Correct improper use of negative parameters
[u/mrichter/AliRoot.git] / TOF / AliTOFv2.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
d0a635a0 18Revision 1.11 1999/10/16 19:30:05 fca
19Corrected Rotation Matrix and CVS log
20
00e5f8d9 21Revision 1.10 1999/10/15 15:35:20 fca
22New version for frame1099 with and without holes
23
937fe4a4 24Revision 1.9 1999/09/29 09:24:33 fca
25Introduction of the Copyright and cvs Log
26
4c039060 27*/
28
fe4da5cc 29///////////////////////////////////////////////////////////////////////////////
30// //
937fe4a4 31// Time Of Flight: design of C.Williams FCA //
32// This class contains the functions for version 1 of the Time Of Flight //
fe4da5cc 33// detector. //
937fe4a4 34//
35// VERSION WITH 5 MODULES AND TILTED STRIPS
36//
37// WITH HOLES FOR PHOS AND HMPID
38// INSIDE A FULL COVERAGE SPACE FRAME
39//
40//
41// Authors:
42//
43// Alessio Seganti
44// Domenico Vicinanza
45//
46// University of Salerno - Italy
47//
48//
49//
fe4da5cc 50//Begin_Html
51/*
3fe3a833 52<img src="picts/AliTOFv2Class.gif">
fe4da5cc 53*/
54//End_Html
55// //
56///////////////////////////////////////////////////////////////////////////////
57
58#include "AliTOFv2.h"
fe4da5cc 59#include "AliRun.h"
fe4da5cc 60#include "AliConst.h"
61
62ClassImp(AliTOFv2)
63
64//_____________________________________________________________________________
151e057e 65AliTOFv2::AliTOFv2()
fe4da5cc 66{
67 //
68 // Default constructor
69 //
70}
71
72//_____________________________________________________________________________
73AliTOFv2::AliTOFv2(const char *name, const char *title)
74 : AliTOF(name,title)
75{
76 //
77 // Standard constructor
78 //
79}
80
81//_____________________________________________________________________________
82void AliTOFv2::CreateGeometry()
83{
84 //
3fe3a833 85 // Create geometry for Time Of Flight version 0
fe4da5cc 86 //
87 //Begin_Html
88 /*
3fe3a833 89 <img src="picts/AliTOFv2.gif">
fe4da5cc 90 */
91 //End_Html
92 //
937fe4a4 93 // Creates common geometry
fe4da5cc 94 //
95 AliTOF::CreateGeometry();
96}
97
98//_____________________________________________________________________________
937fe4a4 99void AliTOFv2::TOFpc(Float_t xtof, Float_t ytof, Float_t zlen1,
100 Float_t zlen2, Float_t zlen3, Float_t ztof0)
fe4da5cc 101{
102 //
103 // Definition of the Time Of Fligh Resistive Plate Chambers
937fe4a4 104 // xFLT, yFLT, zFLT - sizes of TOF modules (large)
3fe3a833 105
937fe4a4 106 Int_t idrotm[100];
107 Int_t nrot = 0;
108 Float_t ycoor, zcoor;
fe4da5cc 109 Float_t par[10];
fe4da5cc 110
ad51aeb0 111 Int_t *idtmed = fIdtmed->GetArray()-499;
937fe4a4 112
113
114 par[0] = xtof / 2.;
115 par[1] = ytof / 2.;
116 par[2] = zlen1 / 2.;
117 gMC->Gsvolu("FTO1", "BOX ", idtmed[506], par, 3);
118 par[2] = zlen2 / 2.;
119 gMC->Gsvolu("FTO2", "BOX ", idtmed[506], par, 3);
120 par[2] = zlen3 / 2.;
121 gMC->Gsvolu("FTO3", "BOX ", idtmed[506], par, 3);
122
123
124// Position of modules
125 Float_t zcor1 = ztof0 - zlen1/2;
126 Float_t zcor2 = ztof0 - zlen1 - zlen2/2.;
127 Float_t zcor3 = 0.;
128
129 AliMatrix(idrotm[0], 90., 0., 0., 0., 90, -90.);
130 AliMatrix(idrotm[1], 90., 180., 0., 0., 90, 90.);
131 gMC->Gspos("FTO1", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY");
132 gMC->Gspos("FTO1", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
133 gMC->Gspos("FTO1", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY");
134 gMC->Gspos("FTO1", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY");
135 gMC->Gspos("FTO1", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY");
136 gMC->Gspos("FTO1", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY");
