Double precision (Marian). Coding conventions (Federico)
[u/mrichter/AliRoot.git] / TOF / AliTOFtrack.cxx
CommitLineData
74ea065c 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
2c770f53 15////////////////////////////////////////////////////////////////////////
16//
17// AliTOFtrack class
18//
19// Authors: Bologna-CERN-ITEP-Salerno Group
20//
21// Description: class for handling ESD extracted tracks for TOF matching.
74ea065c 22/* $Id$ */
23
24#include <Riostream.h>
d3c7bfac 25
74ea065c 26#include <TObject.h>
d3c7bfac 27
d076c8d5 28#include "AliLog.h"
74ea065c 29#include "AliESDtrack.h"
30
d3c7bfac 31#include "AliTOFGeometry.h"
32#include "AliTOFGeometryV4.h"
33#include "AliTOFGeometryV5.h"
34#include "AliTOFtrack.h"
35
74ea065c 36ClassImp(AliTOFtrack)
37
38//_____________________________________________________________________________
39AliTOFtrack::AliTOFtrack(const AliTOFtrack& t) : AliKalmanTrack(t) {
40 //
41 // Copy constructor.
42 //
43
44 SetSeedIndex(t.GetSeedIndex());
45 SetLabel(t.GetLabel());
46 fSeedLab=t.GetSeedLabel();
47 SetChi2(t.GetChi2());
48
49 fAlpha=t.fAlpha;
50 fX=t.fX;
51
52 fY=t.fY; fZ=t.fZ; fE=t.fE; fT=t.fT; fC=t.fC;
53
54 fCyy=t.fCyy;
55 fCzy=t.fCzy; fCzz=t.fCzz;
56 fCey=t.fCey; fCez=t.fCez; fCee=t.fCee;
57 fCty=t.fCty; fCtz=t.fCtz; fCte=t.fCte; fCtt=t.fCtt;
58 fCcy=t.fCcy; fCcz=t.fCcz; fCce=t.fCce; fCct=t.fCct; fCcc=t.fCcc;
59
d3c7bfac 60 fTOFgeometry = new AliTOFGeometryV4();
74ea065c 61
62}
63
64//_____________________________________________________________________________
65AliTOFtrack::AliTOFtrack(const AliESDtrack& t)
66 :AliKalmanTrack() {
67 //
68 // Constructor from AliESDtrack
69 //
70
d3c7bfac 71 fTOFgeometry = new AliTOFGeometryV4();
72
74ea065c 73 SetSeedIndex(-1);
74 SetLabel(t.GetLabel());
75 SetChi2(0.);
76 SetMass(t.GetMass());
77
78 fAlpha = t.GetAlpha();
79 if (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
80 else if (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
81 Double_t x, p[5]; t.GetExternalParameters(x,p);
82
83 fX=x;
84
74ea065c 85 fY=p[0];
c84a5e9e 86 fZ=p[1]; SaveLocalConvConst();
87 fT=p[3]; x=GetLocalConvConst();
74ea065c 88 fC=p[4]/x;
89 fE=fC*fX - p[2];
90
91 //Conversion of the covariance matrix
92 Double_t c[15]; t.GetExternalCovariance(c);
93
94 c[10]/=x; c[11]/=x; c[12]/=x; c[13]/=x; c[14]/=x*x;
95
96 Double_t c22=fX*fX*c[14] - 2*fX*c[12] + c[5];
97 Double_t c32=fX*c[13] - c[8];
98 Double_t c20=fX*c[10] - c[3], c21=fX*c[11] - c[4], c42=fX*c[14] - c[12];
99
100 fCyy=c[0 ];
101 fCzy=c[1 ]; fCzz=c[2 ];
102 fCey=c20; fCez=c21; fCee=c22;
103 fCty=c[6 ]; fCtz=c[7 ]; fCte=c32; fCtt=c[9 ];
104 fCcy=c[10]; fCcz=c[11]; fCce=c42; fCct=c[13]; fCcc=c[14];
105
106 if ((t.GetStatus()&AliESDtrack::kTIME) == 0) return;
107 StartTimeIntegral();
108 Double_t times[10]; t.GetIntegratedTimes(times); SetIntegratedTimes(times);
109 SetIntegratedLength(t.GetIntegratedLength());
110
111
112}
7aeeaf38 113
114//____________________________________________________________________________
115AliTOFtrack& AliTOFtrack::operator=(const AliTOFtrack &source)
116{
117 // ass. op.
