]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TPC/AliTPCCalibVdrift.cxx
Adding AliTPCTracklet to the repository (M.Mager)
[u/mrichter/AliRoot.git] / TPC / AliTPCCalibVdrift.cxx
CommitLineData
1209231c 1/**************************************************************************
2 * Copyright(c) 2006-07, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17///////////////////////////////////////////////////////////////////////////////
18// //
19// Class describing the Vdrift dependencies on E,T,P and GasComposition //
20// Authors: Stefan Rossegger, Haavard Helstrup //
21// //
22///////////////////////////////////////////////////////////////////////////////
23
24#include "TSystem.h"
25#include "TObject.h"
26#include "TMath.h"
27#include "AliTPCTempMap.h"
28#include "AliTPCSensorTempArray.h"
29
30#include "AliTPCCalibVdrift.h"
31
32ClassImp(AliTPCCalibVdrift)
33
34 namespace paramDefinitions {
35
36 // Standard Conditions used as origin in the Magbolz simulations
37 // Dimesions E [kV/cm], T [K], P [TORR], Cco2 [%], Cn2 [%]
38 const Double_t kstdE = 400;
39 const Double_t kstdT = 293;
40 const Double_t kstdP = 744;
41 const Double_t kstdCco2 = 9.52;
42 const Double_t kstdCn2 = 4.76;
43 // Driftvelocity at Standardcontitions [cm/microSec]
44 const Double_t kstdVdrift = 2.57563;
45
46 // Vdrift dependencies simulated with Magbolz [%(Vdrift)/[unit]]
47 const Double_t kdvdE = 0.24;
48 const Double_t kdvdT = 0.30;
49 const Double_t kdvdP = -0.13;
50 const Double_t kdvdCco2 = -6.60;
51 const Double_t kdvdCn2 = -1.74;
52
53 Double_t krho = 0.934246; // density of TPC-Gas [kg/m^3]
54 // method of calculation: weighted average
55 Double_t kg = 9.81;
56}
57
58using namespace paramDefinitions;
59
60AliTPCCalibVdrift::AliTPCCalibVdrift(AliTPCSensorTempArray *SensTemp, TObject *SensPres, TObject *SensGasComp):
61 TNamed(),
62 fSensTemp(0),
63 fSensPres(0),
64 fSensGasComp(0)
65{
66 //
67 // Standard constructor
68 //
69
70 fSensTemp = SensTemp;
71 fSensPres = SensPres;
72 fSensGasComp = SensGasComp;
73}
74
75AliTPCCalibVdrift::AliTPCCalibVdrift(const AliTPCCalibVdrift& source) :
76 TNamed(source),
77 fSensTemp(source.fSensTemp),
78 fSensPres(source.fSensPres),
79 fSensGasComp(source.fSensGasComp)
80{
81 //
82 // Copy constructor
83 //
84}
85
86//_____________________________________________________________________________
87
88AliTPCCalibVdrift& AliTPCCalibVdrift::operator=(const AliTPCCalibVdrift& source){
89 //
90 // assignment operator
91 //
92 if (&source == this) return *this;
93 new (this) AliTPCCalibVdrift(source);
94
95 return *this;
96}
97
98//_____________________________________________________________________________
99AliTPCCalibVdrift::~AliTPCCalibVdrift()
100{
101 //
102 // AliTPCCalibVdrift destructor
103 //
104}
105
106//_____________________________________________________________________________
107Double_t AliTPCCalibVdrift::VdriftLinearHyperplaneApprox(Double_t dE, Double_t dT, Double_t dP, Double_t dCco2, Double_t dCn2)
108{
109 //
110 // Returns approximated value for the driftvelocity based on
111 // linear Hyperplane approximation (~ Taylorapproximation of 1st order)
112 //
113
2aaa30ef 114 Double_t vdrift = (dE*kdvdE+dT*kdvdT+dP*kdvdP+dCco2*kdvdCco2+dCn2*kdvdCn2);
1209231c 115
2aaa30ef 116 return vdrift;
1209231c 117
118}
119//_____________________________________________________________________________
120
121Double_t AliTPCCalibVdrift::GetVdriftNominal()
122{
