]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TPC/AliTPCCorrection.cxx
Coverity
[u/mrichter/AliRoot.git] / TPC / AliTPCCorrection.cxx
CommitLineData
0116859c 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b4caed64 16// _________________________________________________________________
17//
18// Begin_Html
19// <h2> AliTPCCorrection class </h2>
20//
21// The AliTPCCorrection class provides a general framework to deal with space point distortions.
22// An correction class which inherits from here is for example AliTPCExBBShape or AliTPCExBTwist. <br>
23// General virtual functions are (for example) CorrectPoint(x,roc) where x is the vector of initial
24// positions in cartesian coordinates and roc represents the read-out chamber number according to
25// the offline numbering convention. The vector x is overwritten with the corrected coordinates. <br>
26// An alternative usage would be CorrectPoint(x,roc,dx), which leaves the vector x untouched, but
27// returns the distortions via the vector dx. <br>
28// This class is normally used via the general class AliTPCComposedCorrection.
29// <p>
30// Furthermore, the class contains basic geometrical descriptions like field cage radii
31// (fgkIFCRadius, fgkOFCRadius) and length (fgkTPCZ0) plus the voltages. Also, the definitions
32// of size and widths of the fulcrums building the grid of the final look-up table, which is
33// then interpolated, is defined in kNX and fgkXList).
34// <p>
35// All physics-model classes below are derived from this class in order to not duplicate code
36// and to allow a uniform treatment of all physics models.
37// <p>
38// <h3> Poisson solver </h3>
39// A numerical solver of the Poisson equation (relaxation technique) is implemented for 2-dimensional
40// geometries (r,z) as well as for 3-dimensional problems (r,$\phi$,z). The corresponding function
41// names are PoissonRelaxation?D. The relevant function arguments are the arrays of the boundary and
42// initial conditions (ArrayofArrayV, ArrayofChargeDensities) as well as the grid granularity which
43// is used during the calculation. These inputs can be chosen according to the needs of the physical
44// effect which is supposed to be simulated. In the 3D version, different symmetry conditions can be set
45// in order to reduce the calculation time (used in AliTPCFCVoltError3D).
46// <p>
47// <h3> Unified plotting functionality </h3>
48// Generic plot functions were implemented. They return a histogram pointer in the chosen plane of
49// the TPC drift volume with a selectable grid granularity and the magnitude of the correction vector.
50// For example, the function CreateHistoDZinXY(z,nx,ny) returns a 2-dimensional histogram which contains
51// the longitudinal corrections $dz$ in the (x,y)-plane at the given z position with the granularity of
52// nx and ny. The magnitude of the corrections is defined by the class from which this function is called.
53// In the same manner, standard plots for the (r,$\phi$)-plane and for the other corrections like $dr$ and $rd\phi$ are available
54// <p>
55// Note: This class is normally used via the class AliTPCComposedCorrection
56// End_Html
57//
58// Begin_Macro(source)
59// {
60// gROOT->SetStyle("Plain"); gStyle->SetPalette(1);
61// TCanvas *c2 = new TCanvas("c2","c2",700,1050); c2->Divide(2,3);
62// AliTPCROCVoltError3D roc; // EXAMPLE PLOTS - SEE BELOW
63// roc.SetOmegaTauT1T2(0,1,1); // B=0
64// Float_t z0 = 1; // at +1 cm -> A side
65// c2->cd(1); roc.CreateHistoDRinXY(1.,300,300)->Draw("cont4z");
66// c2->cd(3);roc.CreateHistoDRPhiinXY(1.,300,300)->Draw("cont4z");
67// c2->cd(5);roc.CreateHistoDZinXY(1.,300,300)->Draw("cont4z");
68// Float_t phi0=0.5;
69// c2->cd(2);roc.CreateHistoDRinZR(phi0)->Draw("surf2");
70// c2->cd(4);roc.CreateHistoDRPhiinZR(phi0)->Draw("surf2");
71// c2->cd(6);roc.CreateHistoDZinZR(phi0)->Draw("surf2");
72// return c2;
73// }
74// End_Macro
75//
76// Begin_Html
77// <p>
78// Date: 27/04/2010 <br>
79// Authors: Magnus Mager, Stefan Rossegger, Jim Thomas
80// End_Html
81// _________________________________________________________________
82
83
be67055b 84#include "Riostream.h"
0116859c 85
86#include <TH2F.h>
87#include <TMath.h>
88#include <TROOT.h>
cf5b0aa0 89#include <TTreeStream.h>
ffab0c37 90#include <TTree.h>
91#include <TFile.h>
e527a1b9 92#include <TTimeStamp.h>
ffab0c37 93#include <AliCDBStorage.h>
94#include <AliCDBId.h>
95#include <AliCDBMetaData.h>
c9cbd2f2 96#include "TVectorD.h"
97#include "AliTPCParamSR.h"
7f4cb119 98
c9cbd2f2 99#include "AliTPCCorrection.h"
100#include "AliLog.h"
1b923461 101
1b923461 102#include "AliExternalTrackParam.h"
103#include "AliTrackPointArray.h"
104#include "TDatabasePDG.h"
105#include "AliTrackerBase.h"
106#include "AliTPCROC.h"
107#include "THnSparse.h"
108
c9cbd2f2 109#include "AliTPCLaserTrack.h"
110#include "AliESDVertex.h"
111#include "AliVertexerTracks.h"
112#include "TDatabasePDG.h"
113#include "TF1.h"
7f4cb119 114#include "TRandom.h"
c9cbd2f2 115
116#include "TDatabasePDG.h"
117
7f4cb119 118#include "AliTPCTransform.h"
119#include "AliTPCcalibDB.h"
120#include "AliTPCExB.h"
cf5b0aa0 121
c9cbd2f2 122#include "AliTPCRecoParam.h"
1b923461 123
0116859c 124
cf5b0aa0 125ClassImp(AliTPCCorrection)
126
f1817479 127
128TObjArray *AliTPCCorrection::fgVisualCorrection=0;
129// instance of correction for visualization
130
131
0116859c 132// FIXME: the following values should come from the database
c9cbd2f2 133const Double_t AliTPCCorrection::fgkTPCZ0 = 249.7; // nominal gating grid position
2b68ab9c 134const Double_t AliTPCCorrection::fgkIFCRadius= 83.5; // radius which renders the "18 rod manifold" best -> compare calc. of Jim Thomas
135// compare gkIFCRadius= 83.05: Mean Radius of the Inner Field Cage ( 82.43 min, 83.70 max) (cm)
c9cbd2f2 136const Double_t AliTPCCorrection::fgkOFCRadius= 254.5; // Mean Radius of the Outer Field Cage (252.55 min, 256.45 max) (cm)
137const Double_t AliTPCCorrection::fgkZOffSet = 0.2; // Offset from CE: calculate all distortions closer to CE as if at this point
138const Double_t AliTPCCorrection::fgkCathodeV = -100000.0; // Cathode Voltage (volts)
139const Double_t AliTPCCorrection::fgkGG = -70.0; // Gating Grid voltage (volts)
0116859c 140
c9cbd2f2 141const Double_t AliTPCCorrection::fgkdvdE = 0.0024; // [cm/V] drift velocity dependency on the E field (from Magboltz for NeCO2N2 at standard environment)
0116859c 142
c9cbd2f2 143const Double_t AliTPCCorrection::fgkEM = -1.602176487e-19/9.10938215e-31; // charge/mass in [C/kg]
144const Double_t AliTPCCorrection::fgke0 = 8.854187817e-12; // vacuum permittivity [A·s/(V·m)]
c9cbd2f2 145
0116859c 146
147AliTPCCorrection::AliTPCCorrection()
c9cbd2f2 148 : TNamed("correction_unity","unity"),fILow(0),fJLow(0),fKLow(0), fT1(1), fT2(1)
0116859c 149{
150 //
151 // default constructor
152 //
f1817479 153 if (!fgVisualCorrection) fgVisualCorrection= new TObjArray;
c9cbd2f2 154
35ae345f 155 InitLookUpfulcrums();
c9cbd2f2 156
0116859c 157}
158
159AliTPCCorrection::AliTPCCorrection(const char *name,const char *title)
c9cbd2f2 160: TNamed(name,title),fILow(0),fJLow(0),fKLow(0), fT1(1), fT2(1)
0116859c 161{
162 //
163 // default constructor, that set the name and title
164 //
f1817479 165 if (!fgVisualCorrection) fgVisualCorrection= new TObjArray;
c9cbd2f2 166
35ae345f 167 InitLookUpfulcrums();
c9cbd2f2 168
0116859c 169}
170
171AliTPCCorrection::~AliTPCCorrection() {
172 //
173 // virtual destructor
174 //
175}
176
177void AliTPCCorrection::CorrectPoint(Float_t x[],const Short_t roc) {
178 //
179 // Corrects the initial coordinates x (cartesian coordinates)
180 // according to the given effect (inherited classes)
181 // roc represents the TPC read out chamber (offline numbering convention)
182 //
183 Float_t dx[3];
184 GetCorrection(x,roc,dx);
185 for (Int_t j=0;j<3;++j) x[j]+=dx[j];
186}
187
188void AliTPCCorrection::CorrectPoint(const Float_t x[],const Short_t roc,Float_t xp[]) {
189 //
190 // Corrects the initial coordinates x (cartesian coordinates) and stores the new
191 // (distorted) coordinates in xp. The distortion is set according to the given effect (inherited classes)
192 // roc represents the TPC read out chamber (offline numbering convention)
193 //
194 Float_t dx[3];
195 GetCorrection(x,roc,dx);
196 for (Int_t j=0;j<3;++j) xp[j]=x[j]+dx[j];
197}
198
199void AliTPCCorrection::DistortPoint(Float_t x[],const Short_t roc) {
200 //
201 // Distorts the initial coordinates x (cartesian coordinates)
202 // according to the given effect (inherited classes)
203 // roc represents the TPC read out chamber (offline numbering convention)
204 //
205 Float_t dx[3];
206 GetDistortion(x,roc,dx);
207 for (Int_t j=0;j<3;++j) x[j]+=dx[j];
208}
209
46e89793 210void AliTPCCorrection::DistortPointLocal(Float_t x[],const Short_t roc) {
211 //
212 // Distorts the initial coordinates x (cartesian coordinates)
213 // according to the given effect (inherited classes)
214 // roc represents the TPC read out chamber (offline numbering convention)
215 //
216 Float_t gxyz[3]={0,0,0};
217 Double_t alpha = TMath::Pi()*(roc%18+0.5)/18;
218 Double_t ca=TMath::Cos(alpha), sa= TMath::Sin(alpha);
219 gxyz[0]= ca*x[0]+sa*x[1];
220 gxyz[1]= -sa*x[0]+ca*x[1];
221 gxyz[2]= x[2];
222 DistortPoint(gxyz,roc);
223 x[0]= ca*gxyz[0]-sa*gxyz[1];
224 x[1]= +sa*gxyz[0]+ca*gxyz[1];
225 x[2]= gxyz[2];
226}
227void AliTPCCorrection::CorrectPointLocal(Float_t x[],const Short_t roc) {
228 //
229 // Distorts the initial coordinates x (cartesian coordinates)
230 // according to the given effect (inherited classes)
231 // roc represents the TPC read out chamber (offline numbering convention)
232 //
233 Float_t gxyz[3]={0,0,0};
234 Double_t alpha = TMath::Pi()*(roc%18+0.5)/18;
235 Double_t ca=TMath::Cos(alpha), sa= TMath::Sin(alpha);
236 gxyz[0]= ca*x[0]+sa*x[1];
237 gxyz[1]= -sa*x[0]+ca*x[1];
238 gxyz[2]= x[2];
239 CorrectPoint(gxyz,roc);
240 x[0]= ca*gxyz[0]-sa*gxyz[1];
241 x[1]= sa*gxyz[0]+ca*gxyz[1];
242 x[2]= gxyz[2];
243}
244
0116859c 245void AliTPCCorrection::DistortPoint(const Float_t x[],const Short_t roc,Float_t xp[]) {
246 //
247 // Distorts the initial coordinates x (cartesian coordinates) and stores the new
248 // (distorted) coordinates in xp. The distortion is set according to the given effect (inherited classes)
249 // roc represents the TPC read out chamber (offline numbering convention)
250 //
251 Float_t dx[3];
252 GetDistortion(x,roc,dx);
253 for (Int_t j=0;j<3;++j) xp[j]=x[j]+dx[j];
254}
255
256void AliTPCCorrection::GetCorrection(const Float_t /*x*/[],const Short_t /*roc*/,Float_t dx[]) {
257 //
258 // This function delivers the correction values dx in respect to the inital coordinates x
259 // roc represents the TPC read out chamber (offline numbering convention)
260 // Note: The dx is overwritten by the inherited effectice class ...
261 //
262 for (Int_t j=0;j<3;++j) { dx[j]=0.; }
263}
264
265void AliTPCCorrection::GetDistortion(const Float_t x[],const Short_t roc,Float_t dx[]) {
266 //
267 // This function delivers the distortion values dx in respect to the inital coordinates x
268 // roc represents the TPC read out chamber (offline numbering convention)
269 //
270 GetCorrection(x,roc,dx);
271 for (Int_t j=0;j<3;++j) dx[j]=-dx[j];
272}
273
274void AliTPCCorrection::Init() {
275 //
276 // Initialization funtion (not used at the moment)
277 //
278}
279
e527a1b9 280void AliTPCCorrection::Update(const TTimeStamp &/*timeStamp*/) {
281 //
282 // Update function
283 //
284}
285
0116859c 286void AliTPCCorrection::Print(Option_t* /*option*/) const {
287 //
288 // Print function to check which correction classes are used
289 // option=="d" prints details regarding the setted magnitude
290 // option=="a" prints the C0 and C1 coefficents for calibration purposes
291 //
292 printf("TPC spacepoint correction: \"%s\"\n",GetTitle());
293}
294
534fd34a 295void AliTPCCorrection:: SetOmegaTauT1T2(Float_t /*omegaTau*/,Float_t t1,Float_t t2) {
0116859c 296 //
297 // Virtual funtion to pass the wt values (might become event dependent) to the inherited classes
298 // t1 and t2 represent the "effective omegaTau" corrections and were measured in a dedicated
299 // calibration run
300 //
534fd34a 301 fT1=t1;
302 fT2=t2;
303 //SetOmegaTauT1T2(omegaTau, t1, t2);
0116859c 304}
305
306TH2F* AliTPCCorrection::CreateHistoDRinXY(Float_t z,Int_t nx,Int_t ny) {
307 //
308 // Simple plot functionality.
309 // Returns a 2d hisogram which represents the corrections in radial direction (dr)
310 // in respect to position z within the XY plane.
311 // The histogramm has nx times ny entries.
312 //
c9cbd2f2 313 AliTPCParam* tpcparam = new AliTPCParamSR;
314
0116859c 315 TH2F *h=CreateTH2F("dr_xy",GetTitle(),"x [cm]","y [cm]","dr [cm]",
316 nx,-250.,250.,ny,-250.,250.);
317 Float_t x[3],dx[3];
318 x[2]=z;
319 Int_t roc=z>0.?0:18; // FIXME
320 for (Int_t iy=1;iy<=ny;++iy) {
321 x[1]=h->GetYaxis()->GetBinCenter(iy);
322 for (Int_t ix=1;ix<=nx;++ix) {
323 x[0]=h->GetXaxis()->GetBinCenter(ix);
324 GetCorrection(x,roc,dx);
325 Float_t r0=TMath::Sqrt((x[0] )*(x[0] )+(x[1] )*(x[1] ));
c9cbd2f2 326 if (tpcparam->GetPadRowRadii(0,0)<=r0 && r0<=tpcparam->GetPadRowRadii(36,95)) {
0116859c 327 Float_t r1=TMath::Sqrt((x[0]+dx[0])*(x[0]+dx[0])+(x[1]+dx[1])*(x[1]+dx[1]));
328 h->SetBinContent(ix,iy,r1-r0);
329 }
330 else
331 h->SetBinContent(ix,iy,0.);
332 }
333 }
c9cbd2f2 334 delete tpcparam;
0116859c 335 return h;
336}
337
338TH2F* AliTPCCorrection::CreateHistoDRPhiinXY(Float_t z,Int_t nx,Int_t ny) {
339 //
340 // Simple plot functionality.
