]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFSDigitizer.h
1) corrections for Coverity reports
[u/mrichter/AliRoot.git] / TOF / AliTOFSDigitizer.h
CommitLineData
7e8c2e88 1#ifndef ALITOFSDIGITIZER_H
2#define ALITOFSDIGITIZER_H
0e46b9ae 3
517b7f8f 4/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
5 * See cxx source for full Copyright notice */
6
0e46b9ae 7//__________________________________________//
8// //
9// Task Class for making SDigits in TOF //
10// //
11//-- Authors: F. Pierella, A. De Caro //
12// //
13//__________________________________________//
517b7f8f 14
0e46b9ae 15/* $Id$ */
517b7f8f 16
17#include "TTask.h"
0e46b9ae 18
19class TF1;
20class TString;
21
d61f73d9 22class AliLoader;
0e46b9ae 23class AliRunLoader;
517b7f8f 24class AliTOFSDigitizer: public TTask {
25
26public:
27 AliTOFSDigitizer() ; // ctor
d61f73d9 28 //AliTOFSDigitizer(const char* HeaderFile) ; // par ctor
29 AliTOFSDigitizer(const char* HeaderFile, Int_t evNumber1=-1, Int_t nEvents=0) ; // par ctor
517b7f8f 30
7aeeaf38 31 AliTOFSDigitizer(const AliTOFSDigitizer &source); // copy constructor
2f584d46 32 AliTOFSDigitizer& operator=(const AliTOFSDigitizer &/*source*/); // ass. op.
7aeeaf38 33
517b7f8f 34 virtual ~AliTOFSDigitizer() ; // dtor
bfec09a6 35
43f77f2d 36 //static Float_t WidthTdcBin() {return fgkTdcBin;};
37
d61f73d9 38 virtual void Exec(Option_t *verboseOption);
7e8c2e88 39 void SetSDigitsFile(char * /*file*/ ) const {;}
3408aff3 40
f73548c4 41 void InitParameters();
42 virtual void PrintParameters() const ;
d61f73d9 43 virtual void SimulateDetectorResponse(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime);
ea7a588a 44 virtual void Print(Option_t* opt) const ;
d61f73d9 45 void SetFirstEvent(Int_t event1) {fEvent1 = event1;}
46 void SetSecondEvent(Int_t event2) {fEvent2 = event2;}
ea7a588a 47 Int_t GetFirstEvent() const {return fEvent1;}
48 Int_t GetSecondEvent() const {return fEvent2;}
49 Int_t GetNEvents() const {return (fEvent2-fEvent1);}
55991c8b 50 void SelectSectorAndPlate(Int_t sector, Int_t plate);
517b7f8f 51
f73548c4 52 // setters and getters for detector simulation
53 // it summarizes all it is known about TOF strip
54 void SetPadefficiency(Float_t padefficiency) {fpadefficiency=padefficiency;}
55 void SetEdgeEffect(Int_t edgeEffect) {fEdgeEffect=edgeEffect;}
56 void SetEdgeTails(Int_t edgeTails) {fEdgeTails=edgeTails;}
57 void SetHparameter(Float_t hparameter) {fHparameter=hparameter;}
58 void SetH2parameter(Float_t h2parameter) {fH2parameter=h2parameter;}
59 void SetKparameter(Float_t kparameter) {fKparameter=kparameter;}
60 void SetK2parameter(Float_t k2parameter) {fK2parameter=k2parameter;}
61 void SetEffCenter(Float_t effCenter) {fEffCenter=effCenter;}
62 void SetEffBoundary(Float_t effBoundary) {fEffBoundary=effBoundary;}
63 void SetEff2Boundary(Float_t eff2Boundary) {fEff2Boundary=eff2Boundary;}
64 void SetEff3Boundary(Float_t eff3Boundary) {fEff3Boundary=eff3Boundary;}
7e6dce66 65 void SetAddTRes(Float_t addTRes) {fAddTRes=addTRes;}
f73548c4 66 void SetResCenter (Float_t resCenter) {fResCenter=resCenter;}
