AliITS.h
[u/mrichter/AliRoot.git] / TOF / AliTOFSDigitizer.cxx
CommitLineData
517b7f8f 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16//_________________________________________________________________________
17// This is a TTask that constructs SDigits out of Hits
ea7a588a 18// A Summable Digits is the "sum" of all hits in a pad
19// Detector response has been simulated via the method
20// SimulateDetectorResponse
517b7f8f 21//
ea7a588a 22//-- Authors: F. Pierella, A. De Caro
23// Use case: see AliTOFhits2sdigits.C macro in the CVS
517b7f8f 24//////////////////////////////////////////////////////////////////////////////
25
ea7a588a 26#include "TBenchmark.h"
517b7f8f 27#include "TTask.h"
28#include "TTree.h"
29#include "TSystem.h"
ea7a588a 30#include "TParticle.h"
31#include "TH1.h"
bfec09a6 32#include "TFile.h"
33#include "TROOT.h"
34#include "TFolder.h"
35#include <TF1.h>
36#include <stdlib.h>
37#include <iostream.h>
38#include <fstream.h>
517b7f8f 39
5919c40c 40#include "AliTOFHitMap.h"
41#include "AliTOFSDigit.h"
f73548c4 42#include "AliTOFConstants.h"
517b7f8f 43#include "AliTOFhit.h"
44#include "AliTOF.h"
45#include "AliTOFv1.h"
46#include "AliTOFv2.h"
47#include "AliTOFv3.h"
48#include "AliTOFv4.h"
49#include "AliTOFSDigitizer.h"
50#include "AliRun.h"
51#include "AliDetector.h"
52#include "AliMC.h"
53
517b7f8f 54
55ClassImp(AliTOFSDigitizer)
56
57//____________________________________________________________________________
58 AliTOFSDigitizer::AliTOFSDigitizer():TTask("AliTOFSDigitizer","")
59{
60 // ctor
ea7a588a 61 fEvent1=0;
62 fEvent2=0;
f73548c4 63 ftail = 0;
517b7f8f 64}
65
66//____________________________________________________________________________
bfec09a6 67 AliTOFSDigitizer::AliTOFSDigitizer(char* HeaderFile, Int_t evNumber1, Int_t nEvents):TTask("AliTOFSDigitizer","")
517b7f8f 68{
ea7a588a 69 fEvent1=evNumber1;
70 fEvent2=fEvent1+nEvents;
f73548c4 71 ftail = 0;
72
ea7a588a 73 fHeadersFile = HeaderFile ; // input filename (with hits)
ea7a588a 74 TFile * file = (TFile*) gROOT->GetFile(fHeadersFile.Data() ) ;
75
76 //File was not opened yet
77 // open file and get alirun object
78 if(file == 0){
79 file = TFile::Open(fHeadersFile.Data(),"update") ;
80 gAlice = (AliRun *) file->Get("gAlice") ;
81 }
82
f73548c4 83 // init parameters for sdigitization
84 InitParameters();
85
517b7f8f 86 // add Task to //root/Tasks folder
87 TTask * roottasks = (TTask*)gROOT->GetRootFolder()->FindObject("Tasks") ;
88 roottasks->Add(this) ;
89}
90
91//____________________________________________________________________________
92 AliTOFSDigitizer::~AliTOFSDigitizer()
93{
94 // dtor
f73548c4 95}
96
97//____________________________________________________________________________
98void AliTOFSDigitizer::InitParameters()
99{
100 // set parameters for detector simulation
101
102 fTimeResolution =0.120;
103 fpadefficiency =0.99 ;
104 fEdgeEffect = 2 ;
105 fEdgeTails = 0 ;
106 fHparameter = 0.4 ;
107 fH2parameter = 0.15;
108 fKparameter = 0.5 ;
109 fK2parameter = 0.35;
110 fEffCenter = fpadefficiency;
111 fEffBoundary = 0.65;
112 fEff2Boundary = 0.90;
113 fEff3Boundary = 0.08;
114 fResCenter = 50. ;
115 fResBoundary = 70. ;
116 fResSlope = 40. ;
117 fTimeWalkCenter = 0. ;
118 fTimeWalkBoundary=0. ;
119 fTimeWalkSlope = 0. ;
120 fTimeDelayFlag = 1 ;
121 fPulseHeightSlope=2.0 ;
122 fTimeDelaySlope =0.060;
123 // was fMinimumCharge = TMath::Exp(fPulseHeightSlope*fKparameter/2.);
124 fMinimumCharge = TMath::Exp(-fPulseHeightSlope*fHparameter);
125 fChargeSmearing=0.0 ;
126 fLogChargeSmearing=0.13;
127 fTimeSmearing =0.022;
128 fAverageTimeFlag=0 ;
ea7a588a 129 fTdcBin = 50.; // 1 TDC bin = 50 ps
130 fAdcBin = 0.25; // 1 ADC bin = 0.25 pC (or 0.03 pC)
131 fAdcMean = 50.; // ADC distribution mpv value for Landau (in bins)