137
138 gMC->Gspos("FTO2", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY");
139 gMC->Gspos("FTO2", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
140 gMC->Gspos("FTO2", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY");
141 gMC->Gspos("FTO2", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY");
142
143 gMC->Gspos("FTO3", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY");
144
145// Subtraction the distance to TOF module boundaries
146
147 Float_t db = 7.;
148 Float_t xFLT, yFLT, zFLT1, zFLT2, zFLT3;
149
150 xFLT = xtof -(.5 +.5)*2;
151 yFLT = ytof;
152 zFLT1 = zlen1 - db;
153 zFLT2 = zlen2 - db;
154 zFLT3 = zlen3 - db;
155
156
157// Sizes of MRPC pads
158
159 Float_t yPad = 0.505;
fe4da5cc 160
937fe4a4 161// Large not sensitive volumes with CO2
162 par[0] = xFLT/2;
163 par[1] = yFLT/2;
164
165 cout <<"************************* TOF geometry **************************"<<endl;
166
167 par[2] = (zFLT1 / 2.);
168 gMC->Gsvolu("FLT1", "BOX ", idtmed[506], par, 3); // CO2
169 gMC->Gspos("FLT1", 0, "FTO1", 0., 0., 0., 0, "ONLY");
170
171 par[2] = (zFLT2 / 2.);
172 gMC->Gsvolu("FLT2", "BOX ", idtmed[506], par, 3); // CO2
173 gMC->Gspos("FLT2", 0, "FTO2", 0., 0., 0., 0, "ONLY");
174
175 par[2] = (zFLT3 / 2.);
176 gMC->Gsvolu("FLT3", "BOX ", idtmed[506], par, 3); // CO2
177 gMC->Gspos("FLT3", 0, "FTO3", 0., 0., 0., 0, "ONLY");
178
179////////// Layers before detector ////////////////////
180
181// Alluminium layer in front 1.0 mm thick at the beginning
182 par[0] = -1;
183 par[1] = 0.1;
184 par[2] = -1;
185 ycoor = -yFLT/2 + par[1];
186 gMC->Gsvolu("FMY1", "BOX ", idtmed[508], par, 3); // Alluminium
187 gMC->Gspos("FMY1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
188 gMC->Gsvolu("FMY2", "BOX ", idtmed[508], par, 3); // Alluminium
189 gMC->Gspos("FMY2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
190 gMC->Gsvolu("FMY3", "BOX ", idtmed[508], par, 3); // Alluminium
191 gMC->Gspos("FMY3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
192
193// Honeycomb layer (1cm of special polyethilene)
194 ycoor = ycoor + par[1];
195 par[0] = -1;
196 par[1] = 0.5;
197 par[2] = -1;
198 ycoor = ycoor + par[1];
199 gMC->Gsvolu("FPL1", "BOX ", idtmed[503], par, 3); // Hony
200 gMC->Gspos("FPL1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
201 gMC->Gsvolu("FPL2", "BOX ", idtmed[503], par, 3); // Hony
202 gMC->Gspos("FPL2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
203 gMC->Gsvolu("FPL3", "BOX ", idtmed[503], par, 3); // Hony
204 gMC->Gspos("FPL3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
205
206///////////////// Detector itself //////////////////////
207
208 const Float_t StripWidth = 7.81;//cm
209 const Float_t DeadBound = 1.;//cm non-sensitive between the pad edge and the boundary of the strip
210 const Int_t nx = 40; // number of pads along x
211 const Int_t nz = 2; // number of pads along z
212 const Float_t Gap=4.; //cm distance between the strip axis
213 const Float_t Space = 5.5; //cm distance from the front plate of the box
214
215 Float_t zSenStrip;
216 zSenStrip = StripWidth-2*DeadBound;//cm
217
d0a635a0 218 par[0] = xFLT/2;
937fe4a4 219 par[1] = yPad/2;
220 par[2] = StripWidth/2.;
221
222 // Glass Layer of detector
223 gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3);
224
225 // Freon for non-sesitive boundaries
d0a635a0 226 par[0] = xFLT/2;
937fe4a4 227 par[1] = 0.110/2;
228 par[2] = -1;
229 gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3);
230 gMC->Gspos("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY");
231 // Mylar for non-sesitive boundaries
232 par[1] = 0.025;