341 // Returns a 2d hisogram which represents the corrections in rphi direction (drphi)
342 // in respect to position z within the XY plane.
343 // The histogramm has nx times ny entries.
344 //
345
c9cbd2f2 346 AliTPCParam* tpcparam = new AliTPCParamSR;
347
0116859c 348 TH2F *h=CreateTH2F("drphi_xy",GetTitle(),"x [cm]","y [cm]","drphi [cm]",
349 nx,-250.,250.,ny,-250.,250.);
350 Float_t x[3],dx[3];
351 x[2]=z;
352 Int_t roc=z>0.?0:18; // FIXME
353 for (Int_t iy=1;iy<=ny;++iy) {
354 x[1]=h->GetYaxis()->GetBinCenter(iy);
355 for (Int_t ix=1;ix<=nx;++ix) {
356 x[0]=h->GetXaxis()->GetBinCenter(ix);
357 GetCorrection(x,roc,dx);
358 Float_t r0=TMath::Sqrt((x[0] )*(x[0] )+(x[1] )*(x[1] ));
c9cbd2f2 359 if (tpcparam->GetPadRowRadii(0,0)<=r0 && r0<=tpcparam->GetPadRowRadii(36,95)) {
0116859c 360 Float_t phi0=TMath::ATan2(x[1] ,x[0] );
361 Float_t phi1=TMath::ATan2(x[1]+dx[1],x[0]+dx[0]);
362
363 Float_t dphi=phi1-phi0;
364 if (dphi<TMath::Pi()) dphi+=TMath::TwoPi();
365 if (dphi>TMath::Pi()) dphi-=TMath::TwoPi();
366
367 h->SetBinContent(ix,iy,r0*dphi);
368 }
369 else
370 h->SetBinContent(ix,iy,0.);
371 }
372 }
c9cbd2f2 373 delete tpcparam;
374 return h;
375}
376
377TH2F* AliTPCCorrection::CreateHistoDZinXY(Float_t z,Int_t nx,Int_t ny) {
378 //
379 // Simple plot functionality.
380 // Returns a 2d hisogram which represents the corrections in longitudinal direction (dz)
381 // in respect to position z within the XY plane.
382 // The histogramm has nx times ny entries.
383 //
384
385 AliTPCParam* tpcparam = new AliTPCParamSR;
386
387 TH2F *h=CreateTH2F("dz_xy",GetTitle(),"x [cm]","y [cm]","dz [cm]",
388 nx,-250.,250.,ny,-250.,250.);
389 Float_t x[3],dx[3];
390 x[2]=z;
391 Int_t roc=z>0.?0:18; // FIXME
392 for (Int_t iy=1;iy<=ny;++iy) {
393 x[1]=h->GetYaxis()->GetBinCenter(iy);
394 for (Int_t ix=1;ix<=nx;++ix) {
395 x[0]=h->GetXaxis()->GetBinCenter(ix);
396 GetCorrection(x,roc,dx);
397 Float_t r0=TMath::Sqrt((x[0] )*(x[0] )+(x[1] )*(x[1] ));
398 if (tpcparam->GetPadRowRadii(0,0)<=r0 && r0<=tpcparam->GetPadRowRadii(36,95)) {
399 h->SetBinContent(ix,iy,dx[2]);
400 }
401 else
402 h->SetBinContent(ix,iy,0.);
403 }
404 }
405 delete tpcparam;
0116859c 406 return h;
407}
408
409TH2F* AliTPCCorrection::CreateHistoDRinZR(Float_t phi,Int_t nz,Int_t nr) {
410 //
411 // Simple plot functionality.
412 // Returns a 2d hisogram which represents the corrections in r direction (dr)
413 // in respect to angle phi within the ZR plane.
414 // The histogramm has nx times ny entries.
415 //
416 TH2F *h=CreateTH2F("dr_zr",GetTitle(),"z [cm]","r [cm]","dr [cm]",
417 nz,-250.,250.,nr,85.,250.);
418 Float_t x[3],dx[3];
419 for (Int_t ir=1;ir<=nr;++ir) {
420 Float_t radius=h->GetYaxis()->GetBinCenter(ir);
421 x[0]=radius*TMath::Cos(phi);
422 x[1]=radius*TMath::Sin(phi);
423 for (Int_t iz=1;iz<=nz;++iz) {
424 x[2]=h->GetXaxis()->GetBinCenter(iz);
425 Int_t roc=x[2]>0.?0:18; // FIXME
426 GetCorrection(x,roc,dx);
427 Float_t r0=TMath::Sqrt((x[0] )*(x[0] )+(x[1] )*(x[1] ));
428 Float_t r1=TMath::Sqrt((x[0]+dx[0])*(x[0]+dx[0])+(x[1]+dx[1])*(x[1]+dx[1]));
429 h->SetBinContent(iz,ir,r1-r0);
430 }
431 }
0116859c 432 return h;
433
434}
435
436TH2F* AliTPCCorrection::CreateHistoDRPhiinZR(Float_t phi,Int_t nz,Int_t nr) {
437 //
438 // Simple plot functionality.
439 // Returns a 2d hisogram which represents the corrections in rphi direction (drphi)
440 // in respect to angle phi within the ZR plane.
441 // The histogramm has nx times ny entries.
442 //
443 TH2F *h=CreateTH2F("drphi_zr",GetTitle(),"z [cm]","r [cm]","drphi [cm]",
444 nz,-250.,250.,nr,85.,250.);
445 Float_t x[3],dx[3];
446 for (Int_t iz=1;iz<=nz;++iz) {
447 x[2]=h->GetXaxis()->GetBinCenter(iz);
448 Int_t roc=x[2]>0.?0:18; // FIXME
449 for (Int_t ir=1;ir<=nr;++ir) {
450 Float_t radius=h->GetYaxis()->GetBinCenter(ir);
451 x[0]=radius*TMath::Cos(phi);
452 x[1]=radius*TMath::Sin(phi);
453 GetCorrection(x,roc,dx);
454 Float_t r0=TMath::Sqrt((x[0] )*(x[0] )+(x[1] )*(x[1] ));
455 Float_t phi0=TMath::ATan2(x[1] ,x[0] );
456 Float_t phi1=TMath::ATan2(x[1]+dx[1],x[0]+dx[0]);
457
458 Float_t dphi=phi1-phi0;
459 if (dphi<TMath::Pi()) dphi+=TMath::TwoPi();
460 if (dphi>TMath::Pi()) dphi-=TMath::TwoPi();
461
462 h->SetBinContent(iz,ir,r0*dphi);
463 }
464 }
465 return h;
466}
467
c9cbd2f2 468TH2F* AliTPCCorrection::CreateHistoDZinZR(Float_t phi,Int_t nz,Int_t nr) {
469 //
470 // Simple plot functionality.
471 // Returns a 2d hisogram which represents the corrections in longitudinal direction (dz)
472 // in respect to angle phi within the ZR plane.
473 // The histogramm has nx times ny entries.
474 //
475 TH2F *h=CreateTH2F("dz_zr",GetTitle(),"z [cm]","r [cm]","dz [cm]",
476 nz,-250.,250.,nr,85.,250.);
477 Float_t x[3],dx[3];
478 for (Int_t ir=1;ir<=nr;++ir) {
479 Float_t radius=h->GetYaxis()->GetBinCenter(ir);
480 x[0]=radius*TMath::Cos(phi);
481 x[1]=radius*TMath::Sin(phi);
482 for (Int_t iz=1;iz<=nz;++iz) {
483 x[2]=h->GetXaxis()->GetBinCenter(iz);
484 Int_t roc=x[2]>0.?0:18; // FIXME
485 GetCorrection(x,roc,dx);
486 h->SetBinContent(iz,ir,dx[2]);
487 }
488 }
489 return h;
490
491}
492
493
0116859c 494TH2F* AliTPCCorrection::CreateTH2F(const char *name,const char *title,
495 const char *xlabel,const char *ylabel,const char *zlabel,
496 Int_t nbinsx,Double_t xlow,Double_t xup,
497 Int_t nbinsy,Double_t ylow,Double_t yup) {
498 //
499 // Helper function to create a 2d histogramm of given size
500 //
501
502 TString hname=name;
503 Int_t i=0;
504 if (gDirectory) {
505 while (gDirectory->FindObject(hname.Data())) {
506 hname =name;
507 hname+="_";
508 hname+=i;
509 ++i;
510 }
511 }
512 TH2F *h=new TH2F(hname.Data(),title,
513 nbinsx,xlow,xup,
514 nbinsy,ylow,yup);
515 h->GetXaxis()->SetTitle(xlabel);
516 h->GetYaxis()->SetTitle(ylabel);
517 h->GetZaxis()->SetTitle(zlabel);
518 h->SetStats(0);
519 return h;
520}
521
0116859c 522// Simple Interpolation functions: e.g. with bi(tri)cubic interpolations (not yet in TH2 and TH3)
523
524void AliTPCCorrection::Interpolate2DEdistortion( const Int_t order, const Double_t r, const Double_t z,
b1f0a2a5 525 const Double_t er[kNZ][kNR], Double_t &erValue ) {
0116859c 526 //
527 // Interpolate table - 2D interpolation
528 //
25732bff 529 Double_t saveEr[5] = {0,0,0,0,0};
0116859c 530
531 Search( kNZ, fgkZList, z, fJLow ) ;
532 Search( kNR, fgkRList, r, fKLow ) ;
533 if ( fJLow < 0 ) fJLow = 0 ; // check if out of range
534 if ( fKLow < 0 ) fKLow = 0 ;
535 if ( fJLow + order >= kNZ - 1 ) fJLow = kNZ - 1 - order ;
536 if ( fKLow + order >= kNR - 1 ) fKLow = kNR - 1 - order ;
537
538 for ( Int_t j = fJLow ; j < fJLow + order + 1 ; j++ ) {
b1f0a2a5 539 saveEr[j-fJLow] = Interpolate( &fgkRList[fKLow], &er[j][fKLow], order, r ) ;
0116859c 540 }
b1f0a2a5 541 erValue = Interpolate( &fgkZList[fJLow], saveEr, order, z ) ;
0116859c 542
543}
544
c9cbd2f2 545void AliTPCCorrection::Interpolate3DEdistortion( const Int_t order, const Double_t r, const Float_t phi, const Double_t z,
546 const Double_t er[kNZ][kNPhi][kNR], const Double_t ephi[kNZ][kNPhi][kNR], const Double_t ez[kNZ][kNPhi][kNR],
547 Double_t &erValue, Double_t &ephiValue, Double_t &ezValue) {
548 //
549 // Interpolate table - 3D interpolation
550 //
551
25732bff 552 Double_t saveEr[5]= {0,0,0,0,0};
553 Double_t savedEr[5]= {0,0,0,0,0} ;
554
555 Double_t saveEphi[5]= {0,0,0,0,0};
556 Double_t savedEphi[5]= {0,0,0,0,0} ;
557
558 Double_t saveEz[5]= {0,0,0,0,0};
559 Double_t savedEz[5]= {0,0,0,0,0} ;
c9cbd2f2 560
561 Search( kNZ, fgkZList, z, fILow ) ;
562 Search( kNPhi, fgkPhiList, z, fJLow ) ;
563 Search( kNR, fgkRList, r, fKLow ) ;
564
565 if ( fILow < 0 ) fILow = 0 ; // check if out of range
566 if ( fJLow < 0 ) fJLow = 0 ;
567 if ( fKLow < 0 ) fKLow = 0 ;
568
569 if ( fILow + order >= kNZ - 1 ) fILow = kNZ - 1 - order ;
570 if ( fJLow + order >= kNPhi - 1 ) fJLow = kNPhi - 1 - order ;
571 if ( fKLow + order >= kNR - 1 ) fKLow = kNR - 1 - order ;
572
573 for ( Int_t i = fILow ; i < fILow + order + 1 ; i++ ) {
574 for ( Int_t j = fJLow ; j < fJLow + order + 1 ; j++ ) {
575 saveEr[j-fJLow] = Interpolate( &fgkRList[fKLow], &er[i][j][fKLow], order, r ) ;
576 saveEphi[j-fJLow] = Interpolate( &fgkRList[fKLow], &ephi[i][j][fKLow], order, r ) ;
577 saveEz[j-fJLow] = Interpolate( &fgkRList[fKLow], &ez[i][j][fKLow], order, r ) ;
578 }
579 savedEr[i-fILow] = Interpolate( &fgkPhiList[fJLow], saveEr, order, phi ) ;
580 savedEphi[i-fILow] = Interpolate( &fgkPhiList[fJLow], saveEphi, order, phi ) ;
581 savedEz[i-fILow] = Interpolate( &fgkPhiList[fJLow], saveEz, order, phi ) ;
582 }
583 erValue = Interpolate( &fgkZList[fILow], savedEr, order, z ) ;
584 ephiValue = Interpolate( &fgkZList[fILow], savedEphi, order, z ) ;
585 ezValue = Interpolate( &fgkZList[fILow], savedEz, order, z ) ;
586
587}
588
589Double_t AliTPCCorrection::Interpolate2DTable( const Int_t order, const Double_t x, const Double_t y,
590 const Int_t nx, const Int_t ny, const Double_t xv[], const Double_t yv[],
591 const TMatrixD &array ) {
592 //
593 // Interpolate table (TMatrix format) - 2D interpolation
594 //
595
596 static Int_t jlow = 0, klow = 0 ;
25732bff 597 Double_t saveArray[5] = {0,0,0,0,0} ;
c9cbd2f2 598
599 Search( nx, xv, x, jlow ) ;
600 Search( ny, yv, y, klow ) ;
601 if ( jlow < 0 ) jlow = 0 ; // check if out of range
602 if ( klow < 0 ) klow = 0 ;
603 if ( jlow + order >= nx - 1 ) jlow = nx - 1 - order ;
604 if ( klow + order >= ny - 1 ) klow = ny - 1 - order ;
605
606 for ( Int_t j = jlow ; j < jlow + order + 1 ; j++ )
607 {
608 Double_t *ajkl = &((TMatrixD&)array)(j,klow);
609 saveArray[j-jlow] = Interpolate( &yv[klow], ajkl , order, y ) ;
610 }
611
612 return( Interpolate( &xv[jlow], saveArray, order, x ) ) ;
613
614}
615
616Double_t AliTPCCorrection::Interpolate3DTable( const Int_t order, const Double_t x, const Double_t y, const Double_t z,
617 const Int_t nx, const Int_t ny, const Int_t nz,
618 const Double_t xv[], const Double_t yv[], const Double_t zv[],
619 TMatrixD **arrayofArrays ) {
620 //
621 // Interpolate table (TMatrix format) - 3D interpolation
622 //
623
624 static Int_t ilow = 0, jlow = 0, klow = 0 ;
25732bff 625 Double_t saveArray[5]= {0,0,0,0,0};
626 Double_t savedArray[5]= {0,0,0,0,0} ;
c9cbd2f2 627
628 Search( nx, xv, x, ilow ) ;
629 Search( ny, yv, y, jlow ) ;
630 Search( nz, zv, z, klow ) ;
631
632 if ( ilow < 0 ) ilow = 0 ; // check if out of range
633 if ( jlow < 0 ) jlow = 0 ;
634 if ( klow < 0 ) klow = 0 ;
635
636 if ( ilow + order >= nx - 1 ) ilow = nx - 1 - order ;
637 if ( jlow + order >= ny - 1 ) jlow = ny - 1 - order ;
638 if ( klow + order >= nz - 1 ) klow = nz - 1 - order ;
639
640 for ( Int_t k = klow ; k < klow + order + 1 ; k++ )
641 {
642 TMatrixD &table = *arrayofArrays[k] ;
643 for ( Int_t i = ilow ; i < ilow + order + 1 ; i++ )
644 {
645 saveArray[i-ilow] = Interpolate( &yv[jlow], &table(i,jlow), order, y ) ;
646 }
647 savedArray[k-klow] = Interpolate( &xv[ilow], saveArray, order, x ) ;
648 }
649 return( Interpolate( &zv[klow], savedArray, order, z ) ) ;
650
651}
652
653
0116859c 654Double_t AliTPCCorrection::Interpolate( const Double_t xArray[], const Double_t yArray[],
b1f0a2a5 655 const Int_t order, const Double_t x ) {
0116859c 656 //
657 // Interpolate function Y(x) using linear (order=1) or quadratic (order=2) interpolation.