132 // it corresponds to a mean value of ~100 bins
133 fAdcRms = 25.; // ADC distribution rms value (in bins)
134 // it corresponds to distribution rms ~50 bins
f73548c4 135}
136
137//__________________________________________________________________
ea7a588a 138Double_t TimeWithTail(Double_t* x, Double_t* par)
f73548c4 139{
140 // sigma - par[0], alpha - par[1], part - par[2]
141 // at x<part*sigma - gauss
142 // at x>part*sigma - TMath::Exp(-x/alpha)
143 Float_t xx =x[0];
144 Double_t f;
145 if(xx<par[0]*par[2]) {
146 f = TMath::Exp(-xx*xx/(2*par[0]*par[0]));
147 } else {
148 f = TMath::Exp(-(xx-par[0]*par[2])/par[1]-0.5*par[2]*par[2]);
149 }
150 return f;
517b7f8f 151}
152
f73548c4 153
517b7f8f 154//____________________________________________________________________________
ea7a588a 155void AliTOFSDigitizer::Exec(Option_t *verboseOption, Option_t *allEvents) {
517b7f8f 156
ea7a588a 157 if(strstr(verboseOption,"tim") || strstr(verboseOption,"all"))
158 gBenchmark->Start("TOFSDigitizer");
517b7f8f 159
517b7f8f 160 AliTOF *TOF = (AliTOF *) gAlice->GetDetector ("TOF");
161
5919c40c 162 if (!TOF) {
163 Error("AliTOFSDigitizer","TOF not found");
164 return;
165 }
166
ea7a588a 167 if (fEdgeTails) ftail = new TF1("tail",TimeWithTail,-2,2,3);
168
169 Int_t nselectedHits=0;
170 Int_t ntotalsdigits=0;
171 Int_t ntotalupdates=0;
172 Int_t nnoisesdigits=0;
173 Int_t nsignalsdigits=0;
174 Int_t nHitsFromPrim=0;
175 Int_t nHitsFromSec=0;
176 Int_t nlargeTofDiff=0;
f73548c4 177
ea7a588a 178 if (strstr(allEvents,"all")){
179 fEvent1=0;
180 fEvent2= (Int_t) gAlice->TreeE()->GetEntries();
181 }
182
183 for (Int_t ievent = fEvent1; ievent < fEvent2; ievent++) {
184 cout << "------------------- "<< GetName() << " -------------" << endl ;
185 cout << "Sdigitizing event " << ievent << endl;
186
187 Int_t nselectedHitsinEv=0;
188 Int_t ntotalsdigitsinEv=0;
189 Int_t ntotalupdatesinEv=0;
190 Int_t nnoisesdigitsinEv=0;
191 Int_t nsignalsdigitsinEv=0;
517b7f8f 192
5919c40c 193 gAlice->GetEvent(ievent);
194 TTree *TH = gAlice->TreeH ();
195 if (!TH)
196 return;
197 if (gAlice->TreeS () == 0)
198 gAlice->MakeTree ("S");
517b7f8f 199
200
5919c40c 201 //Make branches
202 char branchname[20];
203 sprintf (branchname, "%s", TOF->GetName ());
204 //Make branch for digits
205 TOF->MakeBranch ("S");
517b7f8f 206
5919c40c 207 //Now made SDigits from hits
208
209 Int_t vol[5]; // location for a digit
210 Float_t digit[2]; // TOF digit variables
211 TParticle *particle;
212 AliTOFhit *tofHit;
213 TClonesArray *TOFhits = TOF->Hits();
214
f73548c4 215 // create hit map
5919c40c 216 AliTOFHitMap *hitMap = new AliTOFHitMap(TOF->SDigits());
217
bfec09a6 218 // decrease required CPU time
219 TH->SetBranchStatus("*",0); // switch off all branches
220 TH->SetBranchStatus("TOF*",1); // switch on only TOF
221
5919c40c 222 Int_t ntracks = static_cast<Int_t>(TH->GetEntries());
223 for (Int_t track = 0; track < ntracks; track++)
224 {
225 gAlice->ResetHits();
226 TH->GetEvent(track);
227 particle = gAlice->Particle(track);
228 Int_t nhits = TOFhits->GetEntriesFast();
f73548c4 229 // cleaning all hits of the same track in the same pad volume
230 // it is a rare event, however it happens
231
232 Int_t previousTrack =0;
233 Int_t previousSector=0;
234 Int_t previousPlate =0;
235 Int_t previousStrip =0;
236 Int_t previousPadX =0;
237 Int_t previousPadZ =0;
5919c40c 238
239 for (Int_t hit = 0; hit < nhits; hit++)
240 {
241 tofHit = (AliTOFhit *) TOFhits->UncheckedAt(hit);
f73548c4 242 Int_t tracknum = tofHit->GetTrack();
5919c40c 243 vol[0] = tofHit->GetSector();
244 vol[1] = tofHit->GetPlate();
245 vol[2] = tofHit->GetStrip();
246 vol[3] = tofHit->GetPadx();
247 vol[4] = tofHit->GetPadz();
248
