{
328 //
329 // Returns the Plate index
330 //
331 Int_t iPlate=-1;
332
333 Int_t isector = GetSector(pos);
334 if(isector == -1){
335 cout << "Detector Index could not be determined" << endl;
336 return iPlate;}
337
338 Float_t x = pos[0];
339 Float_t y = pos[1];
340 Float_t z = pos[2];
341
342 Float_t rho=TMath::Sqrt(x*x+y*y);
343 Float_t phi=TMath::ATan2(y,x);
344 if(phi<0) phi=2.*TMath::Pi()+phi;
345 // Get the local angle in the sector philoc
346 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
347 philoc*=TMath::Pi()/180.;
348 // theta projected on the median of the sector
349 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
350
351 for (Int_t i=0; i<fgkNPlates; i++){
352 if ( GetMaxPlateTheta(i) >= theta &&
353 GetMinPlateTheta(i) <= theta)iPlate=i;
354 }
355
356 return iPlate;
357
358}
359//_____________________________________________________________________________
360Int_t AliTOFGeometry::GetStrip(Float_t *pos)
361{
362 //
363 // Returns the Strip index
364 //
365
366 Int_t iStrip=-1;
367
368
369 Int_t isector = GetSector(pos);
370 if(isector == -1){
371 cout << "Detector Index could not be determined" << endl;
372 return iStrip;}
373 Int_t iplate = GetPlate(pos);
374 if(iplate == -1){
375 cout << "Detector Index could not be determined" << endl;
376 return iStrip;}
377
378
379 Float_t x = pos[0];
380 Float_t y = pos[1];
381 Float_t z = pos[2];
382
383 Int_t nstrips=0;
384 if(iplate==0 || iplate == 4)nstrips=fgkNStripC;
385 if(iplate==1 || iplate == 3)nstrips=fgkNStripB;
386 if(iplate==2) nstrips=fgkNStripA;
387
388 Float_t rho=TMath::Sqrt(x*x+y*y);
389 Float_t phi=TMath::ATan2(y,x);
390 if(phi<0) phi=2.*TMath::Pi()+phi;
391 // Get the local angle in the sector philoc
392 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
393 philoc*=TMath::Pi()/180.;
394 // theta projected on the median of the sector
395 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
396
397 for (Int_t istrip=0; istrip<nstrips; istrip++){
398
399 if(
400 GetMaxStripTheta(iplate,istrip) >= theta
401 &&
402 GetMinStripTheta(iplate,istrip) <= theta ) iStrip = istrip;
403
404 }
405
406 return iStrip;
407}
408//_____________________________________________________________________________
409Int_t AliTOFGeometry::GetPadZ(Float_t *pos)
410{
411 //
412 // Returns the Pad index along Z
413 //
414 Int_t iPadZ = -1;
415
416 Int_t isector = GetSector(pos);
417 if(isector == -1){
418 cout << "Detector Index could not be determined" << endl;
419 return iPadZ;}
420 Int_t iplate = GetPlate(pos);
421 if(iplate == -1){
422 cout << "Detector Index could not be determined" << endl;
423 return iPadZ;}
424 Int_t istrip = GetStrip(pos);
425 if(istrip == -1){
426 cout << "Detector Index could not be determined" << endl;
427 return iPadZ;}
428
429
430 Float_t x = pos[0];
431 Float_t y = pos[1];
432 Float_t z = pos[2];
433
434 Float_t rho=TMath::Sqrt(x*x+y*y);
435 Float_t phi=TMath::ATan2(y,x);
436 if(phi<0) phi=2.*TMath::Pi()+phi;
437 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
438 philoc*=TMath::Pi()/180.;
439 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
440
441 if (theta >= GetStripTheta(iplate, istrip))iPadZ=1;
442 else iPadZ=0;
443
444 return iPadZ;
445}
446//_____________________________________________________________________________
447Float_t AliTOFGeometry::GetMinPlateTheta(Int_t iPlate)
448{
449 //
450 // Returns the minimum theta angle of a given plate iPlate (rad)
451 //
452
453
454 Int_t index=0;
455
456 Float_t delta =0.;
457 if(iPlate==0)delta = -1. ;
458 if(iPlate==1)delta = -0.5;