118
119 this->fTOFgeometry=source.fTOFgeometry;
120 return *this;
121
122}
123
74ea065c 124//____________________________________________________________________________
125void AliTOFtrack::GetExternalParameters(Double_t& xr, Double_t x[5]) const {
126 //
127 // This function returns external TOF track representation
128 //
129 xr=fX;
130 x[0]=GetY();
131 x[1]=GetZ();
132 x[2]=GetSnp();
133 x[3]=GetTgl();
134 x[4]=Get1Pt();
135}
136
137//_____________________________________________________________________________
138void AliTOFtrack::GetExternalCovariance(Double_t cc[15]) const {
139 //
140 // This function returns external representation of the covriance matrix.
141 //
c84a5e9e 142 Double_t a=GetLocalConvConst();
74ea065c 143 Double_t c22=fX*fX*fCcc-2*fX*fCce+fCee;
144 Double_t c32=fX*fCct-fCte;
145 Double_t c20=fX*fCcy-fCey, c21=fX*fCcz-fCez, c42=fX*fCcc-fCce;
146
147 cc[0 ]=fCyy;
148 cc[1 ]=fCzy; cc[2 ]=fCzz;
149 cc[3 ]=c20; cc[4 ]=c21; cc[5 ]=c22;
150 cc[6 ]=fCty; cc[7 ]=fCtz; cc[8 ]=c32; cc[9 ]=fCtt;
151 cc[10]=fCcy*a; cc[11]=fCcz*a; cc[12]=c42*a; cc[13]=fCct*a; cc[14]=fCcc*a*a;
152
153}
154
155
156//_____________________________________________________________________________
157void AliTOFtrack::GetCovariance(Double_t cc[15]) const {
2c770f53 158 //
159 // Returns the covariance matrix.
160 //
74ea065c 161
162 cc[0]=fCyy;
163 cc[1]=fCzy; cc[2]=fCzz;
164 cc[3]=fCey; cc[4]=fCez; cc[5]=fCee;
165 cc[6]=fCcy; cc[7]=fCcz; cc[8]=fCce; cc[9]=fCcc;
166 cc[10]=fCty; cc[11]=fCtz; cc[12]=fCte; cc[13]=fCct; cc[14]=fCtt;
167
168}
169
170
171//_____________________________________________________________________________
172Int_t AliTOFtrack::PropagateTo(Double_t xk,Double_t x0,Double_t rho)
173{
174 // Propagates a track of particle with mass=pm to a reference plane
175 // defined by x=xk through media of density=rho and radiationLength=x0
176
177 if (xk == fX) return 1;
178
179 if (TMath::Abs(fC*xk - fE) >= 0.90000) {
180 return 0;
181 }
c84a5e9e 182 Double_t lcc=GetLocalConvConst();
74ea065c 183
184 // track Length measurement [SR, GSI, 17.02.2003]
185
186 Double_t oldX = fX, oldY = fY, oldZ = fZ;
187
188 Double_t x1=fX, x2=x1+(xk-x1), dx=x2-x1, y1=fY, z1=fZ;
189 Double_t c1=fC*x1 - fE;
190 if((c1*c1) > 1){
191 return 0;}
192 Double_t r1=sqrt(1.- c1*c1);
193 Double_t c2=fC*x2 - fE;
194 if((c2*c2) > 1) {
195 return 0;
196 }
197 Double_t r2=sqrt(1.- c2*c2);
198
199 fY += dx*(c1+c2)/(r1+r2);
200 fZ += dx*(c1+c2)/(c1*r2 + c2*r1)*fT;
201