ea7a588a 249 Bool_t dummy=((tracknum==previousTrack) && (vol[0]==previousSector) && (vol[1]==previousPlate) && (vol[2]==previousStrip));
250
251 Bool_t isCloneOfThePrevious=dummy && ((vol[3]==previousPadX) && (vol[4]==previousPadZ));
252
253 // much stronger check to be inserted here
254
f73548c4 255 if(!isCloneOfThePrevious){
256 // update "previous" values
257 // in fact, we are yet in the future, so the present is past
258 previousTrack=tracknum;
259 previousSector=vol[0];
260 previousPlate=vol[1];
261 previousStrip=vol[2];
262 previousPadX=vol[3];
263 previousPadZ=vol[4];
5919c40c 264
ea7a588a 265 nselectedHits++;
266 nselectedHitsinEv++;
267 if (particle->GetFirstMother() < 0){
268 nHitsFromPrim++;
269 } // counts hits due to primary particles
270
271 Float_t Xpad = tofHit->GetDx();
272 Float_t Zpad = tofHit->GetDz();
273 Float_t xStrip=AliTOFConstants::fgkXPad*(vol[3]-0.5-0.5*AliTOFConstants::fgkNpadX)+Xpad;
274 Float_t zStrip=AliTOFConstants::fgkZPad*(vol[4]-0.5-0.5*AliTOFConstants::fgkNpadZ)+Zpad;
275 Float_t geantTime = tofHit->GetTof(); // unit [s]
276 geantTime *= 1.e+09; // conversion from [s] to [ns]
277
278 //cout << "geantTime " << geantTime << " [ns]" << endl;
279 Int_t nActivatedPads = 0, nFiredPads = 0;
280 Bool_t isFired[4] = {kFALSE, kFALSE, kFALSE, kFALSE};
281 Float_t tofAfterSimul[4] = {0., 0., 0., 0.};
282 Float_t qInduced[4] = {0.,0.,0.,0.};
283 Int_t nPlace[4] = {0, 0, 0, 0};
284 Float_t averageTime = 0.;
285 SimulateDetectorResponse(zStrip,xStrip,geantTime,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime);
286 if(nFiredPads) {
287 for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
288 if(isFired[indexOfPad]){ // the pad has fired
289 Float_t timediff=geantTime-tofAfterSimul[indexOfPad];
290
291 if(timediff>=0.2) nlargeTofDiff++;
292
293 digit[0] = (Int_t) ((tofAfterSimul[indexOfPad]*1.e+03)/fTdcBin); // TDC bin number (each bin -> 25. ps)
294
295 Float_t landauFactor = gRandom->Landau(fAdcMean, fAdcRms);
296 digit[1] = (Int_t) (qInduced[indexOfPad] * landauFactor); // ADC bins (each bin -> 0.25 (or 0.03) pC)
297
298 // recalculate the volume only for neighbouring pads
299 if(indexOfPad){
300 (nPlace[indexOfPad]<=AliTOFConstants::fgkNpadX) ? vol[4] = 1 : vol[4] = 2;
301 (nPlace[indexOfPad]<=AliTOFConstants::fgkNpadX) ? vol[3] = nPlace[indexOfPad] : vol[3] = nPlace[indexOfPad] - AliTOFConstants::fgkNpadX;
302 }
303
304 // check if two sdigit are on the same pad; in that case we sum
305 // the two or more sdigits
306 if (hitMap->TestHit(vol) != kEmpty) {
307 AliTOFSDigit *sdig = static_cast<AliTOFSDigit*>(hitMap->GetHit(vol));
308 Int_t tdctime = (Int_t) digit[0];
309 Int_t adccharge = (Int_t) digit[1];
310 sdig->Update(tdctime,adccharge,tracknum);
311 ntotalupdatesinEv++;
312 ntotalupdates++;
313 } else {
314
315 TOF->AddSDigit(tracknum, vol, digit);
316
317 if(indexOfPad){
318 nnoisesdigits++;
319 nnoisesdigitsinEv++;
320 } else {
321 nsignalsdigits++;
322 nsignalsdigitsinEv++;
323 }
324 ntotalsdigitsinEv++;
325 ntotalsdigits++;
326 hitMap->SetHit(vol);
327 } // if (hitMap->TestHit(vol) != kEmpty)
328 } // if(isFired[indexOfPad])
329 } // end loop on nActivatedPads
330 } // if(nFiredPads) i.e. if some pads has fired
f73548c4 331 } // close if(!isCloneOfThePrevious)
5919c40c 332 } // end loop on hits for the current track
333 } // end loop on ntracks
334
335 delete hitMap;
517b7f8f 336
5919c40c 337 gAlice->TreeS()->Reset();
338 gAlice->TreeS()->Fill();
ea7a588a 339 //gAlice->TreeS()->Write(0,TObject::kOverwrite) ;
340 gAlice->TreeS()->AutoSave();
341
342 if(strstr(verboseOption,"all")){
343 cout << "----------------------------------------" << endl;
344 cout << " <AliTOFSDigitizer> " << endl;
345 cout << "After sdigitizing " << nselectedHitsinEv << " hits" << " in event " << ievent << endl;
