New AliTRDcluster constructor
[u/mrichter/AliRoot.git] / TOF / AliTOFSDigitizer.h
CommitLineData
517b7f8f 1#ifndef ALITOFSDigitizer_H
2#define ALITOFSDigitizer_H
0e46b9ae 3
517b7f8f 4/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
5 * See cxx source for full Copyright notice */
6
0e46b9ae 7//__________________________________________//
8// //
9// Task Class for making SDigits in TOF //
10// //
11//-- Authors: F. Pierella, A. De Caro //
12// //
13//__________________________________________//
517b7f8f 14
0e46b9ae 15/* $Id$ */
517b7f8f 16
17#include "TTask.h"
0e46b9ae 18
19class TF1;
20class TString;
21
d61f73d9 22class AliLoader;
0e46b9ae 23class AliRunLoader;
517b7f8f 24
d3c7bfac 25class AliTOFGeometry;
f73548c4 26
517b7f8f 27class AliTOFSDigitizer: public TTask {
28
29public:
30 AliTOFSDigitizer() ; // ctor
d61f73d9 31 //AliTOFSDigitizer(const char* HeaderFile) ; // par ctor
32 AliTOFSDigitizer(const char* HeaderFile, Int_t evNumber1=-1, Int_t nEvents=0) ; // par ctor
517b7f8f 33
7aeeaf38 34 AliTOFSDigitizer(const AliTOFSDigitizer &source); // copy constructor
35 AliTOFSDigitizer& operator=(const AliTOFSDigitizer &source); // ass. op.
36
517b7f8f 37 virtual ~AliTOFSDigitizer() ; // dtor
bfec09a6 38
43f77f2d 39 //static Float_t WidthTdcBin() {return fgkTdcBin;};
40
d61f73d9 41 virtual void Exec(Option_t *verboseOption);
cfa58405 42 void SetSDigitsFile(char * /*file*/ ) {;}
3408aff3 43
f73548c4 44 void InitParameters();
45 virtual void PrintParameters() const ;
d61f73d9 46 virtual void SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime);
ea7a588a 47 virtual void Print(Option_t* opt) const ;
d61f73d9 48 void SetFirstEvent(Int_t event1) {fEvent1 = event1;}
49 void SetSecondEvent(Int_t event2) {fEvent2 = event2;}
ea7a588a 50 Int_t GetFirstEvent() const {return fEvent1;}
51 Int_t GetSecondEvent() const {return fEvent2;}
52 Int_t GetNEvents() const {return (fEvent2-fEvent1);}
55991c8b 53 void SelectSectorAndPlate(Int_t sector, Int_t plate);
517b7f8f 54
f73548c4 55 // setters and getters for detector simulation
56 // it summarizes all it is known about TOF strip
57 void SetPadefficiency(Float_t padefficiency) {fpadefficiency=padefficiency;}
58 void SetEdgeEffect(Int_t edgeEffect) {fEdgeEffect=edgeEffect;}
59 void SetEdgeTails(Int_t edgeTails) {fEdgeTails=edgeTails;}
60 void SetHparameter(Float_t hparameter) {fHparameter=hparameter;}
61 void SetH2parameter(Float_t h2parameter) {fH2parameter=h2parameter;}
62 void SetKparameter(Float_t kparameter) {fKparameter=kparameter;}
63 void SetK2parameter(Float_t k2parameter) {fK2parameter=k2parameter;}
64 void SetEffCenter(Float_t effCenter) {fEffCenter=effCenter;}
65 void SetEffBoundary(Float_t effBoundary) {fEffBoundary=effBoundary;}
66 void SetEff2Boundary(Float_t eff2Boundary) {fEff2Boundary=eff2Boundary;}
67 void SetEff3Boundary(Float_t eff3Boundary) {fEff3Boundary=eff3Boundary;}
7e6dce66 68 void SetAddTRes(Float_t addTRes) {fAddTRes=addTRes;}
f73548c4 69 void SetResCenter (Float_t resCenter) {fResCenter=resCenter;}
70 void SetResBoundary(Float_t resBoundary) {fResBoundary=resBoundary;}
71 void SetResSlope(Float_t resSlope) {fResSlope=resSlope;}