459 if(iPlate==3)delta = +0.5;
460 if(iPlate==4)delta = +1. ;
461
462 Float_t z=(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][index]/kRaddeg)+delta;
463 Float_t r=(fgkRmin+fgkRmax)/2.+fHeights[iPlate][index];
464 z =z+fgkZPad*TMath::Cos(fAngles[iPlate][index]/kRaddeg);
465 r =r-fgkZPad*TMath::Sin(fAngles[iPlate][index]/kRaddeg);
466
467 Float_t thmin = 0.5*TMath::Pi()-TMath::ATan(z/r)-fgkDprecMin;
468 return thmin;
469
470}
471//_____________________________________________________________________________
472Float_t AliTOFGeometry::GetMaxPlateTheta(Int_t iPlate)
473{
474 //
475 // Returns the maximum theta angle of a given plate iPlate (rad)
476
477 Int_t index=0;
478 if(iPlate==0 ||iPlate == 4)index=fgkNStripC-1;
479 if(iPlate==1 ||iPlate == 3)index=fgkNStripB-1;
480 if(iPlate==2) index=fgkNStripA-1;
481
482 Float_t delta =0.;
483 if(iPlate==0)delta = -1. ;
484 if(iPlate==1)delta = -0.5;
485 if(iPlate==3)delta = +0.5;
486 if(iPlate==4)delta = +1. ;
487
488 Float_t z=(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][index]/kRaddeg)+delta;
489 Float_t r=(fgkRmin+fgkRmax)/2.+fHeights[iPlate][index];
490 z =z-fgkZPad*TMath::Cos(fAngles[iPlate][index]/kRaddeg);
491 r= r+fgkZPad*TMath::Sin(fAngles[iPlate][index]/kRaddeg);
492
493 Float_t thmax = 0.5*TMath::Pi()-TMath::ATan(z/r)+fgkDprecMax;
494 return thmax;
495
496}
497//_____________________________________________________________________________
498Float_t AliTOFGeometry::GetMaxStripTheta(Int_t iPlate, Int_t iStrip)
499{
500 //
501 // Returns the maximum theta angle of a given strip iStrip (rad)
502 //
503
504
505 Float_t delta =0.;
506 if(iPlate==0)delta = -1. ;
507 if(iPlate==1)delta = -0.5;
508 if(iPlate==3)delta = +0.5;
509 if(iPlate==4)delta = +1. ;
510
511 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
512 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
513 z = z-fgkZPad*TMath::Cos(fAngles[iPlate][iStrip]/kRaddeg);
514 r = r+fgkZPad*TMath::Sin(fAngles[iPlate][iStrip]/kRaddeg);
515 Float_t thmax =0.5*TMath::Pi()-TMath::ATan(z/r)+fgkDprecMax;
516 return thmax;
517
518}
519
520//_____________________________________________________________________________
521Float_t AliTOFGeometry::GetMinStripTheta(Int_t iPlate, Int_t iStrip)
522{
523 //
524 // Returns the minimum theta angle of a given Strip iStrip (rad)
525 //
526
527
528 Float_t delta =0.;
529 if(iPlate==0)delta = -1. ;
530 if(iPlate==1)delta = -0.5;
531 if(iPlate==3)delta = +0.5;
532 if(iPlate==4)delta = +1. ;
533
534
535 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
536 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
537 z =z+fgkZPad*TMath::Cos(fAngles[iPlate][iStrip]/kRaddeg);
538 r =r-fgkZPad*TMath::Sin(fAngles[iPlate][iStrip]/kRaddeg);
539 Float_t thmin =0.5*TMath::Pi()-TMath::ATan(z/r)-fgkDprecMin;
540
541 return thmin;
542
543}
544
545
546//_____________________________________________________________________________
547Float_t AliTOFGeometry::GetStripTheta(Int_t iPlate, Int_t iStrip)
548{
549 //
550 // returns the median theta angle of a given strip iStrip (rad)
551 //
552
553
554 Float_t delta =0.;
555 if(iPlate==0)delta = -1. ;
556 if(iPlate==1)delta = -0.5;
557 if(iPlate==3)delta = +0.5;
558 if(iPlate==4)delta = +1. ;
559
560 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
561 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
562 Float_t theta =0.5*TMath::Pi()-TMath::ATan(z/r);
563 if(iPlate != 2){
564 if(theta > 0.5*TMath::Pi() )theta+=fgkDprecCen;
565 if(theta < 0.5*TMath::Pi() )theta-=fgkDprecCen;
566 }
567 return theta;
568}
569
570
571