658 //
659
660 Double_t y ;
661 if ( order == 2 ) { // Quadratic Interpolation = 2
662 y = (x-xArray[1]) * (x-xArray[2]) * yArray[0] / ( (xArray[0]-xArray[1]) * (xArray[0]-xArray[2]) ) ;
663 y += (x-xArray[2]) * (x-xArray[0]) * yArray[1] / ( (xArray[1]-xArray[2]) * (xArray[1]-xArray[0]) ) ;
664 y += (x-xArray[0]) * (x-xArray[1]) * yArray[2] / ( (xArray[2]-xArray[0]) * (xArray[2]-xArray[1]) ) ;
665 } else { // Linear Interpolation = 1
666 y = yArray[0] + ( yArray[1]-yArray[0] ) * ( x-xArray[0] ) / ( xArray[1] - xArray[0] ) ;
667 }
668
669 return (y);
670
671}
672
673
b1f0a2a5 674void AliTPCCorrection::Search( const Int_t n, const Double_t xArray[], const Double_t x, Int_t &low ) {
0116859c 675 //
676 // Search an ordered table by starting at the most recently used point
677 //
678
679 Long_t middle, high ;
680 Int_t ascend = 0, increment = 1 ;
681
682 if ( xArray[n-1] >= xArray[0] ) ascend = 1 ; // Ascending ordered table if true
683
684 if ( low < 0 || low > n-1 ) {
685 low = -1 ; high = n ;
686 } else { // Ordered Search phase
687 if ( (Int_t)( x >= xArray[low] ) == ascend ) {
688 if ( low == n-1 ) return ;
689 high = low + 1 ;
690 while ( (Int_t)( x >= xArray[high] ) == ascend ) {
691 low = high ;
692 increment *= 2 ;
693 high = low + increment ;
694 if ( high > n-1 ) { high = n ; break ; }
695 }
696 } else {
697 if ( low == 0 ) { low = -1 ; return ; }
698 high = low - 1 ;
699 while ( (Int_t)( x < xArray[low] ) == ascend ) {
700 high = low ;
701 increment *= 2 ;
702 if ( increment >= high ) { low = -1 ; break ; }
703 else low = high - increment ;
704 }
705 }
706 }
707
708 while ( (high-low) != 1 ) { // Binary Search Phase
709 middle = ( high + low ) / 2 ;
710 if ( (Int_t)( x >= xArray[middle] ) == ascend )
711 low = middle ;
712 else
713 high = middle ;
714 }
715
716 if ( x == xArray[n-1] ) low = n-2 ;
717 if ( x == xArray[0] ) low = 0 ;
718
719}
720
35ae345f 721void AliTPCCorrection::InitLookUpfulcrums() {
722 //
723 // Initialization of interpolation points - for main look up table
724 // (course grid in the middle, fine grid on the borders)
725 //
726
727 AliTPCROC * roc = AliTPCROC::Instance();
728 const Double_t rLow = TMath::Floor(roc->GetPadRowRadii(0,0))-1; // first padRow plus some margin
729
730 // fulcrums in R
731 fgkRList[0] = rLow;
732 for (Int_t i = 1; i<kNR; i++) {
733 fgkRList[i] = fgkRList[i-1] + 3.5; // 3.5 cm spacing
734 if (fgkRList[i]<90 ||fgkRList[i]>245)
735 fgkRList[i] = fgkRList[i-1] + 0.5; // 0.5 cm spacing
736 else if (fgkRList[i]<100 || fgkRList[i]>235)
737 fgkRList[i] = fgkRList[i-1] + 1.5; // 1.5 cm spacing
738 else if (fgkRList[i]<120 || fgkRList[i]>225)
739 fgkRList[i] = fgkRList[i-1] + 2.5; // 2.5 cm spacing
740 }
741
742 // fulcrums in Z
743 fgkZList[0] = -249.5;
744 fgkZList[kNZ-1] = 249.5;
745 for (Int_t j = 1; j<kNZ/2; j++) {
746 fgkZList[j] = fgkZList[j-1];
747 if (TMath::Abs(fgkZList[j])< 0.15)
748 fgkZList[j] = fgkZList[j-1] + 0.09; // 0.09 cm spacing
749 else if(TMath::Abs(fgkZList[j])< 0.6)
750 fgkZList[j] = fgkZList[j-1] + 0.4; // 0.4 cm spacing
751 else if (TMath::Abs(fgkZList[j])< 2.5 || TMath::Abs(fgkZList[j])>248)
752 fgkZList[j] = fgkZList[j-1] + 0.5; // 0.5 cm spacing
753 else if (TMath::Abs(fgkZList[j])<10 || TMath::Abs(fgkZList[j])>235)
754 fgkZList[j] = fgkZList[j-1] + 1.5; // 1.5 cm spacing
755 else if (TMath::Abs(fgkZList[j])<25 || TMath::Abs(fgkZList[j])>225)
756 fgkZList[j] = fgkZList[j-1] + 2.5; // 2.5 cm spacing
757 else
758 fgkZList[j] = fgkZList[j-1] + 4; // 4 cm spacing
759
760 fgkZList[kNZ-j-1] = -fgkZList[j];
761 }
762
763 // fulcrums in phi
764 for (Int_t k = 0; k<kNPhi; k++)
765 fgkPhiList[k] = TMath::TwoPi()*k/(kNPhi-1);
766
767
768}
769
770
c9cbd2f2 771void AliTPCCorrection::PoissonRelaxation2D(TMatrixD &arrayV, TMatrixD &chargeDensity,
772 TMatrixD &arrayErOverEz, TMatrixD &arrayDeltaEz,
773 const Int_t rows, const Int_t columns, const Int_t iterations,
774 const Bool_t rocDisplacement ) {
1b923461 775 //
776 // Solve Poisson's Equation by Relaxation Technique in 2D (assuming cylindrical symmetry)
777 //
778 // Solve Poissons equation in a cylindrical coordinate system. The arrayV matrix must be filled with the
779 // boundary conditions on the first and last rows, and the first and last columns. The remainder of the
780 // array can be blank or contain a preliminary guess at the solution. The Charge density matrix contains
781 // the enclosed spacecharge density at each point. The charge density matrix can be full of zero's if
782 // you wish to solve Laplaces equation however it should not contain random numbers or you will get
783 // random numbers back as a solution.
784 // Poisson's equation is solved by iteratively relaxing the matrix to the final solution. In order to
785 // speed up the convergence to the best solution, this algorithm does a binary expansion of the solution
786 // space. First it solves the problem on a very sparse grid by skipping rows and columns in the original
787 // matrix. Then it doubles the number of points and solves the problem again. Then it doubles the
788 // number of points and solves the problem again. This happens several times until the maximum number
789 // of points has been included in the array.
790 //
791 // NOTE: In order for this algorithmto work, the number of rows and columns must be a power of 2 plus one.
792 // So rows == 2**M + 1 and columns == 2**N + 1. The number of rows and columns can be different.
793 //
c9cbd2f2 794 // NOTE: rocDisplacement is used to include (or ignore) the ROC misalignment in the dz calculation
795 //
1b923461 796 // Original code by Jim Thomas (STAR TPC Collaboration)
797 //
798
799 Double_t ezField = (fgkCathodeV-fgkGG)/fgkTPCZ0; // = ALICE Electric Field (V/cm) Magnitude ~ -400 V/cm;
800
801 const Float_t gridSizeR = (fgkOFCRadius-fgkIFCRadius) / (rows-1) ;
802 const Float_t gridSizeZ = fgkTPCZ0 / (columns-1) ;
803 const Float_t ratio = gridSizeR*gridSizeR / (gridSizeZ*gridSizeZ) ;
804
805 TMatrixD arrayEr(rows,columns) ;
806 TMatrixD arrayEz(rows,columns) ;
807
808 //Check that number of rows and columns is suitable for a binary expansion
809
810 if ( !IsPowerOfTwo(rows-1) ) {
811 AliError("PoissonRelaxation - Error in the number of rows. Must be 2**M - 1");
812 return;
813 }
814 if ( !IsPowerOfTwo(columns-1) ) {
815 AliError("PoissonRelaxation - Error in the number of columns. Must be 2**N - 1");
816 return;
817 }
818
819 // Solve Poisson's equation in cylindrical coordinates by relaxation technique
820 // Allow for different size grid spacing in R and Z directions
821 // Use a binary expansion of the size of the matrix to speed up the solution of the problem
822
823 Int_t iOne = (rows-1)/4 ;
824 Int_t jOne = (columns-1)/4 ;
825 // Solve for N in 2**N, add one.
826 Int_t loops = 1 + (int) ( 0.5 + TMath::Log2( (double) TMath::Max(iOne,jOne) ) ) ;
827
828 for ( Int_t count = 0 ; count < loops ; count++ ) {
829 // Loop while the matrix expands & the resolution increases.
830
831 Float_t tempGridSizeR = gridSizeR * iOne ;
832 Float_t tempRatio = ratio * iOne * iOne / ( jOne * jOne ) ;
833 Float_t tempFourth = 1.0 / (2.0 + 2.0*tempRatio) ;
834
835 // Do this the standard C++ way to avoid gcc extensions for Float_t coef1[rows]
836 std::vector<float> coef1(rows) ;
837 std::vector<float> coef2(rows) ;
838
839 for ( Int_t i = iOne ; i < rows-1 ; i+=iOne ) {
840 Float_t radius = fgkIFCRadius + i*gridSizeR ;
841 coef1[i] = 1.0 + tempGridSizeR/(2*radius);
842 coef2[i] = 1.0 - tempGridSizeR/(2*radius);
843 }
844
845 TMatrixD sumChargeDensity(rows,columns) ;
846
847 for ( Int_t i = iOne ; i < rows-1 ; i += iOne ) {
848 Float_t radius = fgkIFCRadius + iOne*gridSizeR ;
849 for ( Int_t j = jOne ; j < columns-1 ; j += jOne ) {
850 if ( iOne == 1 && jOne == 1 ) sumChargeDensity(i,j) = chargeDensity(i,j) ;
851 else {
852 // Add up all enclosed charge density contributions within 1/2 unit in all directions
853 Float_t weight = 0.0 ;
854 Float_t sum = 0.0 ;
855 sumChargeDensity(i,j) = 0.0 ;
856 for ( Int_t ii = i-iOne/2 ; ii <= i+iOne/2 ; ii++ ) {
857 for ( Int_t jj = j-jOne/2 ; jj <= j+jOne/2 ; jj++ ) {
858 if ( ii == i-iOne/2 || ii == i+iOne/2 || jj == j-jOne/2 || jj == j+jOne/2 ) weight = 0.5 ;
859 else
860 weight = 1.0 ;
861 // Note that this is cylindrical geometry
862 sumChargeDensity(i,j) += chargeDensity(ii,jj)*weight*radius ;
863 sum += weight*radius ;
864 }
865 }
866 sumChargeDensity(i,j) /= sum ;
867 }
868 sumChargeDensity(i,j) *= tempGridSizeR*tempGridSizeR; // just saving a step later on
869 }
870 }
871
872 for ( Int_t k = 1 ; k <= iterations; k++ ) {
873 // Solve Poisson's Equation
874 // Over-relaxation index, must be >= 1 but < 2. Arrange for it to evolve from 2 => 1
875 // as interations increase.
876 Float_t overRelax = 1.0 + TMath::Sqrt( TMath::Cos( (k*TMath::PiOver2())/iterations ) ) ;
877 Float_t overRelaxM1 = overRelax - 1.0 ;
878 Float_t overRelaxtempFourth, overRelaxcoef5 ;
879 overRelaxtempFourth = overRelax * tempFourth ;
880 overRelaxcoef5 = overRelaxM1 / overRelaxtempFourth ;
881
882 for ( Int_t i = iOne ; i < rows-1 ; i += iOne ) {
883 for ( Int_t j = jOne ; j < columns-1 ; j += jOne ) {
884
885 arrayV(i,j) = ( coef2[i] * arrayV(i-iOne,j)
886 + tempRatio * ( arrayV(i,j-jOne) + arrayV(i,j+jOne) )
887 - overRelaxcoef5 * arrayV(i,j)
888 + coef1[i] * arrayV(i+iOne,j)
889 + sumChargeDensity(i,j)
890 ) * overRelaxtempFourth;
891 }
892 }
893
894 if ( k == iterations ) {
895 // After full solution is achieved, copy low resolution solution into higher res array
896 for ( Int_t i = iOne ; i < rows-1 ; i += iOne ) {
897 for ( Int_t j = jOne ; j < columns-1 ; j += jOne ) {
898
899 if ( iOne > 1 ) {
900 arrayV(i+iOne/2,j) = ( arrayV(i+iOne,j) + arrayV(i,j) ) / 2 ;
901 if ( i == iOne ) arrayV(i-iOne/2,j) = ( arrayV(0,j) + arrayV(iOne,j) ) / 2 ;
902 }
903 if ( jOne > 1 ) {
904 arrayV(i,j+jOne/2) = ( arrayV(i,j+jOne) + arrayV(i,j) ) / 2 ;
905 if ( j == jOne ) arrayV(i,j-jOne/2) = ( arrayV(i,0) + arrayV(i,jOne) ) / 2 ;
906 }
907 if ( iOne > 1 && jOne > 1 ) {
908 arrayV(i+iOne/2,j+jOne/2) = ( arrayV(i+iOne,j+jOne) + arrayV(i,j) ) / 2 ;
909 if ( i == iOne ) arrayV(i-iOne/2,j-jOne/2) = ( arrayV(0,j-jOne) + arrayV(iOne,j) ) / 2 ;
910 if ( j == jOne ) arrayV(i-iOne/2,j-jOne/2) = ( arrayV(i-iOne,0) + arrayV(i,jOne) ) / 2 ;
911 // Note that this leaves a point at the upper left and lower right corners uninitialized.
912 // -> Not a big deal.
913 }
914
915 }
916 }
917 }
918
919 }
920
921 iOne = iOne / 2 ; if ( iOne < 1 ) iOne = 1 ;
922 jOne = jOne / 2 ; if ( jOne < 1 ) jOne = 1 ;
923
c9cbd2f2 924 sumChargeDensity.Clear();
1b923461 925 }
926
927 // Differentiate V(r) and solve for E(r) using special equations for the first and last rows
928 for ( Int_t j = 0 ; j < columns ; j++ ) {
929 for ( Int_t i = 1 ; i < rows-1 ; i++ ) arrayEr(i,j) = -1 * ( arrayV(i+1,j) - arrayV(i-1,j) ) / (2*gridSizeR) ;
930 arrayEr(0,j) = -1 * ( -0.5*arrayV(2,j) + 2.0*arrayV(1,j) - 1.5*arrayV(0,j) ) / gridSizeR ;
931 arrayEr(rows-1,j) = -1 * ( 1.5*arrayV(rows-1,j) - 2.0*arrayV(rows-2,j) + 0.5*arrayV(rows-3,j) ) / gridSizeR ;
932 }
933
934 // Differentiate V(z) and solve for E(z) using special equations for the first and last columns
935 for ( Int_t i = 0 ; i < rows ; i++) {
936 for ( Int_t j = 1 ; j < columns-1 ; j++ ) arrayEz(i,j) = -1 * ( arrayV(i,j+1) - arrayV(i,j-1) ) / (2*gridSizeZ) ;
937 arrayEz(i,0) = -1 * ( -0.5*arrayV(i,2) + 2.0*arrayV(i,1) - 1.5*arrayV(i,0) ) / gridSizeZ ;
938 arrayEz(i,columns-1) = -1 * ( 1.5*arrayV(i,columns-1) - 2.0*arrayV(i,columns-2) + 0.5*arrayV(i,columns-3) ) / gridSizeZ ;
939 }
940
941 for ( Int_t i = 0 ; i < rows ; i++) {
942 // Note: go back and compare to old version of this code. See notes below.
943 // JT Test ... attempt to divide by real Ez not Ez to first order
944 for ( Int_t j = 0 ; j < columns ; j++ ) {
945 arrayEz(i,j) += ezField;
946 // This adds back the overall Z gradient of the field (main E field component)
947 }
948 // Warning: (-=) assumes you are using an error potetial without the overall Field included
949 }
950
951 // Integrate Er/Ez from Z to zero
952 for ( Int_t j = 0 ; j < columns ; j++ ) {
953 for ( Int_t i = 0 ; i < rows ; i++ ) {
c9cbd2f2 954
1b923461 955 Int_t index = 1 ; // Simpsons rule if N=odd. If N!=odd then add extra point by trapezoidal rule.