346 //" (" << nHitsFromPrim << " from primaries and " << nHitsFromSec << " from secondaries) TOF hits, "
347 cout << ntotalsdigitsinEv << " digits have been created " << endl;
348 cout << "(" << nsignalsdigitsinEv << " due to signals and " << nnoisesdigitsinEv << " due to border effect)" << endl;
349 cout << ntotalupdatesinEv << " total updates of the hit map have been performed in current event" << endl;
350 cout << "----------------------------------------" << endl;
351 }
352
353 } //event loop on events
354
355 // free used memory
356 if (ftail){
357 delete ftail;
358 ftail = 0;
359 }
360
361 nHitsFromSec=nselectedHits-nHitsFromPrim;
362 if(strstr(verboseOption,"all")){
363 cout << "----------------------------------------" << endl;
364 cout << "----------------------------------------" << endl;
365 cout << "-----------SDigitization Summary--------" << endl;
366 cout << " <AliTOFSDigitizer> " << endl;
367 cout << "After sdigitizing " << nselectedHits << " hits" << endl;
368 cout << "in " << (fEvent2-fEvent1) << " events" << endl;
369//" (" << nHitsFromPrim << " from primaries and " << nHitsFromSec << " from secondaries) TOF hits, "
370 cout << ntotalsdigits << " sdigits have been created " << endl;
371 cout << "(" << nsignalsdigits << " due to signals and " << nnoisesdigits << " due to border effect)" << endl;
372 cout << ntotalupdates << " total updates of the hit map have been performed" << endl;
373 cout << "in " << nlargeTofDiff << " cases the time of flight difference is greater than 200 ps" << endl;
374 }
375
517b7f8f 376
ea7a588a 377 if(strstr(verboseOption,"tim") || strstr(verboseOption,"all")){
378 gBenchmark->Stop("TOFSDigitizer");
379 cout << "AliTOFSDigitizer:" << endl ;
380 cout << " took " << gBenchmark->GetCpuTime("TOFSDigitizer") << " seconds in order to make sdigits "
381 << gBenchmark->GetCpuTime("TOFSDigitizer")/(fEvent2-fEvent1) << " seconds per event " << endl ;
382 cout << endl ;
383 }
517b7f8f 384
ea7a588a 385 Print("");
517b7f8f 386}
ea7a588a 387
517b7f8f 388//__________________________________________________________________
ea7a588a 389void AliTOFSDigitizer::Print(Option_t* opt)const
517b7f8f 390{
391 cout << "------------------- "<< GetName() << " -------------" << endl ;
bfec09a6 392
517b7f8f 393}
f73548c4 394
395//__________________________________________________________________
396void AliTOFSDigitizer::SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
397{
398 // Description:
399 // Input: z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
400 // geantTime - time generated by Geant, ns
401 // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
402 // nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
403 // qInduced[iPad]- charge induced on pad, arb. units
404 // this array is initialized at zero by the caller
405 // tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
406 // this array is initialized at zero by the caller
407 // averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
408 // The weight is given by the qInduced[iPad]/qCenterPad
409 // this variable is initialized at zero by the caller
410 // nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
411 // this variable is initialized at zero by the caller
412 //
413 // Description of used variables:
414 // eff[iPad] - efficiency of the pad
415 // res[iPad] - resolution of the pad, ns
416 // timeWalk[iPad] - time walk of the pad, ns
417 // timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
418 // PadId[iPad] - Pad Identifier
419 // E | F --> PadId[iPad] = 5 | 6
420 // A | B --> PadId[iPad] = 1 | 2
421 // C | D --> PadId[iPad] = 3 | 4
422 // nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
423 // qCenterPad - charge extimated for each pad, arb. units