202 //f = F - 1
203 Double_t rr=r1+r2, cc=c1+c2, xx=x1+x2;
204 Double_t f02=-dx*(2*rr + cc*(c1/r1 + c2/r2))/(rr*rr);
205 Double_t f04= dx*(rr*xx + cc*(c1*x1/r1+c2*x2/r2))/(rr*rr);
206 Double_t cr=c1*r2+c2*r1;
207 Double_t f12=-dx*fT*(2*cr + cc*(c2*c1/r1-r1 + c1*c2/r2-r2))/(cr*cr);
208 Double_t f13= dx*cc/cr;
209 Double_t f14=dx*fT*(cr*xx-cc*(r1*x2-c2*c1*x1/r1+r2*x1-c1*c2*x2/r2))/(cr*cr);
210
211 //b = C*ft
212 Double_t b00=f02*fCey + f04*fCcy, b01=f12*fCey + f14*fCcy + f13*fCty;
213 Double_t b10=f02*fCez + f04*fCcz, b11=f12*fCez + f14*fCcz + f13*fCtz;
214 Double_t b20=f02*fCee + f04*fCce, b21=f12*fCee + f14*fCce + f13*fCte;
215 Double_t b30=f02*fCte + f04*fCct, b31=f12*fCte + f14*fCct + f13*fCtt;
216 Double_t b40=f02*fCce + f04*fCcc, b41=f12*fCce + f14*fCcc + f13*fCct;
217
218 //a = f*b = f*C*ft
219 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a11=f12*b21+f14*b41+f13*b31;
220
221 //F*C*Ft = C + (a + b + bt)
222 fCyy += a00 + 2*b00;
223 fCzy += a01 + b01 + b10;
224 fCey += b20;
225 fCty += b30;
226 fCcy += b40;
227 fCzz += a11 + 2*b11;
228 fCez += b21;
229 fCtz += b31;
230 fCcz += b41;
231
232 fX=x2;
233
c84a5e9e 234 //Change of the magnetic field *************
235 SaveLocalConvConst();
236 cc=fC;
237 fC*=lcc/GetLocalConvConst();
238 fE+=fX*(fC-cc);
239
74ea065c 240 //Multiple scattering ******************
241 Double_t d=sqrt((x1-fX)*(x1-fX)+(y1-fY)*(y1-fY)+(z1-fZ)*(z1-fZ));
242 Double_t p2=(1.+ GetTgl()*GetTgl())/(Get1Pt()*Get1Pt());
243 Double_t beta2=p2/(p2 + GetMass()*GetMass());
244 Double_t theta2=14.1*14.1/(beta2*p2*1e6)*d/x0*rho;
245
246 Double_t ey=fC*fX - fE, ez=fT;
247 Double_t xz=fC*ez, zz1=ez*ez+1, xy=fE+ey;
248
249 fCee += (2*ey*ez*ez*fE+1-ey*ey+ez*ez+fE*fE*ez*ez)*theta2;
250 fCte += ez*zz1*xy*theta2;
251 fCtt += zz1*zz1*theta2;
252 fCce += xz*ez*xy*theta2;
253 fCct += xz*zz1*theta2;
254 fCcc += xz*xz*theta2;
255 /*
256 Double_t dc22 = (1-ey*ey+xz*xz*fX*fX)*theta2;
257 Double_t dc32 = (xz*fX*zz1)*theta2;
258 Double_t dc33 = (zz1*zz1)*theta2;
259 Double_t dc42 = (xz*fX*xz)*theta2;
260 Double_t dc43 = (zz1*xz)*theta2;
261 Double_t dc44 = (xz*xz)*theta2;
262 fCee += dc22;
263 fCte += dc32;
264 fCtt += dc33;
265 fCce += dc42;
266 fCct += dc43;
267 fCcc += dc44;
268 */
269 //Energy losses************************
270 if((5940*beta2/(1-beta2+1e-10) - beta2) < 0){return 0;}
271
272 Double_t dE=0.153e-3/beta2*(log(5940*beta2/(1-beta2+1e-10)) - beta2)*d*rho;
983ebc4f 273 //
274 // suspicious part - think about it ?