233 gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3);
234 gMC->Gspos("FMYI",0,"FNSF",0.,0.,0.,0,"ONLY");
235
236 // Mylar for outer layers
237 par[1] = 0.035/2;
238 ycoor = -yPad/2.+par[1];
239 gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3);
240 gMC->Gspos("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY");
241 gMC->Gspos("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
242 ycoor += par[1];
243
244 // Graphyte layers
245 par[1] = 0.003/2;
246 ycoor += par[1];
247 gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3);
248 gMC->Gspos("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY");
249 gMC->Gspos("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
250
251 // Freon sensitive layer
252 par[0] = -1;
253 par[1] = 0.110/2.;
254 par[2] = zSenStrip/2.;
255 gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3);
256 gMC->Gspos("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY");
257
258 // Pad definition x & z
259 gMC->Gsdvn("FLZ","FCFC", nz, 3);
260 gMC->Gsdvn("FLX","FLZ" , nx, 1);
261
262 // MRPC pixel itself
263 par[0] = -1;
264 par[1] = -1;
265 par[2] = -1;
266 gMC->Gsvolu("FPAD", "BOX ", idtmed[513], par, 3);
267 gMC->Gspos("FPAD", 0, "FLX", 0., 0., 0., 0, "ONLY");
268
269
270//// Positioning the Strips (FSTR) in the FLT volumes /////
271
272
273 // 3 (Central) Plate
274 Float_t t = zFLT1+zFLT2+zFLT3/2.+7.*2.5;//Half Width of Barrel
275 Float_t zpos = 0;
276 Float_t ang;
277 Float_t Offset;
278 Float_t last;
279 nrot = 0;
280 Int_t i=1,j=1;
281 zcoor=0;
282 Int_t UpDown=-1; // UpDown=-1 -> Upper strip, UpDown=+1 -> Lower strip
283
284 do{
285 ang = atan(zcoor/t);
00e5f8d9 286 ang = ang*kRaddeg;
287 AliMatrix (idrotm[nrot] ,90., 0.,90.-ang,90.,-ang,90.);
288 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90.,ang,90.);
937fe4a4 289 ycoor = -29./2.+ Space; //2 cm over front plate
290 ycoor += (1-(UpDown+1)/2)*Gap;
291 gMC->Gspos("FSTR",j,"FLT3",0.,ycoor,zcoor,idrotm[nrot],"ONLY");
292 gMC->Gspos("FSTR",j+1,"FLT3",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
00e5f8d9 293 ang = ang/kRaddeg;
937fe4a4 294
295 zcoor=zcoor-(zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
296 UpDown*= -1; // Alternate strips
297 i++;
298 j+=2;
299 } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+zFLT2+7*2.5);
300
301 ycoor = -29./2.+ Space; //2 cm over front plate
302
303 // Plate 2
304 zpos = -zFLT3/2-7;
305 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
306 Offset = StripWidth*TMath::Cos(ang)/2;
307 zpos -= Offset;
308 nrot = 0;
309 i=1;
310 // UpDown has not to be reinitialized, so that the arrangement of the strips can continue coherently
311
312 do {
313 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
00e5f8d9 314 ang = ang*kRaddeg;
315 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
937fe4a4 316 ycoor = -29./2.+ Space ; //2 cm over front plate
317 ycoor += (1-(UpDown+1)/2)*Gap;
318 zcoor = zpos+(zFLT3/2.+7+zFLT2/2); // Moves to the system of the centre of the modulus FLT2
319 gMC->Gspos("FSTR",i, "FLT2", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
00e5f8d9 320 ang = ang/kRaddeg;
937fe4a4 321 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
322 last = StripWidth*TMath::Cos(ang)/2;
323 UpDown*=-1;
324 i++;
325 } while (zpos-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+7);
326
327 // Plate 1
328 zpos = -t+zFLT1+3.5;
329 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
330 Offset = StripWidth*TMath::Cos(ang)/2.;
331 zpos -= Offset;
332 nrot = 0;
333 i=0;
334 ycoor= -29./2.+Space+Gap/2;
335
336 do {
337 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