424 // weightsSum - sum of weights extimated for each pad fired, arb. units
425
426 const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail
427 Int_t iz = 0, ix = 0;
428 Float_t dX = 0., dZ = 0., x = 0., z = 0.;
429 Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
430 Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
431 Float_t logOfqInd = 0.;
432 Float_t weightsSum = 0.;
433 Int_t nTail[4] = {0,0,0,0};
434 Int_t padId[4] = {0,0,0,0};
435 Float_t eff[4] = {0.,0.,0.,0.};
436 Float_t res[4] = {0.,0.,0.,0.};
437 // Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
438 Float_t qCenterPad = 1.;
439 Float_t timeWalk[4] = {0.,0.,0.,0.};
440 Float_t timeDelay[4] = {0.,0.,0.,0.};
441
442 nActivatedPads = 0;
443 nFiredPads = 0;
444
445 (z0 <= 0) ? iz = 0 : iz = 1;
446 dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
447 z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ); // variable for eff., res. and timeWalk. functions
448 iz++; // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
449 ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
450 dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
451 x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX); // variable for eff., res. and timeWalk. functions;
452 ix++; // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
453
454 ////// Pad A:
455 nActivatedPads++;
456 nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
457 qInduced[nActivatedPads-1] = qCenterPad;
458 padId[nActivatedPads-1] = 1;
459
460 if (fEdgeEffect == 0) {
461 eff[nActivatedPads-1] = fEffCenter;
462 if (gRandom->Rndm() < eff[nActivatedPads-1]) {
463 nFiredPads = 1;
464 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns;
465 isFired[nActivatedPads-1] = kTRUE;
466 tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
467 averageTime = tofTime[nActivatedPads-1];
468 }
469 } else {
470
471 if(z < h) {
472 if(z < h2) {
473 effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
474 } else {
475 effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
476 }
477 resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
478 timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
479 nTail[nActivatedPads-1] = 1;
480 } else {
481 effZ = fEffCenter;
482 resZ = fResCenter;
483 timeWalkZ = fTimeWalkCenter;
484 }
485
486 if(x < h) {
487 if(x < h2) {
488 effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
489 } else {
490 effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
491 }
492 resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
493 timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
494 nTail[nActivatedPads-1] = 1;
495 } else {
496 effX = fEffCenter;
497 resX = fResCenter;
498 timeWalkX = fTimeWalkCenter;
499 }
500
501 (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
502 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
503 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
504
505
506 ////// Pad B:
507 if(z < k2) {
508 effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
509 } else {
510 effZ = fEff3Boundary * (k - z) / (k - k2);
511 }
512 resZ = fResBoundary + fResSlope * z / k;
513 timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
514
515 if(z < k && z > 0) {
516 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
517 nActivatedPads++;
518 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
519 eff[nActivatedPads-1] = effZ;
520 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
521 timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
522 nTail[nActivatedPads-1] = 2;
523 if (fTimeDelayFlag) {
524 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
525 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
526 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