275 Double_t kinE = TMath::Sqrt(p2);
276 if (dE>0.8*kinE) dE = 0.8*kinE; //
277 if (dE<0) dE = 0.0; // not valid region for Bethe bloch
278 //
279 //
74ea065c 280 if (x1 < x2) dE=-dE;
281 cc=fC;
282 fC*=(1.- sqrt(p2+GetMass()*GetMass())/p2*dE);
283 fE+=fX*(fC-cc);
284
285 // track time measurement [SR, GSI 17.02.2002]
286 if (x1 < x2)
287 if (IsStartedTimeIntegral()) {
288 Double_t l2 = (fX-oldX)*(fX-oldX) + (fY-oldY)*(fY-oldY) + (fZ-oldZ)*(fZ-oldZ);
289 AddTimeStep(TMath::Sqrt(l2));
290 }
291
292 return 1;
293}
294
295//_____________________________________________________________________________
296Int_t AliTOFtrack::PropagateToInnerTOF( Bool_t holes)
297{
298 // Propagates a track of particle with mass=pm to a reference plane
299 // defined by x=xk through media of density=rho and radiationLength=x0
300
301
d3c7bfac 302 Double_t ymax=fTOFgeometry->RinTOF()*TMath::Tan(0.5*AliTOFGeometry::GetAlpha());
74ea065c 303 Bool_t skip = kFALSE;
d3c7bfac 304 Double_t y=GetYat(fTOFgeometry->RinTOF(),skip);
74ea065c 305 if(skip){
306 return 0;
307 }
308 if (y > ymax) {
2c770f53 309 if (!Rotate(AliTOFGeometry::GetAlpha())) {
74ea065c 310 return 0;
311 }
312 } else if (y <-ymax) {
2c770f53 313 if (!Rotate(-AliTOFGeometry::GetAlpha())) {
74ea065c 314 return 0;
315 }
316 }
317
318
2c770f53 319 Double_t x = GetX();
74ea065c 320 Int_t nsteps=Int_t((370.-x)/0.5); // 0.5 cm Steps
321 for (Int_t istep=0;istep<nsteps;istep++){
322 Float_t xp = x+istep*0.5;
323 Double_t param[2];
2c770f53 324 GetPropagationParameters(holes,param);
325 PropagateTo(xp,param[0],param[1]);
74ea065c 326
327 }
328
d3c7bfac 329 if(!PropagateTo(fTOFgeometry->RinTOF()))return 0;
74ea065c 330
331 return 1;
332
333}
334
335//_____________________________________________________________________________
336Int_t AliTOFtrack::Rotate(Double_t alpha)
337{
338 // Rotates track parameters in R*phi plane
339
340
341 fAlpha += alpha;
342 if (fAlpha<-TMath::Pi()) fAlpha += 2*TMath::Pi();
343 if (fAlpha>=TMath::Pi()) fAlpha -= 2*TMath::Pi();
344
345 Double_t x1=fX, y1=fY;
346 Double_t ca=cos(alpha), sa=sin(alpha);
347 Double_t r1=fC*fX - fE;
348
349 fX = x1*ca + y1*sa;
350 fY =-x1*sa + y1*ca;
351 if((r1*r1) > 1) return 0;
352 fE=fE*ca + (fC*y1 + sqrt(1.- r1*r1))*sa;
353
354 Double_t r2=fC*fX - fE;
355 if (TMath::Abs(r2) >= 0.90000) {
d076c8d5 356 AliWarning("Rotation failed !");
74ea065c 357 return 0;
358 }
359
360 if((r2*r2) > 1) return 0;
361 Double_t y0=fY + sqrt(1.- r2*r2)/fC;
362 if ((fY-y0)*fC >= 0.) {