956 arrayErOverEz(i,j) = 0.0 ;
c9cbd2f2 957 arrayDeltaEz(i,j) = 0.0 ;
958
1b923461 959 for ( Int_t k = j ; k < columns ; k++ ) {
960 arrayErOverEz(i,j) += index*(gridSizeZ/3.0)*arrayEr(i,k)/arrayEz(i,k) ;
c9cbd2f2 961 arrayDeltaEz(i,j) += index*(gridSizeZ/3.0)*(arrayEz(i,k)-ezField) ;
1b923461 962 if ( index != 4 ) index = 4; else index = 2 ;
963 }
c9cbd2f2 964 if ( index == 4 ) {
965 arrayErOverEz(i,j) -= (gridSizeZ/3.0)*arrayEr(i,columns-1)/arrayEz(i,columns-1) ;
966 arrayDeltaEz(i,j) -= (gridSizeZ/3.0)*(arrayEz(i,columns-1)-ezField) ;
967 }
968 if ( index == 2 ) {
969 arrayErOverEz(i,j) += (gridSizeZ/3.0) * ( 0.5*arrayEr(i,columns-2)/arrayEz(i,columns-2)
970 -2.5*arrayEr(i,columns-1)/arrayEz(i,columns-1));
971 arrayDeltaEz(i,j) += (gridSizeZ/3.0) * ( 0.5*(arrayEz(i,columns-2)-ezField)
972 -2.5*(arrayEz(i,columns-1)-ezField));
973 }
974 if ( j == columns-2 ) {
975 arrayErOverEz(i,j) = (gridSizeZ/3.0) * ( 1.5*arrayEr(i,columns-2)/arrayEz(i,columns-2)
976 +1.5*arrayEr(i,columns-1)/arrayEz(i,columns-1) ) ;
977 arrayDeltaEz(i,j) = (gridSizeZ/3.0) * ( 1.5*(arrayEz(i,columns-2)-ezField)
978 +1.5*(arrayEz(i,columns-1)-ezField) ) ;
979 }
980 if ( j == columns-1 ) {
981 arrayErOverEz(i,j) = 0.0 ;
982 arrayDeltaEz(i,j) = 0.0 ;
983 }
1b923461 984 }
985 }
986
c9cbd2f2 987 // calculate z distortion from the integrated Delta Ez residuals
988 // and include the aquivalence (Volt to cm) of the ROC shift !!
989
990 for ( Int_t j = 0 ; j < columns ; j++ ) {
991 for ( Int_t i = 0 ; i < rows ; i++ ) {
992
993 // Scale the Ez distortions with the drift velocity pertubation -> delivers cm
994 arrayDeltaEz(i,j) = arrayDeltaEz(i,j)*fgkdvdE;
995
996 // ROC Potential in cm aquivalent
997 Double_t dzROCShift = arrayV(i, columns -1)/ezField;
998 if ( rocDisplacement ) arrayDeltaEz(i,j) = arrayDeltaEz(i,j) + dzROCShift; // add the ROC misaligment
999
1000 }
1001 }
1002
1003 arrayEr.Clear();
1004 arrayEz.Clear();
1005
1b923461 1006}
1007
c9cbd2f2 1008void AliTPCCorrection::PoissonRelaxation3D( TMatrixD**arrayofArrayV, TMatrixD**arrayofChargeDensities,
1009 TMatrixD**arrayofEroverEz, TMatrixD**arrayofEPhioverEz, TMatrixD**arrayofDeltaEz,
1010 const Int_t rows, const Int_t columns, const Int_t phislices,
1011 const Float_t deltaphi, const Int_t iterations, const Int_t symmetry,
1012 Bool_t rocDisplacement ) {
1013 //
1014 // 3D - Solve Poisson's Equation in 3D by Relaxation Technique
1015 //
1016 // NOTE: In order for this algorith to work, the number of rows and columns must be a power of 2 plus one.
1017 // The number of rows and COLUMNS can be different.
1018 //
1019 // ROWS == 2**M + 1
1020 // COLUMNS == 2**N + 1
1021 // PHISLICES == Arbitrary but greater than 3
1022 //
1023 // DeltaPhi in Radians
1024 //
1025 // SYMMETRY = 0 if no phi symmetries, and no phi boundary conditions
1026 // = 1 if we have reflection symmetry at the boundaries (eg. sector symmetry or half sector symmetries).
1027 //
1028 // NOTE: rocDisplacement is used to include (or ignore) the ROC misalignment in the dz calculation
1029
1030 const Double_t ezField = (fgkCathodeV-fgkGG)/fgkTPCZ0; // = ALICE Electric Field (V/cm) Magnitude ~ -400 V/cm;
1031
1032 const Float_t gridSizeR = (fgkOFCRadius-fgkIFCRadius) / (rows-1) ;
1033 const Float_t gridSizePhi = deltaphi ;
1034 const Float_t gridSizeZ = fgkTPCZ0 / (columns-1) ;
1035 const Float_t ratioPhi = gridSizeR*gridSizeR / (gridSizePhi*gridSizePhi) ;
1036 const Float_t ratioZ = gridSizeR*gridSizeR / (gridSizeZ*gridSizeZ) ;
1037
1038 TMatrixD arrayE(rows,columns) ;
1039
1040 // Check that the number of rows and columns is suitable for a binary expansion
1041 if ( !IsPowerOfTwo((rows-1)) ) {
1042 AliError("Poisson3DRelaxation - Error in the number of rows. Must be 2**M - 1");
1043 return; }
1044 if ( !IsPowerOfTwo((columns-1)) ) {
1045 AliError("Poisson3DRelaxation - Error in the number of columns. Must be 2**N - 1");
1046 return; }
1047 if ( phislices <= 3 ) {
1048 AliError("Poisson3DRelaxation - Error in the number of phislices. Must be larger than 3");
1049 return; }
1050 if ( phislices > 1000 ) {
1051 AliError("Poisson3D phislices > 1000 is not allowed (nor wise) ");
1052 return; }
1053
1054 // Solve Poisson's equation in cylindrical coordinates by relaxation technique
1055 // Allow for different size grid spacing in R and Z directions
1056 // Use a binary expansion of the matrix to speed up the solution of the problem
1057
1058 Int_t loops, mplus, mminus, signplus, signminus ;
1059 Int_t ione = (rows-1)/4 ;
1060 Int_t jone = (columns-1)/4 ;
1061 loops = TMath::Max(ione, jone) ; // Calculate the number of loops for the binary expansion
1062 loops = 1 + (int) ( 0.5 + TMath::Log2((double)loops) ) ; // Solve for N in 2**N
1063
1064 TMatrixD* arrayofSumChargeDensities[1000] ; // Create temporary arrays to store low resolution charge arrays
1065
1066 for ( Int_t i = 0 ; i < phislices ; i++ ) { arrayofSumChargeDensities[i] = new TMatrixD(rows,columns) ; }
1067
1068 for ( Int_t count = 0 ; count < loops ; count++ ) { // START the master loop and do the binary expansion
1069
1070 Float_t tempgridSizeR = gridSizeR * ione ;
1071 Float_t tempratioPhi = ratioPhi * ione * ione ; // Used tobe divided by ( m_one * m_one ) when m_one was != 1
1072 Float_t tempratioZ = ratioZ * ione * ione / ( jone * jone ) ;
1073
1074 std::vector<float> coef1(rows) ; // Do this the standard C++ way to avoid gcc extensions for Float_t coef1[rows]
1075 std::vector<float> coef2(rows) ; // Do this the standard C++ way to avoid gcc extensions for Float_t coef1[rows]
1076 std::vector<float> coef3(rows) ; // Do this the standard C++ way to avoid gcc extensions for Float_t coef1[rows]
1077 std::vector<float> coef4(rows) ; // Do this the standard C++ way to avoid gcc extensions for Float_t coef1[rows]
1078
1079 for ( Int_t i = ione ; i < rows-1 ; i+=ione ) {
1080 Float_t radius = fgkIFCRadius + i*gridSizeR ;
1081 coef1[i] = 1.0 + tempgridSizeR/(2*radius);
1082 coef2[i] = 1.0 - tempgridSizeR/(2*radius);
1083 coef3[i] = tempratioPhi/(radius*radius);
1084 coef4[i] = 0.5 / (1.0 + tempratioZ + coef3[i]);
1085 }
1086
1087 for ( Int_t m = 0 ; m < phislices ; m++ ) {
1088 TMatrixD &chargeDensity = *arrayofChargeDensities[m] ;
1089 TMatrixD &sumChargeDensity = *arrayofSumChargeDensities[m] ;
1090 for ( Int_t i = ione ; i < rows-1 ; i += ione ) {
1091 Float_t radius = fgkIFCRadius + i*gridSizeR ;
1092 for ( Int_t j = jone ; j < columns-1 ; j += jone ) {
1093 if ( ione == 1 && jone == 1 ) sumChargeDensity(i,j) = chargeDensity(i,j) ;
1094 else { // Add up all enclosed charge density contributions within 1/2 unit in all directions
1095 Float_t weight = 0.0 ;
1096 Float_t sum = 0.0 ;
1097 sumChargeDensity(i,j) = 0.0 ;
1098 for ( Int_t ii = i-ione/2 ; ii <= i+ione/2 ; ii++ ) {
1099 for ( Int_t jj = j-jone/2 ; jj <= j+jone/2 ; jj++ ) {
1100 if ( ii == i-ione/2 || ii == i+ione/2 || jj == j-jone/2 || jj == j+jone/2 ) weight = 0.5 ;
1101 else
1102 weight = 1.0 ;
1103 sumChargeDensity(i,j) += chargeDensity(ii,jj)*weight*radius ;
1104 sum += weight*radius ;
1105 }
1106 }
1107 sumChargeDensity(i,j) /= sum ;
1108 }
1109 sumChargeDensity(i,j) *= tempgridSizeR*tempgridSizeR; // just saving a step later on
1110 }
1111 }
1112 }
1113
1114 for ( Int_t k = 1 ; k <= iterations; k++ ) {
1115
1116 // over-relaxation index, >= 1 but < 2
1117 Float_t overRelax = 1.0 + TMath::Sqrt( TMath::Cos( (k*TMath::PiOver2())/iterations ) ) ;
1118 Float_t overRelaxM1 = overRelax - 1.0 ;
1119
1120 std::vector<float> overRelaxcoef4(rows) ; // Do this the standard C++ way to avoid gcc extensions
1121 std::vector<float> overRelaxcoef5(rows) ; // Do this the standard C++ way to avoid gcc extensions
1122
1123 for ( Int_t i = ione ; i < rows-1 ; i+=ione ) {
1124 overRelaxcoef4[i] = overRelax * coef4[i] ;
1125 overRelaxcoef5[i] = overRelaxM1 / overRelaxcoef4[i] ;
1126 }
1127
1128 for ( Int_t m = 0 ; m < phislices ; m++ ) {
1129
1130 mplus = m + 1; signplus = 1 ;
1131 mminus = m - 1 ; signminus = 1 ;
1132 if (symmetry==1) { // Reflection symmetry in phi (e.g. symmetry at sector boundaries, or half sectors, etc.)
1133 if ( mplus > phislices-1 ) mplus = phislices - 2 ;
1134 if ( mminus < 0 ) mminus = 1 ;
1135 }
1136 else if (symmetry==-1) { // Anti-symmetry in phi
1137 if ( mplus > phislices-1 ) { mplus = phislices - 2 ; signplus = -1 ; }
1138 if ( mminus < 0 ) { mminus = 1 ; signminus = -1 ; }
1139 }
1140 else { // No Symmetries in phi, no boundaries, the calculation is continuous across all phi
1141 if ( mplus > phislices-1 ) mplus = m + 1 - phislices ;
1142 if ( mminus < 0 ) mminus = m - 1 + phislices ;
1143 }
1144 TMatrixD& arrayV = *arrayofArrayV[m] ;
1145 TMatrixD& arrayVP = *arrayofArrayV[mplus] ;
1146 TMatrixD& arrayVM = *arrayofArrayV[mminus] ;
1147 TMatrixD& sumChargeDensity = *arrayofSumChargeDensities[m] ;
1148
1149 for ( Int_t i = ione ; i < rows-1 ; i+=ione ) {
1150 for ( Int_t j = jone ; j < columns-1 ; j+=jone ) {
1151
1152 arrayV(i,j) = ( coef2[i] * arrayV(i-ione,j)
1153 + tempratioZ * ( arrayV(i,j-jone) + arrayV(i,j+jone) )
1154 - overRelaxcoef5[i] * arrayV(i,j)
1155 + coef1[i] * arrayV(i+ione,j)
1156 + coef3[i] * ( signplus*arrayVP(i,j) + signminus*arrayVM(i,j) )
1157 + sumChargeDensity(i,j)
1158 ) * overRelaxcoef4[i] ;
1159 // Note: over-relax the solution at each step. This speeds up the convergance.
1160
1161 }
1162 }
1163
1164 if ( k == iterations ) { // After full solution is achieved, copy low resolution solution into higher res array
1165 for ( Int_t i = ione ; i < rows-1 ; i+=ione ) {
1166 for ( Int_t j = jone ; j < columns-1 ; j+=jone ) {
1167
1168 if ( ione > 1 ) {
1169 arrayV(i+ione/2,j) = ( arrayV(i+ione,j) + arrayV(i,j) ) / 2 ;
1170 if ( i == ione ) arrayV(i-ione/2,j) = ( arrayV(0,j) + arrayV(ione,j) ) / 2 ;
1171 }
1172 if ( jone > 1 ) {
1173 arrayV(i,j+jone/2) = ( arrayV(i,j+jone) + arrayV(i,j) ) / 2 ;
1174 if ( j == jone ) arrayV(i,j-jone/2) = ( arrayV(i,0) + arrayV(i,jone) ) / 2 ;
1175 }
1176 if ( ione > 1 && jone > 1 ) {
1177 arrayV(i+ione/2,j+jone/2) = ( arrayV(i+ione,j+jone) + arrayV(i,j) ) / 2 ;
1178 if ( i == ione ) arrayV(i-ione/2,j-jone/2) = ( arrayV(0,j-jone) + arrayV(ione,j) ) / 2 ;
1179 if ( j == jone ) arrayV(i-ione/2,j-jone/2) = ( arrayV(i-ione,0) + arrayV(i,jone) ) / 2 ;
1180 // Note that this leaves a point at the upper left and lower right corners uninitialized. Not a big deal.
1181 }
1182 }
1183 }
1184 }
1185
1186 }
1187 }
1188
1189 ione = ione / 2 ; if ( ione < 1 ) ione = 1 ;
1190 jone = jone / 2 ; if ( jone < 1 ) jone = 1 ;
1191
1192 }
1193
1194 //Differentiate V(r) and solve for E(r) using special equations for the first and last row
1195 //Integrate E(r)/E(z) from point of origin to pad plane
1196
1197 for ( Int_t m = 0 ; m < phislices ; m++ ) {
1198 TMatrixD& arrayV = *arrayofArrayV[m] ;
1199 TMatrixD& eroverEz = *arrayofEroverEz[m] ;
1200
1201 for ( Int_t j = columns-1 ; j >= 0 ; j-- ) { // Count backwards to facilitate integration over Z
1202
1203 // Differentiate in R
1204 for ( Int_t i = 1 ; i < rows-1 ; i++ ) arrayE(i,j) = -1 * ( arrayV(i+1,j) - arrayV(i-1,j) ) / (2*gridSizeR) ;
1205 arrayE(0,j) = -1 * ( -0.5*arrayV(2,j) + 2.0*arrayV(1,j) - 1.5*arrayV(0,j) ) / gridSizeR ;
1206 arrayE(rows-1,j) = -1 * ( 1.5*arrayV(rows-1,j) - 2.0*arrayV(rows-2,j) + 0.5*arrayV(rows-3,j) ) / gridSizeR ;
1207 // Integrate over Z
1208 for ( Int_t i = 0 ; i < rows ; i++ ) {
1209 Int_t index = 1 ; // Simpsons rule if N=odd. If N!=odd then add extra point by trapezoidal rule.
1210 eroverEz(i,j) = 0.0 ;
1211 for ( Int_t k = j ; k < columns ; k++ ) {
1212
1213 eroverEz(i,j) += index*(gridSizeZ/3.0)*arrayE(i,k)/(-1*ezField) ;
1214 if ( index != 4 ) index = 4; else index = 2 ;
1215 }
1216 if ( index == 4 ) eroverEz(i,j) -= (gridSizeZ/3.0)*arrayE(i,columns-1)/ (-1*ezField) ;
1217 if ( index == 2 ) eroverEz(i,j) +=
1218 (gridSizeZ/3.0)*(0.5*arrayE(i,columns-2)-2.5*arrayE(i,columns-1))/(-1*ezField) ;
1219 if ( j == columns-2 ) eroverEz(i,j) =
1220 (gridSizeZ/3.0)*(1.5*arrayE(i,columns-2)+1.5*arrayE(i,columns-1))/(-1*ezField) ;
1221 if ( j == columns-1 ) eroverEz(i,j) = 0.0 ;
1222 }
1223 }
1224 // if ( m == 0 ) { TCanvas* c1 = new TCanvas("erOverEz","erOverEz",50,50,840,600) ; c1 -> cd() ;
1225 // eroverEz.Draw("surf") ; } // JT test
1226 }
1227
1228 //Differentiate V(r) and solve for E(phi)
1229 //Integrate E(phi)/E(z) from point of origin to pad plane
1230
1231 for ( Int_t m = 0 ; m < phislices ; m++ ) {
1232
1233 mplus = m + 1; signplus = 1 ;
1234 mminus = m - 1 ; signminus = 1 ;
1235 if (symmetry==1) { // Reflection symmetry in phi (e.g. symmetry at sector boundaries, or half sectors, etc.)