527 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
528 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
529 } else {
530 timeDelay[nActivatedPads-1] = 0.;
531 }
532 padId[nActivatedPads-1] = 2;
533 }
534 }
535
536
537 ////// Pad C, D, E, F:
538 if(x < k2) {
539 effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
540 } else {
541 effX = fEff3Boundary * (k - x) / (k - k2);
542 }
543 resX = fResBoundary + fResSlope*x/k;
544 timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
545
546 if(x < k && x > 0) {
547 // C:
548 if(ix > 1 && dX < 0) {
549 nActivatedPads++;
550 nPlace[nActivatedPads-1] = nPlace[0] - 1;
551 eff[nActivatedPads-1] = effX;
552 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
553 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
554 nTail[nActivatedPads-1] = 2;
555 if (fTimeDelayFlag) {
556 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
557 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
558 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
559 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
560 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
561 } else {
562 timeDelay[nActivatedPads-1] = 0.;
563 }
564 padId[nActivatedPads-1] = 3;
565
566 // D:
567 if(z < k && z > 0) {
568 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
569 nActivatedPads++;
570 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
571 eff[nActivatedPads-1] = effX * effZ;
572 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
573 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
574
575 nTail[nActivatedPads-1] = 2;
576 if (fTimeDelayFlag) {
577 if (TMath::Abs(x) < TMath::Abs(z)) {
578 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
579 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
580 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
581 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
582 } else {
583 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
584 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
585 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
586 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
587 }
588 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
589 } else {
590 timeDelay[nActivatedPads-1] = 0.;
591 }
592 padId[nActivatedPads-1] = 4;
593 }
594 } // end D
595 } // end C
596
597 // E:
598 if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
599 nActivatedPads++;
600 nPlace[nActivatedPads-1] = nPlace[0] + 1;
601 eff[nActivatedPads-1] = effX;
602 res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
603 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
604 nTail[nActivatedPads-1] = 2;
605 if (fTimeDelayFlag) {
606 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
607 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
608 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
609 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
610 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
611 } else {
612 timeDelay[nActivatedPads-1] = 0.;
613 }
614 padId[nActivatedPads-1] = 5;
615
616
617 // F:
618 if(z < k && z > 0) {
619 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
620 nActivatedPads++;
621 nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
622 eff[nActivatedPads - 1] = effX * effZ;
623 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
624 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
625 nTail[nActivatedPads-1] = 2;
626 if (fTimeDelayFlag) {
627 if (TMath::Abs(x) < TMath::Abs(z)) {
628 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
629 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
630 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
631 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
632 } else {