d076c8d5 363 AliWarning("Rotation failed !!!");
74ea065c 364 return 0;
365 }
366
367 //f = F - 1
368 Double_t f00=ca-1, f24=(y1 - r1*x1/sqrt(1.- r1*r1))*sa,
369 f20=fC*sa, f22=(ca + sa*r1/sqrt(1.- r1*r1))-1;
370
371 //b = C*ft
372 Double_t b00=fCyy*f00, b02=fCyy*f20+fCcy*f24+fCey*f22;
373 Double_t b10=fCzy*f00, b12=fCzy*f20+fCcz*f24+fCez*f22;
374 Double_t b20=fCey*f00, b22=fCey*f20+fCce*f24+fCee*f22;
375 Double_t b30=fCty*f00, b32=fCty*f20+fCct*f24+fCte*f22;
376 Double_t b40=fCcy*f00, b42=fCcy*f20+fCcc*f24+fCce*f22;
377
378 //a = f*b = f*C*ft
379 Double_t a00=f00*b00, a02=f00*b02, a22=f20*b02+f24*b42+f22*b22;
380
381 //F*C*Ft = C + (a + b + bt)
382 fCyy += a00 + 2*b00;
383 fCzy += b10;
384 fCey += a02+b20+b02;
385 fCty += b30;
386 fCcy += b40;
387 fCez += b12;
388 fCte += b32;
389 fCee += a22 + 2*b22;
390 fCce += b42;
391
392 return 1;
393}
394
2c770f53 395//_________________________________________________________________________
4668c628 396Double_t AliTOFtrack::GetYat(Double_t xk, Bool_t & skip) const {
2c770f53 397//-----------------------------------------------------------------
398// This function calculates the Y-coordinate of a track at the plane x=xk.
399// Needed for matching with the TOF (I.Belikov)
400//-----------------------------------------------------------------
401 skip=kFALSE;
402 Double_t c1=fC*fX - fE, r1=TMath::Sqrt(TMath::Abs(1.- c1*c1));
403 Double_t c2=fC*xk - fE, r2=TMath::Sqrt(TMath::Abs(1.- c2*c2));
404 if( ((1.- c2*c2)<0) || ((1.- c1*c1)<0) ) skip=kTRUE;
405 return fY + (xk-fX)*(c1+c2)/(r1+r2);
406}
74ea065c 407//_________________________________________________________________________
408void AliTOFtrack::GetPxPyPz(Double_t& px, Double_t& py, Double_t& pz) const
409{
410 // Returns reconstructed track momentum in the global system.
411
412 Double_t pt=TMath::Abs(GetPt()); // GeV/c
413 Double_t r=fC*fX-fE;
414
415 Double_t y0;
416 if(r > 1) { py = pt; px = 0; }
417 else if(r < -1) { py = -pt; px = 0; }
418 else {
419 y0=fY + sqrt(1.- r*r)/fC;
420 px=-pt*(fY-y0)*fC; //cos(phi);
421 py=-pt*(fE-fX*fC); //sin(phi);
422 }
423 pz=pt*fT;
424 Double_t tmp=px*TMath::Cos(fAlpha) - py*TMath::Sin(fAlpha);
425 py=px*TMath::Sin(fAlpha) + py*TMath::Cos(fAlpha);
426 px=tmp;
427
428}
429
430//_________________________________________________________________________
431void AliTOFtrack::GetGlobalXYZ(Double_t& x, Double_t& y, Double_t& z) const
432{
433 // Returns reconstructed track coordinates in the global system.