00e5f8d9 338 ang = ang*kRaddeg;
339 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
937fe4a4 340 i++;
341 zcoor = zpos+(zFLT1/2+zFLT2+zFLT3/2+7.*2.);
342 gMC->Gspos("FSTR",i, "FLT1", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
00e5f8d9 343 ang = ang /kRaddeg;
937fe4a4 344 zpos = zpos - zSenStrip/TMath::Cos(ang);
345 last = StripWidth*TMath::Cos(ang)/2.;
346 } while (zpos>-t+7.+last);
347
348printf("#######################################################\n");
00e5f8d9 349printf(" Distance from the bound of the FLT3: zFLT3- %f cm \n", t+zpos-(zSenStrip/2)/TMath::Cos(ang));
937fe4a4 350 ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
351 zpos = zpos - zSenStrip/TMath::Cos(ang);
00e5f8d9 352printf("NEXT Distance from the bound of the FLT3: zFLT3- %f cm \n", t+zpos-(zSenStrip/2)/TMath::Cos(ang));
937fe4a4 353printf("#######################################################\n");
354
355////////// Layers after detector /////////////////
356
357// Honeycomb layer after (3cm)
358
359 Float_t OverSpace = Space + 7.3;
360/// StripWidth*TMath::Sin(ang) + 1.3;
361
362 par[0] = -1;
363 par[1] = 0.6;
364 par[2] = -1;
365 ycoor = -yFLT/2 + OverSpace + par[1];
366 gMC->Gsvolu("FPE1", "BOX ", idtmed[503], par, 3); // Hony
367 gMC->Gspos("FPE1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
368 gMC->Gsvolu("FPE2", "BOX ", idtmed[503], par, 3); // Hony
369 gMC->Gspos("FPE2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
370 gMC->Gsvolu("FPE3", "BOX ", idtmed[503], par, 3); // Hony
371 gMC->Gspos("FPE3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
372
373// Electronics (Cu) after
374 ycoor += par[1];
375 par[0] = -1;
376 par[1] = 1.43*0.05 / 2.; // 5% of X0
377 par[2] = -1;
378 ycoor += par[1];
3fe3a833 379 gMC->Gsvolu("FEC1", "BOX ", idtmed[501], par, 3); // Cu
937fe4a4 380 gMC->Gspos("FEC1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
3fe3a833 381 gMC->Gsvolu("FEC2", "BOX ", idtmed[501], par, 3); // Cu
937fe4a4 382 gMC->Gspos("FEC2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
3fe3a833 383 gMC->Gsvolu("FEC3", "BOX ", idtmed[501], par, 3); // Cu
937fe4a4 384 gMC->Gspos("FEC3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
385
386// Cooling water after
387 ycoor += par[1];
388 par[0] = -1;
389 par[1] = 36.1*0.02 / 2.; // 2% of X0
390 par[2] = -1;
391 ycoor += par[1];
392 gMC->Gsvolu("FWA1", "BOX ", idtmed[515], par, 3); // Water
393 gMC->Gspos("FWA1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
394 gMC->Gsvolu("FWA2", "BOX ", idtmed[515], par, 3); // Water
395 gMC->Gspos("FWA2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
396 gMC->Gsvolu("FWA3", "BOX ", idtmed[515], par, 3); // Water
397 gMC->Gspos("FWA3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
398
399//back plate honycomb (2cm)
400 par[0] = -1;
401 par[1] = 2 / 2.;
402 par[2] = -1;
403 ycoor = yFLT/2 - par[1];
404 gMC->Gsvolu("FEG1", "BOX ", idtmed[503], par, 3); // Hony
405 gMC->Gspos("FEG1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
406 gMC->Gsvolu("FEG2", "BOX ", idtmed[503], par, 3); // Hony
407 gMC->Gspos("FEG2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
408 gMC->Gsvolu("FEG3", "BOX ", idtmed[503], par, 3); // Hony
409 gMC->Gspos("FEG3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
fe4da5cc 410}
411
412//_____________________________________________________________________________
8f72dc0c 413void AliTOFv2::DrawModule()
fe4da5cc 414{
415 //
937fe4a4 416 // Draw a shaded view of the Time Of Flight version 1
fe4da5cc 417 //
fe4da5cc 418 // Set everything unseen
cfce8870 419 gMC->Gsatt("*", "seen", -1);
fe4da5cc 420 //