67 void SetResBoundary(Float_t resBoundary) {fResBoundary=resBoundary;}
68 void SetResSlope(Float_t resSlope) {fResSlope=resSlope;}
69 void SetTimeWalkCenter(Float_t timeWalkCenter) {fTimeWalkCenter=timeWalkCenter;}
70 void SetTimeWalkBoundary(Float_t timeWalkBoundary){fTimeWalkBoundary=timeWalkBoundary;}
71 void SetTimeWalkSlope(Float_t timeWalkSlope) {fTimeWalkSlope=timeWalkSlope;}
72
73 void SetTimeDelayFlag(Int_t timeDelayFlag) {fTimeDelayFlag=timeDelayFlag;}
74 void SetPulseHeightSlope(Float_t pulseHeightSlope){fPulseHeightSlope=pulseHeightSlope;}
75 void SetTimeDelaySlope(Float_t timeDelaySlope) {fTimeDelaySlope=timeDelaySlope;}
76 void SetMinimumCharge(Float_t minimumCharge) {fMinimumCharge=minimumCharge;}
77 void SetChargeSmearing(Float_t chargeSmearing) {fChargeSmearing=chargeSmearing;}
78 void SetLogChargeSmearing(Float_t logChargeSmearing){fLogChargeSmearing=logChargeSmearing;}
79 void SetTimeSmearing(Float_t timeSmearing) {fTimeSmearing=timeSmearing;}
80 void SetAverageTimeFlag(Int_t averageTimeFlag) {fAverageTimeFlag=averageTimeFlag;}
43f77f2d 81
ea7a588a 82 void SetAdcBin(Float_t adcBin) {fAdcBin=adcBin;}
83 void SetAdcMean(Float_t adcMean) {fAdcMean=adcMean;}
84 void SetAdcRms(Float_t adcRms) {fAdcRms=adcRms;}
f73548c4 85
86 Float_t GetPadefficiency() const {return fpadefficiency;}
87 Int_t GetEdgeEffect() const {return fEdgeEffect;}
88 Int_t GetEdgeTails() const {return fEdgeTails;}
89 Float_t GetHparameter() const {return fHparameter;}
90 Float_t GetH2parameter() const {return fH2parameter;}
91 Float_t GetKparameter() const {return fKparameter;}
92 Float_t GetK2parameter() const {return fK2parameter;}
93 Float_t GetEffCenter() const {return fEffCenter;}
94 Float_t GetEffBoundary() const {return fEffBoundary;}
95 Float_t GetEff2Boundary() const {return fEff2Boundary;}
96 Float_t GetEff3Boundary() const {return fEff3Boundary;}
7e6dce66 97 Float_t GetAddTRes () const {return fAddTRes;}
f73548c4 98 Float_t GetResCenter () const {return fResCenter;}
99 Float_t GetResBoundary() const {return fResBoundary;}
100 Float_t GetResSlope() const {return fResSlope;}
101 Float_t GetTimeWalkCenter() const {return fTimeWalkCenter;}
102 Float_t GetTimeWalkBoundary() const {return fTimeWalkBoundary;}
103 Float_t GetTimeWalkSlope() const {return fTimeWalkSlope;}
104 Int_t GetTimeDelayFlag() const {return fTimeDelayFlag;}
105 Float_t GetPulseHeightSlope() const {return fPulseHeightSlope;}
106 Float_t GetTimeDelaySlope() const {return fTimeDelaySlope;}
107 Float_t GetMinimumCharge() const {return fMinimumCharge;}
108 Float_t GetChargeSmearing() const {return fChargeSmearing;}
109 Float_t GetLogChargeSmearing()const {return fLogChargeSmearing;}
110 Float_t GetTimeSmearing() const {return fTimeSmearing;}
111 Int_t GetAverageTimeFlag() const {return fAverageTimeFlag;}
43f77f2d 112
ea7a588a 113 Float_t GetAdcBin() const {return fAdcBin;}
114 Float_t GetAdcMean() const {return fAdcMean;}
115 Float_t GetAdcRms() const {return fAdcRms;}
f73548c4 116
517b7f8f 117
7e6dce66 118protected:
119
120
517b7f8f 121private:
ea7a588a 122 Int_t fEvent1; // lower bound for events to sdigitize
123 Int_t fEvent2; // upper bound for events to sdigitize