434
435 x = fX; y = fY; z = fZ;
436 Double_t tmp=x*TMath::Cos(fAlpha) - y*TMath::Sin(fAlpha);
437 y=x*TMath::Sin(fAlpha) + y*TMath::Cos(fAlpha);
438 x=tmp;
439
440}
441
442//_________________________________________________________________________
443void AliTOFtrack::ResetCovariance() {
444 //
445 // Resets covariance matrix
446 //
447
448 fCyy*=10.;
449 fCzy=0.; fCzz*=10.;
450 fCey=0.; fCez=0.; fCee*=10.;
451 fCty=0.; fCtz=0.; fCte=0.; fCtt*=10.;
452 fCcy=0.; fCcz=0.; fCce=0.; fCct=0.; fCcc*=10.;
453}
454
455
456//_________________________________________________________________________
457void AliTOFtrack::ResetCovariance(Float_t mult) {
458 //
459 // Resets covariance matrix
460 //
461
462 fCyy*=mult;
463 fCzy*=0.; fCzz*=mult;
464 fCey*=0.; fCez*=0.; fCee*=mult;
465 fCty*=0.; fCtz*=0.; fCte*=0.; fCtt*=mult;
466 fCcy*=0.; fCcz*=0.; fCce*=0.; fCct*=0.; fCcc*=mult;
467}
468
469//_____________________________________________________________________________
470Int_t AliTOFtrack::Compare(const TObject *o) const {
471 //-----------------------------------------------------------------
472 // This function compares tracks according to the their curvature
473 //-----------------------------------------------------------------
474 AliTOFtrack *t=(AliTOFtrack*)o;
475 Double_t co=t->GetSigmaY2()*t->GetSigmaZ2();
476 Double_t c =GetSigmaY2()*GetSigmaZ2();
477 if (c>co) return 1;
478 else if (c<co) return -1;
479 return 0;
480}
481
482//_____________________________________________________________________________
483void AliTOFtrack::GetPropagationParameters(Bool_t holes, Double_t *param) {
484
2c770f53 485 //Get average medium density, x0 while propagating the track
486
487 //For TRD holes description
74ea065c 488
489 Double_t thetamin = (90.-31.1) * TMath::Pi()/180.;
490 Double_t thetamax = (90.+31.1) * TMath::Pi()/180.;
491
492 Double_t zmin = -55.;
493 Double_t zmax = 55.;
494
2c770f53 495 // Detector inner/outer radii
74ea065c 496 Double_t rTPC = 261.53;
497 Double_t rTPCTRD = 294.5;
498 Double_t rTRD = 369.1;
499
2c770f53 500 // Medium parameters
74ea065c 501 Double_t x0TPC = 40.;
502 Double_t rhoTPC =0.06124;
503
504 Double_t x0Air = 36.66;
505 Double_t rhoAir =1.2931e-3;
506
507 Double_t x0TRD = 171.7;
508 Double_t rhoTRD =0.33;
509
2c770f53 510 Int_t isec = GetSector();
74ea065c 511 Double_t xtr,ytr,ztr;
2c770f53 512 GetGlobalXYZ(xtr,ytr,ztr);
74ea065c 513 Float_t thetatr = TMath::ATan2(TMath::Sqrt(xtr*xtr+ytr*ytr),ztr);
514
515 if(holes){
516 if (isec == 0 || isec == 1 || isec == 2 ) {
517 if( thetatr>=thetamin && thetatr<=thetamax){
518 x0TRD= x0Air;
519 rhoTRD = rhoAir;
520 }
521 }
522 if (isec == 11 || isec == 12 || isec == 13 || isec == 14 || isec == 15 ) {
523 if( ztr>=zmin && ztr<=zmax){
524 x0TRD= x0Air;
525 rhoTRD = rhoAir;
526 }
527 }
528 }
529
2c770f53 530 if(GetX() <= rTPC)
74ea065c 531 {param[0]=x0TPC;param[1]=rhoTPC;}
2c770f53 532 else if(GetX() > rTPC && GetX() < rTPCTRD)
74ea065c 533 {param[0]=x0Air;param[1]=rhoAir;}
2c770f53 534 else if(GetX() >= rTPCTRD && GetX() < rTRD)
74ea065c 535 {param[0]=x0TRD;param[1]=rhoTRD;}
2c770f53 536 else if(GetX() >= rTRD )
74ea065c 537 {param[0]=x0Air;param[1]=rhoAir;}
74ea065c 538}