1236 if ( mplus > phislices-1 ) mplus = phislices - 2 ;
1237 if ( mminus < 0 ) mminus = 1 ;
1238 }
1239 else if (symmetry==-1) { // Anti-symmetry in phi
1240 if ( mplus > phislices-1 ) { mplus = phislices - 2 ; signplus = -1 ; }
1241 if ( mminus < 0 ) { mminus = 1 ; signminus = -1 ; }
1242 }
1243 else { // No Symmetries in phi, no boundaries, the calculations is continuous across all phi
1244 if ( mplus > phislices-1 ) mplus = m + 1 - phislices ;
1245 if ( mminus < 0 ) mminus = m - 1 + phislices ;
1246 }
1247 TMatrixD &arrayVP = *arrayofArrayV[mplus] ;
1248 TMatrixD &arrayVM = *arrayofArrayV[mminus] ;
1249 TMatrixD &ePhioverEz = *arrayofEPhioverEz[m] ;
1250 for ( Int_t j = columns-1 ; j >= 0 ; j-- ) { // Count backwards to facilitate integration over Z
1251 // Differentiate in Phi
1252 for ( Int_t i = 0 ; i < rows ; i++ ) {
1253 Float_t radius = fgkIFCRadius + i*gridSizeR ;
1254 arrayE(i,j) = -1 * (signplus * arrayVP(i,j) - signminus * arrayVM(i,j) ) / (2*radius*gridSizePhi) ;
1255 }
1256 // Integrate over Z
1257 for ( Int_t i = 0 ; i < rows ; i++ ) {
1258 Int_t index = 1 ; // Simpsons rule if N=odd. If N!=odd then add extra point by trapezoidal rule.
1259 ePhioverEz(i,j) = 0.0 ;
1260 for ( Int_t k = j ; k < columns ; k++ ) {
1261
1262 ePhioverEz(i,j) += index*(gridSizeZ/3.0)*arrayE(i,k)/(-1*ezField) ;
1263 if ( index != 4 ) index = 4; else index = 2 ;
1264 }
1265 if ( index == 4 ) ePhioverEz(i,j) -= (gridSizeZ/3.0)*arrayE(i,columns-1)/ (-1*ezField) ;
1266 if ( index == 2 ) ePhioverEz(i,j) +=
1267 (gridSizeZ/3.0)*(0.5*arrayE(i,columns-2)-2.5*arrayE(i,columns-1))/(-1*ezField) ;
1268 if ( j == columns-2 ) ePhioverEz(i,j) =
1269 (gridSizeZ/3.0)*(1.5*arrayE(i,columns-2)+1.5*arrayE(i,columns-1))/(-1*ezField) ;
1270 if ( j == columns-1 ) ePhioverEz(i,j) = 0.0 ;
1271 }
1272 }
1273 // if ( m == 5 ) { TCanvas* c2 = new TCanvas("arrayE","arrayE",50,50,840,600) ; c2 -> cd() ;
1274 // arrayE.Draw("surf") ; } // JT test
1275 }
1276
1277
1278 // Differentiate V(r) and solve for E(z) using special equations for the first and last row
1279 // Integrate (E(z)-Ezstd) from point of origin to pad plane
1280
1281 for ( Int_t m = 0 ; m < phislices ; m++ ) {
1282 TMatrixD& arrayV = *arrayofArrayV[m] ;
1283 TMatrixD& deltaEz = *arrayofDeltaEz[m] ;
1284
1285 // Differentiate V(z) and solve for E(z) using special equations for the first and last columns
1286 for ( Int_t i = 0 ; i < rows ; i++) {
1287 for ( Int_t j = 1 ; j < columns-1 ; j++ ) arrayE(i,j) = -1 * ( arrayV(i,j+1) - arrayV(i,j-1) ) / (2*gridSizeZ) ;
1288 arrayE(i,0) = -1 * ( -0.5*arrayV(i,2) + 2.0*arrayV(i,1) - 1.5*arrayV(i,0) ) / gridSizeZ ;
1289 arrayE(i,columns-1) = -1 * ( 1.5*arrayV(i,columns-1) - 2.0*arrayV(i,columns-2) + 0.5*arrayV(i,columns-3) ) / gridSizeZ ;
1290 }
1291
1292 for ( Int_t j = columns-1 ; j >= 0 ; j-- ) { // Count backwards to facilitate integration over Z
1293 // Integrate over Z
1294 for ( Int_t i = 0 ; i < rows ; i++ ) {
1295 Int_t index = 1 ; // Simpsons rule if N=odd. If N!=odd then add extra point by trapezoidal rule.
1296 deltaEz(i,j) = 0.0 ;
1297 for ( Int_t k = j ; k < columns ; k++ ) {
1298 deltaEz(i,j) += index*(gridSizeZ/3.0)*arrayE(i,k) ;
1299 if ( index != 4 ) index = 4; else index = 2 ;
1300 }
1301 if ( index == 4 ) deltaEz(i,j) -= (gridSizeZ/3.0)*arrayE(i,columns-1) ;
1302 if ( index == 2 ) deltaEz(i,j) +=
1303 (gridSizeZ/3.0)*(0.5*arrayE(i,columns-2)-2.5*arrayE(i,columns-1)) ;
1304 if ( j == columns-2 ) deltaEz(i,j) =
1305 (gridSizeZ/3.0)*(1.5*arrayE(i,columns-2)+1.5*arrayE(i,columns-1)) ;
1306 if ( j == columns-1 ) deltaEz(i,j) = 0.0 ;
1307 }
1308 }
1309 // if ( m == 0 ) { TCanvas* c1 = new TCanvas("erOverEz","erOverEz",50,50,840,600) ; c1 -> cd() ;
1310 // eroverEz.Draw("surf") ; } // JT test
1311
1312 // calculate z distortion from the integrated Delta Ez residuals
1313 // and include the aquivalence (Volt to cm) of the ROC shift !!
1314
1315 for ( Int_t j = 0 ; j < columns ; j++ ) {
1316 for ( Int_t i = 0 ; i < rows ; i++ ) {
1317
1318 // Scale the Ez distortions with the drift velocity pertubation -> delivers cm
1319 deltaEz(i,j) = deltaEz(i,j)*fgkdvdE;
1320
1321 // ROC Potential in cm aquivalent
1322 Double_t dzROCShift = arrayV(i, columns -1)/ezField;
1323 if ( rocDisplacement ) deltaEz(i,j) = deltaEz(i,j) + dzROCShift; // add the ROC misaligment
1324
1325 }
1326 }
1327
1328 } // end loop over phi
1329
1330
1331
1332 for ( Int_t k = 0 ; k < phislices ; k++ )
1333 {
1334 arrayofSumChargeDensities[k]->Delete() ;
1335 }
1336
1337
1338
1339 arrayE.Clear();
1340}
1b923461 1341
1342
710bda39 1343Int_t AliTPCCorrection::IsPowerOfTwo(Int_t i) const {
1b923461 1344 //
1345 // Helperfunction: Check if integer is a power of 2
1346 //
1347 Int_t j = 0;
1348 while( i > 0 ) { j += (i&1) ; i = (i>>1) ; }
1349 if ( j == 1 ) return(1) ; // True
1350 return(0) ; // False
1351}
1352
cf5b0aa0 1353
b1f0a2a5 1354AliExternalTrackParam * AliTPCCorrection::FitDistortedTrack(AliExternalTrackParam & trackIn, Double_t refX, Int_t dir, TTreeSRedirector * const pcstream){
cf5b0aa0 1355 //
1356 // Fit the track parameters - without and with distortion
1357 // 1. Space points in the TPC are simulated along the trajectory
1358 // 2. Space points distorted
1359 // 3. Fits the non distorted and distroted track to the reference plane at refX
1360 // 4. For visualization and debugging purposes the space points and tracks can be stored in the tree - using the TTreeSRedirector functionality
1361 //
1362 // trackIn - input track parameters
1363 // refX - reference X to fit the track
1364 // dir - direction - out=1 or in=-1
1365 // pcstream - debug streamer to check the results
1366 //
cad404e1 1367 // see AliExternalTrackParam.h documentation:
1368 // track1.fP[0] - local y (rphi)
1369 // track1.fP[1] - z
1370 // track1.fP[2] - sinus of local inclination angle
1371 // track1.fP[3] - tangent of deep angle
1372 // track1.fP[4] - 1/pt
1b923461 1373
cf5b0aa0 1374 AliTPCROC * roc = AliTPCROC::Instance();
1375 const Int_t npoints0=roc->GetNRows(0)+roc->GetNRows(36);
1376 const Double_t kRTPC0 =roc->GetPadRowRadii(0,0);
1377 const Double_t kRTPC1 =roc->GetPadRowRadii(36,roc->GetNRows(36)-1);
cf5b0aa0 1378 const Double_t kMaxSnp = 0.85;
1379 const Double_t kSigmaY=0.1;
1380 const Double_t kSigmaZ=0.1;
ca58ed4e 1381 const Double_t kMaxR=500;
1382 const Double_t kMaxZ=500;
46e89793 1383
cfe2c39a 1384 const Double_t kMaxZ0=220;
1385 const Double_t kZcut=3;
cf5b0aa0 1386 const Double_t kMass = TDatabasePDG::Instance()->GetParticle("pi+")->Mass();
ca58ed4e 1387 Int_t npoints1=0;
1388 Int_t npoints2=0;
cf5b0aa0 1389
be67055b 1390 AliExternalTrackParam track(trackIn); //
cf5b0aa0 1391 // generate points
1392 AliTrackPointArray pointArray0(npoints0);
1393 AliTrackPointArray pointArray1(npoints0);
1394 Double_t xyz[3];
cfe2c39a 1395 if (!AliTrackerBase::PropagateTrackTo(&track,kRTPC0,kMass,5,kTRUE,kMaxSnp)) return 0;
cf5b0aa0 1396 //
1397 // simulate the track
1398 Int_t npoints=0;
1399 Float_t covPoint[6]={0,0,0, kSigmaY*kSigmaY,0,kSigmaZ*kSigmaZ}; //covariance at the local frame
1400 for (Double_t radius=kRTPC0; radius<kRTPC1; radius++){
cfe2c39a 1401 if (!AliTrackerBase::PropagateTrackTo(&track,radius,kMass,5,kTRUE,kMaxSnp)) return 0;
cf5b0aa0 1402 track.GetXYZ(xyz);
cfe2c39a 1403 xyz[0]+=gRandom->Gaus(0,0.000005);
1404 xyz[1]+=gRandom->Gaus(0,0.000005);
1405 xyz[2]+=gRandom->Gaus(0,0.000005);
1406 if (TMath::Abs(track.GetZ())>kMaxZ0) continue;
46e89793 1407 if (TMath::Abs(track.GetX())<kRTPC0) continue;
1408 if (TMath::Abs(track.GetX())>kRTPC1) continue;
cf5b0aa0 1409 AliTrackPoint pIn0; // space point
1410 AliTrackPoint pIn1;
ffab0c37 1411 Int_t sector= (xyz[2]>0)? 0:18;
cf5b0aa0 1412 pointArray0.GetPoint(pIn0,npoints);
1413 pointArray1.GetPoint(pIn1,npoints);
1414 Double_t alpha = TMath::ATan2(xyz[1],xyz[0]);
1415 Float_t distPoint[3]={xyz[0],xyz[1],xyz[2]};
ffab0c37 1416 DistortPoint(distPoint, sector);
cf5b0aa0 1417 pIn0.SetXYZ(xyz[0], xyz[1],xyz[2]);
1418 pIn1.SetXYZ(distPoint[0], distPoint[1],distPoint[2]);
1419 //
1420 track.Rotate(alpha);
1421 AliTrackPoint prot0 = pIn0.Rotate(alpha); // rotate to the local frame - non distoted point
1422 AliTrackPoint prot1 = pIn1.Rotate(alpha); // rotate to the local frame - distorted point
1423 prot0.SetXYZ(prot0.GetX(),prot0.GetY(), prot0.GetZ(),covPoint);
1424 prot1.SetXYZ(prot1.GetX(),prot1.GetY(), prot1.GetZ(),covPoint);
1425 pIn0=prot0.Rotate(-alpha); // rotate back to global frame
1426 pIn1=prot1.Rotate(-alpha); // rotate back to global frame
1427 pointArray0.AddPoint(npoints, &pIn0);
1428 pointArray1.AddPoint(npoints, &pIn1);
1429 npoints++;
1430 if (npoints>=npoints0) break;
1431 }
cfe2c39a 1432 if (npoints<npoints0/4.) return 0;
cf5b0aa0 1433 //
1434 // refit track
1435 //
1436 AliExternalTrackParam *track0=0;
1437 AliExternalTrackParam *track1=0;
1438 AliTrackPoint point1,point2,point3;
1439 if (dir==1) { //make seed inner
1440 pointArray0.GetPoint(point1,1);
cfe2c39a 1441 pointArray0.GetPoint(point2,11);
1442 pointArray0.GetPoint(point3,21);
cf5b0aa0 1443 }
1444 if (dir==-1){ //make seed outer
cfe2c39a 1445 pointArray0.GetPoint(point1,npoints-21);
1446 pointArray0.GetPoint(point2,npoints-11);
cf5b0aa0 1447 pointArray0.GetPoint(point3,npoints-1);
46e89793 1448 }
1449 if ((TMath::Abs(point1.GetX()-point3.GetX())+TMath::Abs(point1.GetY()-point3.GetY()))<10){
1450 printf("fit points not properly initialized\n");
1451 return 0;
1452 }
cf5b0aa0 1453 track0 = AliTrackerBase::MakeSeed(point1, point2, point3);
1454 track1 = AliTrackerBase::MakeSeed(point1, point2, point3);
cfe2c39a 1455 track0->ResetCovariance(10);
1456 track1->ResetCovariance(10);
1457 if (TMath::Abs(AliTrackerBase::GetBz())<0.01){
1458 ((Double_t*)track0->GetParameter())[4]= trackIn.GetParameter()[4];
1459 ((Double_t*)track1->GetParameter())[4]= trackIn.GetParameter()[4];
1460 }
cf5b0aa0 1461 for (Int_t jpoint=0; jpoint<npoints; jpoint++){
8b63d99c 1462 Int_t ipoint= (dir>0) ? jpoint: npoints-1-jpoint;
cf5b0aa0 1463 //
1464 AliTrackPoint pIn0;
1465 AliTrackPoint pIn1;
1466 pointArray0.GetPoint(pIn0,ipoint);
1467 pointArray1.GetPoint(pIn1,ipoint);
1468 AliTrackPoint prot0 = pIn0.Rotate(track0->GetAlpha()); // rotate to the local frame - non distoted point
1469 AliTrackPoint prot1 = pIn1.Rotate(track1->GetAlpha()); // rotate to the local frame - distorted point
46e89793 1470 if (TMath::Abs(prot0.GetX())<kRTPC0) continue;
1471 if (TMath::Abs(prot0.GetX())>kRTPC1) continue;
cf5b0aa0 1472 //
cfe2c39a 1473 if (!AliTrackerBase::PropagateTrackTo(track0,prot0.GetX(),kMass,5,kFALSE,kMaxSnp)) break;
1474 if (!AliTrackerBase::PropagateTrackTo(track1,prot0.GetX(),kMass,5,kFALSE,kMaxSnp)) break;
ca58ed4e 1475 if (TMath::Abs(track0->GetZ())>kMaxZ) break;
1476 if (TMath::Abs(track0->GetX())>kMaxR) break;
1477 if (TMath::Abs(track1->GetZ())>kMaxZ) break;
1478 if (TMath::Abs(track1->GetX())>kMaxR) break;
cfe2c39a 1479 if (dir>0 && track1->GetX()>refX) continue;
1480 if (dir<0 && track1->GetX()<refX) continue;
1481 if (TMath::Abs(track1->GetZ())<kZcut)continue;
8b63d99c 1482 track.GetXYZ(xyz); // distorted track also propagated to the same reference radius
cf5b0aa0 1483 //
1484 Double_t pointPos[2]={0,0};