123 // returns nominal Driftvelocity at StandardConditions
124 return kstdVdrift;
125}
126
127//_____________________________________________________________________________
128
129Double_t AliTPCCalibVdrift::GetVdriftChange(Double_t x, Double_t y, Double_t z, UInt_t timeSec)
130{
131 //
132 // Calculates Vdrift change in percent of Vdrift_nominal
133 // (under nominal conditions) at x,y,z,timeSec
134 //
135
136 // Get E-field Value --------------------------
137 Double_t dE = 0; //FIXME: eventually include Field-Inhomogenities
138
139 // Get Temperature Value ----------------------
140 AliTPCTempMap *tempMap = new AliTPCTempMap(fSensTemp);
141 Double_t tempValue = tempMap->GetTemperature(x, y, z, timeSec);
142 Double_t dT = tempValue+273.15 - kstdT;
143
144 // Get Main Pressure Value ---------------------
145 // FIXME: READ REAL PRESSURE SENSOR
146 // through TObject *fSensPres;
147 // e.g. Double_t PO = fSensPres->GetValue(timeSec);
2aaa30ef 148 Double_t p0 = 744;
1209231c 149 // recalculate Pressure according to height in TPC and transform to
150 // TORR (with simplified hydrostatic formula)
2aaa30ef 151 Double_t dP = p0 - krho*kg*y/10000 /1000*760 - kstdP;
1209231c 152
153 // Get GasComposition
154 // FIXME: include Goofy values for CO2 and N2 conzentration out of DCS?
155 // through TObject *fSensGasComp and calculate difference to stdCondit.
156 Double_t dCco2 = 0;
157 Double_t dCn2 = 0;
158
159 // Calculate change in drift velocity in terms of Vdrift_nominal
160 Double_t vdrift = VdriftLinearHyperplaneApprox(dE, dT, dP, dCco2, dCn2);
161
162 return vdrift;
163
164 tempMap->~AliTPCTempMap();
165}
166
167//_____________________________________________________________________________
168
169Double_t AliTPCCalibVdrift::GetMeanZVdriftChange(Double_t x, Double_t y, UInt_t timeSec)
170{
171 //
172 // Calculates Meanvalue in z direction of Vdrift change in percent
173 // of Vdrift_nominal (under standard conditions) at position x,y,timeSec
174 // with help of 'nPopints' base points
175 //
176
177 Int_t nPoints = 5;
178
2aaa30ef 179 Double_t vdriftSum = 0;
1209231c 180
181 for (Int_t i = 0; i<nPoints; i++) {
182 Double_t z = (Double_t)i/(nPoints-1)*500-250;
2aaa30ef 183 vdriftSum = vdriftSum + GetVdriftChange(x, y, z, timeSec);
1209231c 184 }
185
2aaa30ef 186 Double_t meanZVdrift = vdriftSum/nPoints;
1209231c 187
2aaa30ef 188 return meanZVdrift;
1209231c 189
190}
191
192//_____________________________________________________________________________
193
194TGraph *AliTPCCalibVdrift::MakeGraphMeanZVdriftChange(Double_t x, Double_t y, Int_t nPoints)
195{
196 //
197 // Make graph from start time to end time of Mean Drift Velocity in
198 // Z direction at given x and y position
199 //
200
2aaa30ef 201 UInt_t startTime = fSensTemp->GetStartTime();
202 UInt_t endTime = fSensTemp->GetEndTime();
1209231c 203
2aaa30ef 204 UInt_t stepTime = (endTime - startTime)/nPoints;
1209231c 205
206
207 Double_t *xvec = new Double_t[nPoints];
208 Double_t *yvec = new Double_t[nPoints];
209
210 for (Int_t ip=0; ip<nPoints; ip++) {
2aaa30ef 211 xvec[ip] = startTime+ip*stepTime;
1209231c 212 yvec[ip] = GetMeanZVdriftChange(x, y, ip*stepTime);
213 }
214
215 TGraph *graph = new TGraph(nPoints,xvec,yvec);
216
217 delete [] xvec;
218 delete [] yvec;
219
220 graph->GetXaxis()->SetTimeDisplay(1);
221 graph->GetXaxis()->SetLabelOffset(0.02);
222 graph->GetXaxis()->SetTimeFormat("#splitline{%d/%m}{%H:%M}");
223
224 return graph;
225}