72 void SetTimeWalkCenter(Float_t timeWalkCenter) {fTimeWalkCenter=timeWalkCenter;}
73 void SetTimeWalkBoundary(Float_t timeWalkBoundary){fTimeWalkBoundary=timeWalkBoundary;}
74 void SetTimeWalkSlope(Float_t timeWalkSlope) {fTimeWalkSlope=timeWalkSlope;}
75
76 void SetTimeDelayFlag(Int_t timeDelayFlag) {fTimeDelayFlag=timeDelayFlag;}
77 void SetPulseHeightSlope(Float_t pulseHeightSlope){fPulseHeightSlope=pulseHeightSlope;}
78 void SetTimeDelaySlope(Float_t timeDelaySlope) {fTimeDelaySlope=timeDelaySlope;}
79 void SetMinimumCharge(Float_t minimumCharge) {fMinimumCharge=minimumCharge;}
80 void SetChargeSmearing(Float_t chargeSmearing) {fChargeSmearing=chargeSmearing;}
81 void SetLogChargeSmearing(Float_t logChargeSmearing){fLogChargeSmearing=logChargeSmearing;}
82 void SetTimeSmearing(Float_t timeSmearing) {fTimeSmearing=timeSmearing;}
83 void SetAverageTimeFlag(Int_t averageTimeFlag) {fAverageTimeFlag=averageTimeFlag;}
43f77f2d 84
ea7a588a 85 void SetAdcBin(Float_t adcBin) {fAdcBin=adcBin;}
86 void SetAdcMean(Float_t adcMean) {fAdcMean=adcMean;}
87 void SetAdcRms(Float_t adcRms) {fAdcRms=adcRms;}
f73548c4 88
89 Float_t GetPadefficiency() const {return fpadefficiency;}
90 Int_t GetEdgeEffect() const {return fEdgeEffect;}
91 Int_t GetEdgeTails() const {return fEdgeTails;}
92 Float_t GetHparameter() const {return fHparameter;}
93 Float_t GetH2parameter() const {return fH2parameter;}
94 Float_t GetKparameter() const {return fKparameter;}
95 Float_t GetK2parameter() const {return fK2parameter;}
96 Float_t GetEffCenter() const {return fEffCenter;}
97 Float_t GetEffBoundary() const {return fEffBoundary;}
98 Float_t GetEff2Boundary() const {return fEff2Boundary;}
99 Float_t GetEff3Boundary() const {return fEff3Boundary;}
7e6dce66 100 Float_t GetAddTRes () const {return fAddTRes;}
f73548c4 101 Float_t GetResCenter () const {return fResCenter;}
102 Float_t GetResBoundary() const {return fResBoundary;}
103 Float_t GetResSlope() const {return fResSlope;}
104 Float_t GetTimeWalkCenter() const {return fTimeWalkCenter;}
105 Float_t GetTimeWalkBoundary() const {return fTimeWalkBoundary;}
106 Float_t GetTimeWalkSlope() const {return fTimeWalkSlope;}
107 Int_t GetTimeDelayFlag() const {return fTimeDelayFlag;}
108 Float_t GetPulseHeightSlope() const {return fPulseHeightSlope;}
109 Float_t GetTimeDelaySlope() const {return fTimeDelaySlope;}
110 Float_t GetMinimumCharge() const {return fMinimumCharge;}
111 Float_t GetChargeSmearing() const {return fChargeSmearing;}
112 Float_t GetLogChargeSmearing()const {return fLogChargeSmearing;}
113 Float_t GetTimeSmearing() const {return fTimeSmearing;}
114 Int_t GetAverageTimeFlag() const {return fAverageTimeFlag;}
43f77f2d 115
ea7a588a 116 Float_t GetAdcBin() const {return fAdcBin;}
117 Float_t GetAdcMean() const {return fAdcMean;}
118 Float_t GetAdcRms() const {return fAdcRms;}
f73548c4 119
517b7f8f 120
7e6dce66 121protected:
122
123
517b7f8f 124private:
ea7a588a 125 Int_t fEvent1; // lower bound for events to sdigitize
126 Int_t fEvent2; // upper bound for events to sdigitize
f73548c4 127 TF1 *ftail; // pointer to formula for time with tail