1485 Double_t pointCov[3]={0,0,0};
1486 pointPos[0]=prot0.GetY();//local y
1487 pointPos[1]=prot0.GetZ();//local z
1488 pointCov[0]=prot0.GetCov()[3];//simay^2
1489 pointCov[1]=prot0.GetCov()[4];//sigmayz
1490 pointCov[2]=prot0.GetCov()[5];//sigmaz^2
ca58ed4e 1491 if (!track0->Update(pointPos,pointCov)) break;
cf5b0aa0 1492 //
8b63d99c 1493 Double_t deltaX=prot1.GetX()-prot0.GetX(); // delta X
1494 Double_t deltaYX=deltaX*TMath::Tan(TMath::ASin(track1->GetSnp())); // deltaY due delta X
1495 Double_t deltaZX=deltaX*track1->GetTgl(); // deltaZ due delta X
1496
0b736a46 1497 pointPos[0]=prot1.GetY()-deltaYX;//local y is sign correct? should be minus
1498 pointPos[1]=prot1.GetZ()-deltaZX;//local z is sign correct? should be minus
cf5b0aa0 1499 pointCov[0]=prot1.GetCov()[3];//simay^2
1500 pointCov[1]=prot1.GetCov()[4];//sigmayz
1501 pointCov[2]=prot1.GetCov()[5];//sigmaz^2
ca58ed4e 1502 if (!track1->Update(pointPos,pointCov)) break;
1503 npoints1++;
1504 npoints2++;
cf5b0aa0 1505 }
cfe2c39a 1506 if (npoints2<npoints/4.) return 0;
1507 AliTrackerBase::PropagateTrackTo(track0,refX,kMass,5.,kTRUE,kMaxSnp);
1508 AliTrackerBase::PropagateTrackTo(track0,refX,kMass,1.,kTRUE,kMaxSnp);
cf5b0aa0 1509 track1->Rotate(track0->GetAlpha());
cfe2c39a 1510 AliTrackerBase::PropagateTrackTo(track1,track0->GetX(),kMass,5.,kFALSE,kMaxSnp);
cf5b0aa0 1511
cad404e1 1512 if (pcstream) (*pcstream)<<Form("fitDistort%s",GetName())<<
cf5b0aa0 1513 "point0.="<<&pointArray0<< // points
1514 "point1.="<<&pointArray1<< // distorted points
1515 "trackIn.="<<&track<< // original track
1516 "track0.="<<track0<< // fitted track
1517 "track1.="<<track1<< // fitted distorted track
1518 "\n";
be67055b 1519 new(&trackIn) AliExternalTrackParam(*track0);
cf5b0aa0 1520 delete track0;
1521 return track1;
1522}
1523
1524
ffab0c37 1525
1526
1527
1528TTree* AliTPCCorrection::CreateDistortionTree(Double_t step){
1529 //
1530 // create the distortion tree on a mesh with granularity given by step
1531 // return the tree with distortions at given position
1532 // Map is created on the mesh with given step size
1533 //
1534 TTreeSRedirector *pcstream = new TTreeSRedirector(Form("correction%s.root",GetName()));
1535 Float_t xyz[3];
1536 for (Double_t x= -250; x<250; x+=step){
1537 for (Double_t y= -250; y<250; y+=step){
1538 Double_t r = TMath::Sqrt(x*x+y*y);
1539 if (r<80) continue;
1540 if (r>250) continue;
1541 for (Double_t z= -250; z<250; z+=step){
1542 Int_t roc=(z>0)?0:18;
1543 xyz[0]=x;
1544 xyz[1]=y;
1545 xyz[2]=z;
1546 Double_t phi = TMath::ATan2(y,x);
1547 DistortPoint(xyz,roc);
1548 Double_t r1 = TMath::Sqrt(xyz[0]*xyz[0]+xyz[1]*xyz[1]);
1549 Double_t phi1 = TMath::ATan2(xyz[1],xyz[0]);
1550 if ((phi1-phi)>TMath::Pi()) phi1-=TMath::Pi();
1551 if ((phi1-phi)<-TMath::Pi()) phi1+=TMath::Pi();
1552 Double_t dx = xyz[0]-x;
1553 Double_t dy = xyz[1]-y;
1554 Double_t dz = xyz[2]-z;
1555 Double_t dr=r1-r;
1556 Double_t drphi=(phi1-phi)*r;
1557 (*pcstream)<<"distortion"<<
1558 "x="<<x<< // original position
1559 "y="<<y<<
1560 "z="<<z<<
1561 "r="<<r<<
1562 "phi="<<phi<<
1563 "x1="<<xyz[0]<< // distorted position
1564 "y1="<<xyz[1]<<
1565 "z1="<<xyz[2]<<
1566 "r1="<<r1<<
1567 "phi1="<<phi1<<
1568 //
1569 "dx="<<dx<< // delta position
1570 "dy="<<dy<<
1571 "dz="<<dz<<
1572 "dr="<<dr<<
1573 "drphi="<<drphi<<
1574 "\n";
1575 }
1576 }
1577 }
1578 delete pcstream;
1579 TFile f(Form("correction%s.root",GetName()));
1580 TTree * tree = (TTree*)f.Get("distortion");
1581 TTree * tree2= tree->CopyTree("1");
1582 tree2->SetName(Form("dist%s",GetName()));
1583 tree2->SetDirectory(0);
1584 delete tree;
1585 return tree2;
1586}
1587
1588
1589
be67055b 1590
46e89793 1591void AliTPCCorrection::MakeTrackDistortionTree(TTree *tinput, Int_t dtype, Int_t ptype, const TObjArray * corrArray, Int_t step, Int_t offset, Bool_t debug ){
be67055b 1592 //
1593 // Make a fit tree:
1594 // For each partial correction (specified in array) and given track topology (phi, theta, snp, refX)
1595 // calculates partial distortions
1596 // Partial distortion is stored in the resulting tree
1597 // Output is storred in the file distortion_<dettype>_<partype>.root
1598 // Partial distortion is stored with the name given by correction name
1599 //
1600 //
1601 // Parameters of function:
1602 // input - input tree
cfe2c39a 1603 // dtype - distortion type 0 - ITSTPC, 1 -TPCTRD, 2 - TPCvertex , 3 - TPC-TOF, 4 - TPCTPC track crossing
be67055b 1604 // ppype - parameter type
1605 // corrArray - array with partial corrections
1606 // step - skipe entries - if 1 all entries processed - it is slow
1607 // debug 0 if debug on also space points dumped - it is slow
c9cbd2f2 1608
b322e06a 1609 const Double_t kMaxSnp = 0.85;
cfe2c39a 1610 const Double_t kcutSnp=0.25;
1611 const Double_t kcutTheta=1.;
1612 const Double_t kRadiusTPC=85;
1613 // AliTPCROC *tpcRoc =AliTPCROC::Instance();
1614 //
b322e06a 1615 const Double_t kMass = TDatabasePDG::Instance()->GetParticle("pi+")->Mass();
1616 // const Double_t kB2C=-0.299792458e-3;
46e89793 1617 const Int_t kMinEntries=20;
cfe2c39a 1618 Double_t phi,theta, snp, mean,rms, entries,sector,dsec;
46e89793 1619 Float_t refX;
1620 Int_t run;
1621 tinput->SetBranchAddress("run",&run);
be67055b 1622 tinput->SetBranchAddress("theta",&theta);
1623 tinput->SetBranchAddress("phi", &phi);
1624 tinput->SetBranchAddress("snp",&snp);
1625 tinput->SetBranchAddress("mean",&mean);
1626 tinput->SetBranchAddress("rms",&rms);
1627 tinput->SetBranchAddress("entries",&entries);
cfe2c39a 1628 tinput->SetBranchAddress("sector",&sector);
1629 tinput->SetBranchAddress("dsec",&dsec);
1630 tinput->SetBranchAddress("refX",&refX);
46e89793 1631 TTreeSRedirector *pcstream = new TTreeSRedirector(Form("distortion%d_%d_%d.root",dtype,ptype,offset));
be67055b 1632 //
1633 Int_t nentries=tinput->GetEntries();
1634 Int_t ncorr=corrArray->GetEntries();
7f4cb119 1635 Double_t corrections[100]={0}; //
be67055b 1636 Double_t tPar[5];
1637 Double_t cov[15]={0,0,0,0,0,0,0,0,0,0,0,0,0,0};
be67055b 1638 Int_t dir=0;
cfe2c39a 1639 if (dtype==5 || dtype==6) dtype=4;
1640 if (dtype==0) { dir=-1;}
1641 if (dtype==1) { dir=1;}
1642 if (dtype==2) { dir=-1;}
1643 if (dtype==3) { dir=1;}
1644 if (dtype==4) { dir=-1;}
be67055b 1645 //
46e89793 1646 for (Int_t ientry=offset; ientry<nentries; ientry+=step){
be67055b 1647 tinput->GetEntry(ientry);
7f4cb119 1648 if (TMath::Abs(snp)>kMaxSnp) continue;
be67055b 1649 tPar[0]=0;
1650 tPar[1]=theta*refX;
cfe2c39a 1651 if (dtype==2) tPar[1]=theta*kRadiusTPC;
be67055b 1652 tPar[2]=snp;
1653 tPar[3]=theta;
4486a91f 1654 tPar[4]=(gRandom->Rndm()-0.5)*0.02; // should be calculated - non equal to 0
cfe2c39a 1655 if (dtype==4){
1656 // tracks crossing CE
1657 tPar[1]=0; // track at the CE
1658 //if (TMath::Abs(theta) <0.05) continue; // deep cross
1659 }
1660
1661 if (TMath::Abs(snp) >kcutSnp) continue;
1662 if (TMath::Abs(theta) >kcutTheta) continue;
1663 printf("%f\t%f\t%f\t%f\t%f\t%f\n",entries, sector,theta,snp, mean,rms);
8b63d99c 1664 Double_t bz=AliTrackerBase::GetBz();
cfe2c39a 1665 if (dtype !=4) { //exclude TPC - for TPC mainly non primary tracks
1666 if (dtype!=2 && TMath::Abs(bz)>0.1 ) tPar[4]=snp/(refX*bz*kB2C*2);
1667
1668 if (dtype==2 && TMath::Abs(bz)>0.1 ) {
1669 tPar[4]=snp/(kRadiusTPC*bz*kB2C*2);//
1670 // snp at the TPC inner radius in case the vertex match used
1671 }
1672 }
1673 //
4486a91f 1674 tPar[4]+=(gRandom->Rndm()-0.5)*0.02;
7f4cb119 1675 AliExternalTrackParam track(refX,phi,tPar,cov);
1676 Double_t xyz[3];
1677 track.GetXYZ(xyz);
1678 Int_t id=0;
46e89793 1679 Double_t pt=1./tPar[4];
7f4cb119 1680 Double_t dRrec=0; // dummy value - needed for points - e.g for laser
cfe2c39a 1681 //if (ptype==4 &&bz<0) mean*=-1; // interpret as curvature -- COMMENTED out - in lookup signed 1/pt used
46e89793 1682 Double_t refXD=refX;
be67055b 1683 (*pcstream)<<"fit"<<
46e89793 1684 "run="<<run<< // run number
8b63d99c 1685 "bz="<<bz<< // magnetic filed used
be67055b 1686 "dtype="<<dtype<< // detector match type
1687 "ptype="<<ptype<< // parameter type
1688 "theta="<<theta<< // theta
1689 "phi="<<phi<< // phi
1690 "snp="<<snp<< // snp
1691 "mean="<<mean<< // mean dist value
1692 "rms="<<rms<< // rms
cfe2c39a 1693 "sector="<<sector<<
1694 "dsec="<<dsec<<
46e89793 1695 "refX="<<refXD<< // referece X as double
7f4cb119 1696 "gx="<<xyz[0]<< // global position at reference
1697 "gy="<<xyz[1]<< // global position at reference
1698 "gz="<<xyz[2]<< // global position at reference
1699 "dRrec="<<dRrec<< // delta Radius in reconstruction
46e89793 1700 "pt="<<pt<< // pt
7f4cb119 1701 "id="<<id<< // track id
be67055b 1702 "entries="<<entries;// number of entries in bin
1703 //
cfe2c39a 1704 Bool_t isOK=kTRUE;
46e89793 1705 if (entries<kMinEntries) isOK=kFALSE;
1706 //
cfe2c39a 1707 if (dtype!=4) for (Int_t icorr=0; icorr<ncorr; icorr++) {
be67055b 1708 AliTPCCorrection *corr = (AliTPCCorrection*)corrArray->At(icorr);
1709 corrections[icorr]=0;
1710 if (entries>kMinEntries){
1711 AliExternalTrackParam trackIn(refX,phi,tPar,cov);
1712 AliExternalTrackParam *trackOut = 0;
1713 if (debug) trackOut=corr->FitDistortedTrack(trackIn, refX, dir,pcstream);
1714 if (!debug) trackOut=corr->FitDistortedTrack(trackIn, refX, dir,0);
cfe2c39a 1715 if (dtype==0) {dir= -1;}
1716 if (dtype==1) {dir= 1;}
1717 if (dtype==2) {dir= -1;}
1718 if (dtype==3) {dir= 1;}
b1f0a2a5 1719 //
7f4cb119 1720 if (trackOut){
cfe2c39a 1721 if (!AliTrackerBase::PropagateTrackTo(&trackIn,refX,kMass,5,kTRUE,kMaxSnp)) isOK=kFALSE;
1722 if (!trackOut->Rotate(trackIn.GetAlpha())) isOK=kFALSE;
1723 if (!AliTrackerBase::PropagateTrackTo(trackOut,trackIn.GetX(),kMass,5,kFALSE,kMaxSnp)) isOK=kFALSE;
1724 // trackOut->PropagateTo(trackIn.GetX(),AliTrackerBase::GetBz());
1725 //
7f4cb119 1726 corrections[icorr]= trackOut->GetParameter()[ptype]-trackIn.GetParameter()[ptype];
1727 delete trackOut;
1728 }else{
1729 corrections[icorr]=0;
cfe2c39a 1730 isOK=kFALSE;
7f4cb119 1731 }
cfe2c39a 1732 //if (ptype==4 &&bz<0) corrections[icorr]*=-1; // interpret as curvature - commented out
be67055b 1733 }
1734 (*pcstream)<<"fit"<<
46e89793 1735 Form("%s=",corr->GetName())<<corrections[icorr]; // dump correction value
be67055b 1736 }
cfe2c39a 1737
1738 if (dtype==4) for (Int_t icorr=0; icorr<ncorr; icorr++) {
1739 //
1740 // special case of the TPC tracks crossing the CE
1741 //
1742 AliTPCCorrection *corr = (AliTPCCorrection*)corrArray->At(icorr);
1743 corrections[icorr]=0;
1744 if (entries>kMinEntries){
46e89793 1745 AliExternalTrackParam trackIn0(refX,phi,tPar,cov); //Outer - direction to vertex
1746 AliExternalTrackParam trackIn1(refX,phi,tPar,cov); //Inner - direction magnet
cfe2c39a 1747 AliExternalTrackParam *trackOut0 = 0;
1748 AliExternalTrackParam *trackOut1 = 0;
1749 //
1750 if (debug) trackOut0=corr->FitDistortedTrack(trackIn0, refX, dir,pcstream);
1751 if (!debug) trackOut0=corr->FitDistortedTrack(trackIn0, refX, dir,0);
1752 if (debug) trackOut1=corr->FitDistortedTrack(trackIn1, refX, -dir,pcstream);
1753 if (!debug) trackOut1=corr->FitDistortedTrack(trackIn1, refX, -dir,0);
1754 //
1755 if (trackOut0 && trackOut1){
1756 if (!AliTrackerBase::PropagateTrackTo(&trackIn0,refX,kMass,5,kTRUE,kMaxSnp)) isOK=kFALSE;