f73548c4 124 TF1 *ftail; // pointer to formula for time with tail
5919c40c 125 TString fHeadersFile; // input file
d61f73d9 126 AliRunLoader* fRunLoader; //! Run Loader
127 AliLoader* fTOFLoader; //! Loader
d3c7bfac 128
55991c8b 129 Int_t fSelectedSector; // sector number for sdigitization
130 Int_t fSelectedPlate ; // plate number for sdigitization
517b7f8f 131
f73548c4 132 // detector response simulation
133 // Intrisic MRPC time resolution and pad (edge effect) parameters
134 Float_t fTimeResolution; // time resolution of the MRPC (ns)
135 Float_t fpadefficiency; // intrinsic pad efficiency, used if fEdgeEffect==0
136 Int_t fEdgeEffect; // edge effects option
137 Int_t fEdgeTails; // edge tails option
d61f73d9 138 Float_t fHparameter; // sensitive edge (to produce hits on the neighbouring pads)
139 // 0.7 cm (old); 0.4 cm (new)
f73548c4 140 Float_t fH2parameter; // parameter to fit the efficiency
d61f73d9 141 Float_t fKparameter; // sensitive edge (going ahead towards the center
142 // no delay effects are suffered) 1.0 cm (old); 0.5 cm (new)
f73548c4 143 Float_t fK2parameter; // parameter to fit the efficiency
144 // Pad Efficiency and Resolution parameters
145 Float_t fEffCenter; // efficiency in the central region of the pad
146 Float_t fEffBoundary; // efficiency at the boundary of the pad
147 Float_t fEff2Boundary; // efficiency value at H2parameter
148 Float_t fEff3Boundary; // efficiency value at K2parameter
7e6dce66 149 Float_t fAddTRes; // additional contribution to
150 // the intrinsic MRPC time resolution (ps)
f73548c4 151 Float_t fResCenter; // resolution (ps) in the central region of the pad
152 Float_t fResBoundary; // resolution (ps) at the boundary of the pad
153 Float_t fResSlope; // slope (ps/K) for neighbouring pad
154 // Time Walk parameters
155 Float_t fTimeWalkCenter; // time walk (ps) in the central region of the pad
156 Float_t fTimeWalkBoundary;// time walk (ps) at the boundary of the pad
157 Float_t fTimeWalkSlope; // slope (ps/K) for neighbouring pad
158 Int_t fTimeDelayFlag; // flag for delay due to the PulseHeightEffect
159 Float_t fPulseHeightSlope;// It determines the charge amount induced
160 // due to edge effect, using the formula
161 // qInduced=exp(-PulseHeightSlope*x)
162 Float_t fTimeDelaySlope; // It determines the time delay. This is the slope
163 // in the T1-T2 vs log(q1/q2) plot
164 // ADC-TDC correlation parameters
165 Float_t fMinimumCharge; // Minimum charge amount which could be induced
166 Float_t fChargeSmearing; // Smearing in charge in (q1/q2) vs x plot
167 Float_t fLogChargeSmearing;// Smearing in log of charge ratio
168 Float_t fTimeSmearing; // Smearing in time in time vs log(q1/q2) plot
169 Int_t fAverageTimeFlag; // flag (see the setter for details)
43f77f2d 170
ea7a588a 171 Float_t fAdcBin; // charge-window for the ADC bins [pC]
172 Float_t fAdcMean; // mean value for the ADC spectrum [bins]
173 Float_t fAdcRms; // rms value for the ADC spectrum [bins]
f73548c4 174
96f01799 175 ClassDef(AliTOFSDigitizer,3) // creates TOF SDigits
517b7f8f 176
177};
178
7e8c2e88 179#endif // AliTOFSDIGITIZER_H