5919c40c 128 TString fHeadersFile; // input file
d61f73d9 129 AliRunLoader* fRunLoader; //! Run Loader
130 AliLoader* fTOFLoader; //! Loader
d3c7bfac 131
7aeeaf38 132 AliTOFGeometry* fTOFGeometry; // Pointer to the TOF geometry
88cb7938 133
55991c8b 134 Int_t fSelectedSector; // sector number for sdigitization
135 Int_t fSelectedPlate ; // plate number for sdigitization
517b7f8f 136
f73548c4 137 // detector response simulation
138 // Intrisic MRPC time resolution and pad (edge effect) parameters
139 Float_t fTimeResolution; // time resolution of the MRPC (ns)
140 Float_t fpadefficiency; // intrinsic pad efficiency, used if fEdgeEffect==0
141 Int_t fEdgeEffect; // edge effects option
142 Int_t fEdgeTails; // edge tails option
d61f73d9 143 Float_t fHparameter; // sensitive edge (to produce hits on the neighbouring pads)
144 // 0.7 cm (old); 0.4 cm (new)
f73548c4 145 Float_t fH2parameter; // parameter to fit the efficiency
d61f73d9 146 Float_t fKparameter; // sensitive edge (going ahead towards the center
147 // no delay effects are suffered) 1.0 cm (old); 0.5 cm (new)
f73548c4 148 Float_t fK2parameter; // parameter to fit the efficiency
149 // Pad Efficiency and Resolution parameters
150 Float_t fEffCenter; // efficiency in the central region of the pad
151 Float_t fEffBoundary; // efficiency at the boundary of the pad
152 Float_t fEff2Boundary; // efficiency value at H2parameter
153 Float_t fEff3Boundary; // efficiency value at K2parameter
7e6dce66 154 Float_t fAddTRes; // additional contribution to
155 // the intrinsic MRPC time resolution (ps)
f73548c4 156 Float_t fResCenter; // resolution (ps) in the central region of the pad
157 Float_t fResBoundary; // resolution (ps) at the boundary of the pad
158 Float_t fResSlope; // slope (ps/K) for neighbouring pad
159 // Time Walk parameters
160 Float_t fTimeWalkCenter; // time walk (ps) in the central region of the pad
161 Float_t fTimeWalkBoundary;// time walk (ps) at the boundary of the pad
162 Float_t fTimeWalkSlope; // slope (ps/K) for neighbouring pad
163 Int_t fTimeDelayFlag; // flag for delay due to the PulseHeightEffect
164 Float_t fPulseHeightSlope;// It determines the charge amount induced
165 // due to edge effect, using the formula
166 // qInduced=exp(-PulseHeightSlope*x)
167 Float_t fTimeDelaySlope; // It determines the time delay. This is the slope
168 // in the T1-T2 vs log(q1/q2) plot
169 // ADC-TDC correlation parameters
170 Float_t fMinimumCharge; // Minimum charge amount which could be induced
171 Float_t fChargeSmearing; // Smearing in charge in (q1/q2) vs x plot
172 Float_t fLogChargeSmearing;// Smearing in log of charge ratio
173 Float_t fTimeSmearing; // Smearing in time in time vs log(q1/q2) plot
174 Int_t fAverageTimeFlag; // flag (see the setter for details)
43f77f2d 175
ea7a588a 176 Float_t fAdcBin; // charge-window for the ADC bins [pC]
177 Float_t fAdcMean; // mean value for the ADC spectrum [bins]
178 Float_t fAdcRms; // rms value for the ADC spectrum [bins]
f73548c4 179
55991c8b 180 ClassDef(AliTOFSDigitizer,2) // creates TOF SDigits
517b7f8f 181
182};
183
184#endif // AliTOFSDigitizer_H