1757 if (!AliTrackerBase::PropagateTrackTo(&trackIn0,refX,kMass,1,kFALSE,kMaxSnp)) isOK=kFALSE;
1758 if (!trackOut0->Rotate(trackIn0.GetAlpha())) isOK=kFALSE;
1759 if (!AliTrackerBase::PropagateTrackTo(trackOut0,trackIn0.GetX(),kMass,5,kFALSE,kMaxSnp)) isOK=kFALSE;
1760 //
1761 if (!AliTrackerBase::PropagateTrackTo(&trackIn1,refX,kMass,5,kTRUE,kMaxSnp)) isOK=kFALSE;
1762 if (!trackIn1.Rotate(trackIn0.GetAlpha())) isOK=kFALSE;
1763 if (!AliTrackerBase::PropagateTrackTo(&trackIn1,trackIn0.GetX(),kMass,1,kFALSE,kMaxSnp)) isOK=kFALSE;
1764 if (!trackOut1->Rotate(trackIn1.GetAlpha())) isOK=kFALSE;
1765 if (!AliTrackerBase::PropagateTrackTo(trackOut1,trackIn1.GetX(),kMass,5,kFALSE,kMaxSnp)) isOK=kFALSE;
1766 //
1767 corrections[icorr] = (trackOut0->GetParameter()[ptype]-trackIn0.GetParameter()[ptype]);
1768 corrections[icorr]-= (trackOut1->GetParameter()[ptype]-trackIn1.GetParameter()[ptype]);
46e89793 1769 if (isOK)
1770 if ((TMath::Abs(trackOut0->GetX()-trackOut1->GetX())>0.1)||
1771 (TMath::Abs(trackOut0->GetX()-trackIn1.GetX())>0.1)||
1772 (TMath::Abs(trackOut0->GetAlpha()-trackOut1->GetAlpha())>0.00001)||
1773 (TMath::Abs(trackOut0->GetAlpha()-trackIn1.GetAlpha())>0.00001)||
1774 (TMath::Abs(trackIn0.GetTgl()-trackIn1.GetTgl())>0.0001)||
1775 (TMath::Abs(trackIn0.GetSnp()-trackIn1.GetSnp())>0.0001)
1776 ){
1777 isOK=kFALSE;
1778 }
cfe2c39a 1779 delete trackOut0;
46e89793 1780 delete trackOut1;
cfe2c39a 1781 }else{
1782 corrections[icorr]=0;
1783 isOK=kFALSE;
1784 }
1785 //
1786 //if (ptype==4 &&bz<0) corrections[icorr]*=-1; // interpret as curvature - commented out no in lookup
1787 }
cfe2c39a 1788 (*pcstream)<<"fit"<<
46e89793 1789 Form("%s=",corr->GetName())<<corrections[icorr]; // dump correction value
cfe2c39a 1790 }
1791 //
1792 (*pcstream)<<"fit"<<"isOK="<<isOK<<"\n";
be67055b 1793 }
cfe2c39a 1794
1795
be67055b 1796 delete pcstream;
1797}
1798
1799
1800
46e89793 1801void AliTPCCorrection::MakeSectorDistortionTree(TTree *tinput, Int_t dtype, Int_t ptype, const TObjArray * corrArray, Int_t step, Int_t offset, Bool_t debug ){
1802 //
1803 // Make a fit tree:
1804 // For each partial correction (specified in array) and given track topology (phi, theta, snp, refX)
1805 // calculates partial distortions
1806 // Partial distortion is stored in the resulting tree
1807 // Output is storred in the file distortion_<dettype>_<partype>.root
1808 // Partial distortion is stored with the name given by correction name
1809 //
1810 //
1811 // Parameters of function:
1812 // input - input tree
1813 // dtype - distortion type 10 - IROC-OROC
1814 // ppype - parameter type
1815 // corrArray - array with partial corrections
1816 // step - skipe entries - if 1 all entries processed - it is slow
1817 // debug 0 if debug on also space points dumped - it is slow
1818
1819 const Double_t kMaxSnp = 0.8;
1820 const Int_t kMinEntries=200;
1821 // AliTPCROC *tpcRoc =AliTPCROC::Instance();
1822 //
1823 const Double_t kMass = TDatabasePDG::Instance()->GetParticle("pi+")->Mass();
1824 // const Double_t kB2C=-0.299792458e-3;
1825 Double_t phi,theta, snp, mean,rms, entries,sector,dsec,globalZ;
1826 Int_t isec1, isec0;
1827 Double_t refXD;
1828 Float_t refX;
1829 Int_t run;
1830 tinput->SetBranchAddress("run",&run);
1831 tinput->SetBranchAddress("theta",&theta);
1832 tinput->SetBranchAddress("phi", &phi);
1833 tinput->SetBranchAddress("snp",&snp);
1834 tinput->SetBranchAddress("mean",&mean);
1835 tinput->SetBranchAddress("rms",&rms);
1836 tinput->SetBranchAddress("entries",&entries);
1837 tinput->SetBranchAddress("sector",&sector);
1838 tinput->SetBranchAddress("dsec",&dsec);
1839 tinput->SetBranchAddress("refX",&refXD);
1840 tinput->SetBranchAddress("z",&globalZ);
1841 tinput->SetBranchAddress("isec0",&isec0);
1842 tinput->SetBranchAddress("isec1",&isec1);
1843 TTreeSRedirector *pcstream = new TTreeSRedirector(Form("distortionSector%d_%d_%d.root",dtype,ptype,offset));
1844 //
1845 Int_t nentries=tinput->GetEntries();
1846 Int_t ncorr=corrArray->GetEntries();
1847 Double_t corrections[100]={0}; //
1848 Double_t tPar[5];
1849 Double_t cov[15]={0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1850 Int_t dir=0;
1851 //
1852 for (Int_t ientry=offset; ientry<nentries; ientry+=step){
1853 tinput->GetEntry(ientry);
1854 refX=refXD;
1855 Int_t id=-1;
1856 if (TMath::Abs(TMath::Abs(isec0%18)-TMath::Abs(isec1%18))==0) id=1; // IROC-OROC - opposite side
1857 if (TMath::Abs(TMath::Abs(isec0%36)-TMath::Abs(isec1%36))==0) id=2; // IROC-OROC - same side
1858 if (dtype==10 && id==-1) continue;
1859 //
1860 dir=-1;
1861 tPar[0]=0;
1862 tPar[1]=globalZ;
1863 tPar[2]=snp;
1864 tPar[3]=theta;
1865 tPar[4]=(gRandom->Rndm()-0.1)*0.2; //
1866 Double_t pt=1./tPar[4];
1867 //
1868 printf("%f\t%f\t%f\t%f\t%f\t%f\n",entries, sector,theta,snp, mean,rms);
1869 Double_t bz=AliTrackerBase::GetBz();
1870 AliExternalTrackParam track(refX,phi,tPar,cov);
1871 Double_t xyz[3],xyzIn[3],xyzOut[3];
1872 track.GetXYZ(xyz);
1873 track.GetXYZAt(85,bz,xyzIn);
1874 track.GetXYZAt(245,bz,xyzOut);
1875 Double_t phiIn = TMath::ATan2(xyzIn[1],xyzIn[0]);
1876 Double_t phiOut = TMath::ATan2(xyzOut[1],xyzOut[0]);
1877 Double_t phiRef = TMath::ATan2(xyz[1],xyz[0]);
1878 Int_t sectorRef = TMath::Nint(9.*phiRef/TMath::Pi()-0.5);
1879 Int_t sectorIn = TMath::Nint(9.*phiIn/TMath::Pi()-0.5);
1880 Int_t sectorOut = TMath::Nint(9.*phiOut/TMath::Pi()-0.5);
1881 //
1882 Bool_t isOK=kTRUE;
1883 if (sectorIn!=sectorOut) isOK=kFALSE; // requironment - cluster in the same sector
1884 if (sectorIn!=sectorRef) isOK=kFALSE; // requironment - cluster in the same sector
1885 if (entries<kMinEntries/(1+TMath::Abs(globalZ/100.))) isOK=kFALSE; // requironment - minimal amount of tracks in bin
1886 // Do downscale
1887 if (TMath::Abs(theta)>1) isOK=kFALSE;
1888 //
1889 Double_t dRrec=0; // dummy value - needed for points - e.g for laser
1890 //
1891 (*pcstream)<<"fit"<<
1892 "run="<<run<< //run
1893 "bz="<<bz<< // magnetic filed used
1894 "dtype="<<dtype<< // detector match type
1895 "ptype="<<ptype<< // parameter type
1896 "theta="<<theta<< // theta
1897 "phi="<<phi<< // phi
1898 "snp="<<snp<< // snp
1899 "mean="<<mean<< // mean dist value
1900 "rms="<<rms<< // rms
1901 "sector="<<sector<<
1902 "dsec="<<dsec<<
1903 "refX="<<refXD<< // referece X
1904 "gx="<<xyz[0]<< // global position at reference
1905 "gy="<<xyz[1]<< // global position at reference
1906 "gz="<<xyz[2]<< // global position at reference
1907 "dRrec="<<dRrec<< // delta Radius in reconstruction
1908 "pt="<<pt<< //pt
1909 "id="<<id<< // track id
1910 "entries="<<entries;// number of entries in bin
1911 //
1912 AliExternalTrackParam *trackOut0 = 0;
1913 AliExternalTrackParam *trackOut1 = 0;
1914 AliExternalTrackParam *ptrackIn0 = 0;
1915 AliExternalTrackParam *ptrackIn1 = 0;
1916
1917 for (Int_t icorr=0; icorr<ncorr; icorr++) {
1918 //
1919 // special case of the TPC tracks crossing the CE
1920 //
1921 AliTPCCorrection *corr = (AliTPCCorrection*)corrArray->At(icorr);
1922 corrections[icorr]=0;
1923 if (entries>kMinEntries &&isOK){
1924 AliExternalTrackParam trackIn0(refX,phi,tPar,cov);
1925 AliExternalTrackParam trackIn1(refX,phi,tPar,cov);
1926 ptrackIn1=&trackIn0;
1927 ptrackIn0=&trackIn1;
1928 //
1929 if (debug) trackOut0=corr->FitDistortedTrack(trackIn0, refX, dir,pcstream);
1930 if (!debug) trackOut0=corr->FitDistortedTrack(trackIn0, refX, dir,0);
1931 if (debug) trackOut1=corr->FitDistortedTrack(trackIn1, refX, -dir,pcstream);
1932 if (!debug) trackOut1=corr->FitDistortedTrack(trackIn1, refX, -dir,0);
1933 //
1934 if (trackOut0 && trackOut1){
1935 //
1936 if (!AliTrackerBase::PropagateTrackTo(&trackIn0,refX,kMass,1,kTRUE,kMaxSnp)) isOK=kFALSE;
1937 if (!AliTrackerBase::PropagateTrackTo(&trackIn0,refX,kMass,1,kFALSE,kMaxSnp)) isOK=kFALSE;
1938 // rotate all tracks to the same frame
1939 if (!trackOut0->Rotate(trackIn0.GetAlpha())) isOK=kFALSE;
1940 if (!trackIn1.Rotate(trackIn0.GetAlpha())) isOK=kFALSE;
1941 if (!trackOut1->Rotate(trackIn0.GetAlpha())) isOK=kFALSE;
1942 //
1943 if (!AliTrackerBase::PropagateTrackTo(trackOut0,refX,kMass,1,kFALSE,kMaxSnp)) isOK=kFALSE;
1944 if (!AliTrackerBase::PropagateTrackTo(&trackIn1,refX,kMass,1,kFALSE,kMaxSnp)) isOK=kFALSE;
1945 if (!AliTrackerBase::PropagateTrackTo(trackOut1,refX,kMass,1,kFALSE,kMaxSnp)) isOK=kFALSE;
1946 //
1947 corrections[icorr] = (trackOut0->GetParameter()[ptype]-trackIn0.GetParameter()[ptype]);
1948 corrections[icorr]-= (trackOut1->GetParameter()[ptype]-trackIn1.GetParameter()[ptype]);
1949 (*pcstream)<<"fitDebug"<< // just to debug the correction
1950 "mean="<<mean<<
1951 "pIn0.="<<ptrackIn0<<
1952 "pIn1.="<<ptrackIn1<<
1953 "pOut0.="<<trackOut0<<
1954 "pOut1.="<<trackOut1<<
1955 "refX="<<refXD<<
1956 "\n";
1957 delete trackOut0;
1958 delete trackOut1;
1959 }else{
1960 corrections[icorr]=0;
1961 isOK=kFALSE;
1962 }
1963 }
1964 (*pcstream)<<"fit"<<
1965 Form("%s=",corr->GetName())<<corrections[icorr]; // dump correction value
1966 }
1967 //
1968 (*pcstream)<<"fit"<<"isOK="<<isOK<<"\n";
1969 }
1970 delete pcstream;
1971}
1972
1973
1974
1975void AliTPCCorrection::MakeLaserDistortionTreeOld(TTree* tree, TObjArray *corrArray, Int_t itype){
7f4cb119 1976 //
1977 // Make a laser fit tree for global minimization
1978 //
1979 const Double_t cutErrY=0.1;
1980 const Double_t cutErrZ=0.1;
1981 const Double_t kEpsilon=0.00000001;
46e89793 1982 const Double_t kMaxDist=1.; // max distance - space correction
1983 const Double_t kMaxRMS=0.05; // max distance -between point and local mean
7f4cb119 1984 TVectorD *vecdY=0;
1985 TVectorD *vecdZ=0;
1986 TVectorD *veceY=0;
1987 TVectorD *veceZ=0;
1988 AliTPCLaserTrack *ltr=0;
1989 AliTPCLaserTrack::LoadTracks();
1990 tree->SetBranchAddress("dY.",&vecdY);
1991 tree->SetBranchAddress("dZ.",&vecdZ);
1992 tree->SetBranchAddress("eY.",&veceY);
1993 tree->SetBranchAddress("eZ.",&veceZ);
1994 tree->SetBranchAddress("LTr.",&ltr);
1995 Int_t entries= tree->GetEntries();
cfe2c39a 1996 TTreeSRedirector *pcstream= new TTreeSRedirector("distortionLaser_0.root");
7f4cb119 1997 Double_t bz=AliTrackerBase::GetBz();
1998 //
1999
2000 for (Int_t ientry=0; ientry<entries; ientry++){
2001 tree->GetEntry(ientry);
2002 if (!ltr->GetVecGX()){
2003 ltr->UpdatePoints();
2004 }
2005 TVectorD * delta= (itype==0)? vecdY:vecdZ;
2006 TVectorD * err= (itype==0)? veceY:veceZ;
46e89793 2007 TLinearFitter fitter(2,"pol1");
2008 for (Int_t iter=0; iter<2; iter++){
2009 Double_t kfit0=0, kfit1=0;
2010 Int_t npoints=fitter.GetNpoints();
2011 if (npoints>80){
2012 fitter.Eval();
2013 kfit0=fitter.GetParameter(0);
2014 kfit1=fitter.GetParameter(1);
2015 }
2016 for (Int_t irow=0; irow<159; irow++){
2017 Bool_t isOK=kTRUE;
2018 Int_t isOKF=0;
2019 Int_t nentries = 1000;
2020 if (veceY->GetMatrixArray()[irow]>cutErrY||veceZ->GetMatrixArray()[irow]>cutErrZ) nentries=0;
2021 if (veceY->GetMatrixArray()[irow]<kEpsilon||veceZ->GetMatrixArray()[irow]<kEpsilon) nentries=0;
2022 Int_t dtype=5;
2023 Double_t array[10];
2024 Int_t first3=TMath::Max(irow-3,0);
2025 Int_t last3 =TMath::Min(irow+3,159);
2026 Int_t counter=0;
2027 if ((*ltr->GetVecSec())[irow]>=0 && err) {
2028 for (Int_t jrow=first3; jrow<=last3; jrow++){