633 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
634 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
635 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
636 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
637 }
638 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
639 } else {
640 timeDelay[nActivatedPads-1] = 0.;
641 }
642 padId[nActivatedPads-1] = 6;
643 }
644 } // end F
645 } // end E
646 } // end if(x < k)
647
648
649 for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
650 if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
651 if(gRandom->Rndm() < eff[iPad]) {
652 isFired[iPad] = kTRUE;
653 nFiredPads++;
654 if(fEdgeTails) {
655 if(nTail[iPad] == 0) {
656 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
657 } else {
658 ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
659 Double_t timeAB = ftail->GetRandom();
660 tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
661 }
662 } else {
663 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
664 }
665 if (fAverageTimeFlag) {
666 averageTime += tofTime[iPad] * qInduced[iPad];
667 weightsSum += qInduced[iPad];
668 } else {
669 averageTime += tofTime[iPad];
670 weightsSum += 1.;
671 }
672 }
673 }
674 if (weightsSum!=0) averageTime /= weightsSum;
675 } // end else (fEdgeEffect != 0)
676}
677
678//__________________________________________________________________
679void AliTOFSDigitizer::PrintParameters()const
680{
681 //
682 // Print parameters used for sdigitization
683 //
684 cout << " ------------------- "<< GetName() << " -------------" << endl ;
685 cout << " Parameters used for TOF SDigitization " << endl ;
686 // Printing the parameters
687
ea7a588a 688 cout << " Number of events: " << (fEvent2-fEvent1) << endl;
689 cout << " from event " << fEvent1 << " to event " << (fEvent2-1) << endl;
f73548c4 690 cout << " Time Resolution (ns) "<< fTimeResolution <<" Pad Efficiency: "<< fpadefficiency << endl;
691 cout << " Edge Effect option: "<< fEdgeEffect<< endl;
692
693 cout << " Boundary Effect Simulation Parameters " << endl;
694 cout << " Hparameter: "<< fHparameter<<" H2parameter:"<< fH2parameter <<" Kparameter:"<< fKparameter<<" K2parameter: "<< fK2parameter << endl;
695 cout << " Efficiency in the central region of the pad: "<< fEffCenter << endl;
696 cout << " Efficiency at the boundary region of the pad: "<< fEffBoundary << endl;
697 cout << " Efficiency value at H2parameter "<< fEff2Boundary << endl;
698 cout << " Efficiency value at K2parameter "<< fEff3Boundary << endl;
699 cout << " Resolution (ps) in the central region of the pad: "<< fResCenter << endl;
700 cout << " Resolution (ps) at the boundary of the pad : "<< fResBoundary << endl;
701 cout << " Slope (ps/K) for neighbouring pad : "<< fResSlope <<endl;
702 cout << " Time walk (ps) in the central region of the pad : "<< fTimeWalkCenter << endl;
703 cout << " Time walk (ps) at the boundary of the pad : "<< fTimeWalkBoundary<< endl;
704 cout << " Slope (ps/K) for neighbouring pad : "<< fTimeWalkSlope<<endl;
705 cout << " Pulse Heigth Simulation Parameters " << endl;
706 cout << " Flag for delay due to the PulseHeightEffect: "<< fTimeDelayFlag <<endl;
707 cout << " Pulse Height Slope : "<< fPulseHeightSlope<<endl;
708 cout << " Time Delay Slope : "<< fTimeDelaySlope<<endl;
709 cout << " Minimum charge amount which could be induced : "<< fMinimumCharge<<endl;
710 cout << " Smearing in charge in (q1/q2) vs x plot : "<< fChargeSmearing<<endl;
711 cout << " Smearing in log of charge ratio : "<< fLogChargeSmearing<<endl;
712 cout << " Smearing in time in time vs log(q1/q2) plot : "<< fTimeSmearing<<endl;
713 cout << " Flag for average time : "<< fAverageTimeFlag<<endl;
714 cout << " Edge tails option : "<< fEdgeTails << endl;
715
716}