421 // Set ALIC mother transparent
cfce8870 422 gMC->Gsatt("ALIC","SEEN",0);
fe4da5cc 423 //
424 // Set the volumes visible
cfce8870 425 gMC->Gsatt("ALIC","SEEN",0);
937fe4a4 426 gMC->Gsatt("FBAR","SEEN",1);
427 gMC->Gsatt("FTO1","SEEN",1);
428 gMC->Gsatt("FTO2","SEEN",1);
429 gMC->Gsatt("FTO3","SEEN",1);
430 gMC->Gsatt("FBT1","SEEN",1);
431 gMC->Gsatt("FBT2","SEEN",1);
432 gMC->Gsatt("FBT3","SEEN",1);
433 gMC->Gsatt("FDT1","SEEN",1);
434 gMC->Gsatt("FDT2","SEEN",1);
435 gMC->Gsatt("FDT3","SEEN",1);
436 gMC->Gsatt("FLT1","SEEN",1);
437 gMC->Gsatt("FLT2","SEEN",1);
438 gMC->Gsatt("FLT3","SEEN",1);
439 gMC->Gsatt("FPL1","SEEN",1);
440 gMC->Gsatt("FPL2","SEEN",1);
441 gMC->Gsatt("FPL3","SEEN",1);
442 gMC->Gsatt("FLD1","SEEN",1);
443 gMC->Gsatt("FLD2","SEEN",1);
444 gMC->Gsatt("FLD3","SEEN",1);
445 gMC->Gsatt("FLZ1","SEEN",1);
446 gMC->Gsatt("FLZ2","SEEN",1);
447 gMC->Gsatt("FLZ3","SEEN",1);
448 gMC->Gsatt("FLX1","SEEN",1);
449 gMC->Gsatt("FLX2","SEEN",1);
450 gMC->Gsatt("FLX3","SEEN",1);
451 gMC->Gsatt("FPA0","SEEN",1);
fe4da5cc 452 //
cfce8870 453 gMC->Gdopt("hide", "on");
454 gMC->Gdopt("shad", "on");
455 gMC->Gsatt("*", "fill", 7);
456 gMC->SetClipBox(".");
457 gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
458 gMC->DefaultRange();
459 gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
460 gMC->Gdhead(1111, "Time Of Flight");
461 gMC->Gdman(18, 4, "MAN");
462 gMC->Gdopt("hide","off");
fe4da5cc 463}
464
465//_____________________________________________________________________________
466void AliTOFv2::CreateMaterials()
467{
468 //
469 // Define materials for the Time Of Flight
470 //
471 AliTOF::CreateMaterials();
472}
473
474//_____________________________________________________________________________
475void AliTOFv2::Init()
476{
477 //
478 // Initialise the detector after the geometry has been defined
479 //
fe4da5cc 480 AliTOF::Init();
cfce8870 481 fIdFTO2=gMC->VolId("FTO2");
482 fIdFTO3=gMC->VolId("FTO3");
483 fIdFLT1=gMC->VolId("FLT1");
484 fIdFLT2=gMC->VolId("FLT2");
485 fIdFLT3=gMC->VolId("FLT3");
fe4da5cc 486}
487
488//_____________________________________________________________________________
489void AliTOFv2::StepManager()
490{
491 //
492 // Procedure called at each step in the Time Of Flight
493 //
3fe3a833 494 TLorentzVector mom, pos;
fe4da5cc 495 Float_t hits[8];
496 Int_t vol[3];
0a6d8768 497 Int_t copy, id, i;
ad51aeb0 498 Int_t *idtmed = fIdtmed->GetArray()-499;
3fe3a833 499 if(gMC->GetMedium()==idtmed[514-1] &&
0a6d8768 500 gMC->IsTrackEntering() && gMC->TrackCharge()
501 && gMC->CurrentVolID(copy)==fIdSens) {
fe4da5cc 502 TClonesArray &lhits = *fHits;
503 //
504 // Record only charged tracks at entrance
0a6d8768 505 gMC->CurrentVolOffID(1,copy);
fe4da5cc 506 vol[2]=copy;
0a6d8768 507 gMC->CurrentVolOffID(3,copy);
fe4da5cc 508 vol[1]=copy;
937fe4a4 509 id=gMC->CurrentVolOffID(8,copy);
fe4da5cc 510 vol[0]=copy;
511 if(id==fIdFTO3) {
512 vol[0]+=22;
937fe4a4 513 id=gMC->CurrentVolOffID(5,copy);
514 if(id==fIdFLT3) vol[1]+=6;
fe4da5cc 515 } else if (id==fIdFTO2) {
516 vol[0]+=20;
937fe4a4 517 id=gMC->CurrentVolOffID(5,copy);
fe4da5cc 518 if(id==fIdFLT2) vol[1]+=8;
519 } else {
937fe4a4 520 id=gMC->CurrentVolOffID(5,copy);
fe4da5cc 521 if(id==fIdFLT1) vol[1]+=14;
522 }
0a6d8768 523 gMC->TrackPosition(pos);
524 gMC->TrackMomentum(mom);
3fe3a833 525 //
0a6d8768 526 Double_t ptot=mom.Rho();
527 Double_t norm=1/ptot;
528 for(i=0;i<3;++i) {
529 hits[i]=pos[i];
530 hits[i+3]=mom[i]*norm;
531 }
532 hits[6]=ptot;
533 hits[7]=pos[3];
fe4da5cc 534 new(lhits[fNhits++]) AliTOFhit(fIshunt,gAlice->CurrentTrack(),vol,hits);
535 }
536}
937fe4a4 537