2029 if ((*ltr->GetVecSec())[irow]!= (*ltr->GetVecSec())[jrow]) continue;
2030 if ((*err)[jrow]<kEpsilon) continue;
2031 array[counter]=(*delta)[jrow];
2032 counter++;
2033 }
2034 }
2035 Double_t rms3 = 0;
2036 Double_t mean3 = 0;
2037 if (counter>2){
2038 rms3 = TMath::RMS(counter,array);
2039 mean3 = TMath::Mean(counter,array);
2040 }else{
2041 isOK=kFALSE;
2042 }
2043 Double_t phi =(*ltr->GetVecPhi())[irow];
2044 Double_t theta =ltr->GetTgl();
2045 Double_t mean=delta->GetMatrixArray()[irow];
2046 Double_t gx=0,gy=0,gz=0;
2047 Double_t snp = (*ltr->GetVecP2())[irow];
2048 Double_t dRrec=0;
2049 // Double_t rms = err->GetMatrixArray()[irow];
cfe2c39a 2050 //
46e89793 2051 gx = (*ltr->GetVecGX())[irow];
2052 gy = (*ltr->GetVecGY())[irow];
2053 gz = (*ltr->GetVecGZ())[irow];
2054 //
2055 // get delta R used in reconstruction
2056 AliTPCcalibDB* calib=AliTPCcalibDB::Instance();
2057 AliTPCCorrection * correction = calib->GetTPCComposedCorrection(AliTrackerBase::GetBz());
2058 // const AliTPCRecoParam * recoParam = calib->GetTransform()->GetCurrentRecoParam();
2059 //Double_t xyz0[3]={gx,gy,gz};
2060 Double_t oldR=TMath::Sqrt(gx*gx+gy*gy);
2061 Double_t fphi = TMath::ATan2(gy,gx);
2062 Double_t fsector = 9.*fphi/TMath::Pi();
2063 if (fsector<0) fsector+=18;
2064 Double_t dsec = fsector-Int_t(fsector)-0.5;
2065 Double_t refX=0;
2066 Int_t id= ltr->GetId();
2067 Double_t pt=0;
2068 //
2069 if (1 && oldR>1) {
2070 Float_t xyz1[3]={gx,gy,gz};
2071 Int_t sector=(gz>0)?0:18;
2072 correction->CorrectPoint(xyz1, sector);
2073 refX=TMath::Sqrt(xyz1[0]*xyz1[0]+xyz1[1]*xyz1[1]);
2074 dRrec=oldR-refX;
2075 }
2076 if (TMath::Abs(rms3)>kMaxRMS) isOK=kFALSE;
2077 if (TMath::Abs(mean-mean3)>kMaxRMS) isOK=kFALSE;
2078 if (counter<4) isOK=kFALSE;
2079 if (npoints<90) isOK=kFALSE;
2080 if (isOK){
2081 fitter.AddPoint(&refX,mean);
7f4cb119 2082 }
46e89793 2083 Double_t deltaF=kfit0+kfit1*refX;
2084 if (iter==1){
2085 (*pcstream)<<"fitFull"<< // dumpe also intermediate results
2086 "bz="<<bz<< // magnetic filed used
2087 "dtype="<<dtype<< // detector match type
2088 "ptype="<<itype<< // parameter type
2089 "theta="<<theta<< // theta
2090 "phi="<<phi<< // phi
2091 "snp="<<snp<< // snp
2092 "mean="<<mean3<< // mean dist value
2093 "rms="<<rms3<< // rms
2094 "deltaF="<<deltaF<<
2095 "npoints="<<npoints<< //number of points
2096 "mean3="<<mean3<< // mean dist value
2097 "rms3="<<rms3<< // rms
2098 "counter="<<counter<<
2099 "sector="<<fsector<<
2100 "dsec="<<dsec<<
2101 //
2102 "refX="<<refX<< // reference radius
2103 "gx="<<gx<< // global position
2104 "gy="<<gy<< // global position
2105 "gz="<<gz<< // global position
2106 "dRrec="<<dRrec<< // delta Radius in reconstruction
2107 "id="<<id<< //bundle
2108 "entries="<<nentries<<// number of entries in bin
2109 "\n";
2110 }
2111 if (iter==1) (*pcstream)<<"fit"<< // dump valus for fit
2112 "bz="<<bz<< // magnetic filed used
2113 "dtype="<<dtype<< // detector match type
2114 "ptype="<<itype<< // parameter type
2115 "theta="<<theta<< // theta
2116 "phi="<<phi<< // phi
2117 "snp="<<snp<< // snp
2118 "mean="<<mean3<< // mean dist value
2119 "rms="<<rms3<< // rms
2120 "sector="<<fsector<<
2121 "dsec="<<dsec<<
2122 //
2123 "refX="<<refX<< // reference radius
2124 "gx="<<gx<< // global position
2125 "gy="<<gy<< // global position
2126 "gz="<<gz<< // global position
2127 "dRrec="<<dRrec<< // delta Radius in reconstruction
2128 "pt="<<pt<< //pt
2129 "id="<<id<< //bundle
2130 "entries="<<nentries;// number of entries in bin
2131 //
2132 //
2133 Double_t ky = TMath::Tan(TMath::ASin(snp));
2134 Int_t ncorr = corrArray->GetEntries();
2135 Double_t r0 = TMath::Sqrt(gx*gx+gy*gy);
2136 Double_t phi0 = TMath::ATan2(gy,gx);
2137 Double_t distortions[1000]={0};
2138 Double_t distortionsR[1000]={0};
2139 if (iter==1){
2140 for (Int_t icorr=0; icorr<ncorr; icorr++) {
2141 AliTPCCorrection *corr = (AliTPCCorrection*)corrArray->At(icorr);
2142 Float_t distPoint[3]={gx,gy,gz};
2143 Int_t sector= (gz>0)? 0:18;
2144 if (r0>80){
2145 corr->DistortPoint(distPoint, sector);
2146 }
2147 // Double_t value=distPoint[2]-gz;
2148 if (itype==0 && r0>1){
2149 Double_t r1 = TMath::Sqrt(distPoint[0]*distPoint[0]+distPoint[1]*distPoint[1]);
2150 Double_t phi1 = TMath::ATan2(distPoint[1],distPoint[0]);
2151 Double_t drphi= r0*(phi1-phi0);
2152 Double_t dr = r1-r0;
2153 distortions[icorr] = drphi-ky*dr;
2154 distortionsR[icorr] = dr;
2155 }
2156 if (TMath::Abs(distortions[icorr])>kMaxDist) {isOKF=icorr+1; isOK=kFALSE; }
2157 if (TMath::Abs(distortionsR[icorr])>kMaxDist) {isOKF=icorr+1; isOK=kFALSE;}
2158 (*pcstream)<<"fit"<<
2159 Form("%s=",corr->GetName())<<distortions[icorr]; // dump correction value
2160 }
2161 (*pcstream)<<"fit"<<"isOK="<<isOK<<"\n";
7f4cb119 2162 }
7f4cb119 2163 }
7f4cb119 2164 }
2165 }
2166 delete pcstream;
2167}
2168
2169
be67055b 2170
97d17739 2171void AliTPCCorrection::MakeDistortionMap(THnSparse * his0, TTreeSRedirector * const pcstream, const char* hname, Int_t run, Float_t refX, Int_t type, Int_t integ){
cfe2c39a 2172 //
2173 // make a distortion map out ou fthe residual histogram
2174 // Results are written to the debug streamer - pcstream
2175 // Parameters:
2176 // his0 - input (4D) residual histogram
2177 // pcstream - file to write the tree
2178 // run - run number
2179 // refX - track matching reference X
2180 // type - 0- y 1-z,2 -snp, 3-theta, 4=1/pt
2181 // THnSparse axes:
2182 // OBJ: TAxis #Delta #Delta
2183 // OBJ: TAxis tanTheta tan(#Theta)
2184 // OBJ: TAxis phi #phi
2185 // OBJ: TAxis snp snp
2186
2187 // marian.ivanov@cern.ch
2188 const Int_t kMinEntries=10;
2189 Double_t bz=AliTrackerBase::GetBz();
2190 Int_t idim[4]={0,1,2,3};
2191 //
2192 //
2193 //
2194 Int_t nbins3=his0->GetAxis(3)->GetNbins();
2195 Int_t first3=his0->GetAxis(3)->GetFirst();
2196 Int_t last3 =his0->GetAxis(3)->GetLast();
2197 //
2198 for (Int_t ibin3=first3; ibin3<last3; ibin3+=1){ // axis 3 - local angle
97d17739 2199 his0->GetAxis(3)->SetRange(TMath::Max(ibin3-integ,1),TMath::Min(ibin3+integ,nbins3));
cfe2c39a 2200 Double_t x3= his0->GetAxis(3)->GetBinCenter(ibin3);
2201 THnSparse * his3= his0->Projection(3,idim); //projected histogram according selection 3
2202 //
2203 Int_t nbins2 = his3->GetAxis(2)->GetNbins();
2204 Int_t first2 = his3->GetAxis(2)->GetFirst();
2205 Int_t last2 = his3->GetAxis(2)->GetLast();
2206 //
2207 for (Int_t ibin2=first2; ibin2<last2; ibin2+=1){ // axis 2 - phi
97d17739 2208 his3->GetAxis(2)->SetRange(TMath::Max(ibin2-integ,1),TMath::Min(ibin2+integ,nbins2));
cfe2c39a 2209 Double_t x2= his3->GetAxis(2)->GetBinCenter(ibin2);
2210 THnSparse * his2= his3->Projection(2,idim); //projected histogram according selection 2
2211 Int_t nbins1 = his2->GetAxis(1)->GetNbins();
2212 Int_t first1 = his2->GetAxis(1)->GetFirst();
2213 Int_t last1 = his2->GetAxis(1)->GetLast();
2214 for (Int_t ibin1=first1; ibin1<last1; ibin1++){ //axis 1 - theta
2215 //
2216 Double_t x1= his2->GetAxis(1)->GetBinCenter(ibin1);
2217 his2->GetAxis(1)->SetRange(TMath::Max(ibin1-1,1),TMath::Min(ibin1+1,nbins1));
2218 if (TMath::Abs(x1)<0.1){
2219 if (x1<0) his2->GetAxis(1)->SetRange(TMath::Max(ibin1-1,1),TMath::Min(ibin1,nbins1));
2220 if (x1>0) his2->GetAxis(1)->SetRange(TMath::Max(ibin1,1),TMath::Min(ibin1+1,nbins1));
2221 }
2222 if (TMath::Abs(x1)<0.06){
2223 his2->GetAxis(1)->SetRange(TMath::Max(ibin1,1),TMath::Min(ibin1,nbins1));
2224 }
2225 TH1 * hisDelta = his2->Projection(0);
2226 //
2227 Double_t entries = hisDelta->GetEntries();
2228 Double_t mean=0, rms=0;
2229 if (entries>kMinEntries){
2230 mean = hisDelta->GetMean();
2231 rms = hisDelta->GetRMS();
2232 }
2233 Double_t sector = 9.*x2/TMath::Pi();
2234 if (sector<0) sector+=18;
2235 Double_t dsec = sector-Int_t(sector)-0.5;
2236 Double_t z=refX*x1;
2237 (*pcstream)<<hname<<
2238 "run="<<run<<
2239 "bz="<<bz<<
2240 "theta="<<x1<<
2241 "phi="<<x2<<
2242 "z="<<z<< // dummy z
2243 "snp="<<x3<<
2244 "entries="<<entries<<
2245 "mean="<<mean<<
2246 "rms="<<rms<<
2247 "refX="<<refX<< // track matching refernce plane
2248 "type="<<type<< //
2249 "sector="<<sector<<
2250 "dsec="<<dsec<<
2251 "\n";
2252 delete hisDelta;
02cd5ade 2253 //printf("%f\t%f\t%f\t%f\t%f\n",x3,x2,x1, entries,mean);
cfe2c39a 2254 }
2255 delete his2;
2256 }
2257 delete his3;
2258 }
2259}
2260
2261
2262
2263
2264void AliTPCCorrection::MakeDistortionMapCosmic(THnSparse * hisInput, TTreeSRedirector * const pcstream, const char* hname, Int_t run, Float_t refX, Int_t type){
8b63d99c 2265 //
2266 // make a distortion map out ou fthe residual histogram
2267 // Results are written to the debug streamer - pcstream
2268 // Parameters:
2269 // his0 - input (4D) residual histogram
2270 // pcstream - file to write the tree
2271 // run - run number
cfe2c39a 2272 // refX - track matching reference X
2273 // type - 0- y 1-z,2 -snp, 3-theta, 4=1/pt
8b63d99c 2274 // marian.ivanov@cern.ch
cfe2c39a 2275 //
2276 // Histo axeses
2277 // Collection name='TObjArray', class='TObjArray', size=16
2278 // 0. OBJ: TAxis #Delta #Delta
2279 // 1. OBJ: TAxis N_{cl} N_{cl}
2280 // 2. OBJ: TAxis dca_{r} (cm) dca_{r} (cm)
2281 // 3. OBJ: TAxis z (cm) z (cm)
2282 // 4. OBJ: TAxis sin(#phi) sin(#phi)
2283 // 5. OBJ: TAxis tan(#theta) tan(#theta)
2284 // 6. OBJ: TAxis 1/pt (1/GeV) 1/pt (1/GeV)
2285 // 7. OBJ: TAxis pt (GeV) pt (GeV)
2286 // 8. OBJ: TAxis alpha alpha
2287 const Int_t kMinEntries=10;
2288 //
2289 // 1. make default selections
2290 //
2291 TH1 * hisDelta=0;
2292 Int_t idim0[4]={0 , 5, 8, 3}; // delta, theta, alpha, z
2293 hisInput->GetAxis(1)->SetRangeUser(110,190); //long tracks
2294 hisInput->GetAxis(2)->SetRangeUser(-10,35); //tracks close to beam pipe
2295 hisInput->GetAxis(4)->SetRangeUser(-0.3,0.3); //small snp at TPC entrance
2296 hisInput->GetAxis(7)->SetRangeUser(3,100); //"high pt tracks"
2297 hisDelta= hisInput->Projection(0);
2298 hisInput->GetAxis(0)->SetRangeUser(-6.*hisDelta->GetRMS(), +6.*hisDelta->GetRMS());
2299 delete hisDelta;
2300 THnSparse *his0= hisInput->Projection(4,idim0);
2301 //
2302 // 2. Get mean in diferent bins
2303 //
8b63d99c 2304 Int_t nbins1=his0->GetAxis(1)->GetNbins();
2305 Int_t first1=his0->GetAxis(1)->GetFirst();
2306 Int_t last1 =his0->GetAxis(1)->GetLast();
2307 //
2308 Double_t bz=AliTrackerBase::GetBz();
cfe2c39a 2309 Int_t idim[4]={0,1, 2, 3}; // delta, theta,alpha,z
2310 //
2311 for (Int_t ibin1=first1; ibin1<=last1; ibin1++){ //axis 1 - theta
2312 //
2313 Double_t x1= his0->GetAxis(1)->GetBinCenter(ibin1);
2314 his0->GetAxis(1)->SetRange(TMath::Max(ibin1-1,1),TMath::Min(ibin1+1,nbins1));
8b63d99c 2315 //
8b63d99c 2316 THnSparse * his1 = his0->Projection(4,idim); // projected histogram according range1
2317 Int_t nbins3 = his1->GetAxis(3)->GetNbins();
2318 Int_t first3 = his1->GetAxis(3)->GetFirst();
2319 Int_t last3 = his1->GetAxis(3)->GetLast();
2320 //
cfe2c39a 2321 for (Int_t ibin3=first3-1; ibin3<=last3; ibin3+=1){ // axis 3 - z at "vertex"
8b63d99c 2322 his1->GetAxis(3)->SetRange(TMath::Max(ibin3-1,1),TMath::Min(ibin3+1,nbins3));
2323 Double_t x3= his1->GetAxis(3)->GetBinCenter(ibin3);
2324 if (ibin3<first3) {
2325 his1->GetAxis(3)->SetRangeUser(-1,1);
2326 x3=0;
2327 }
2328 THnSparse * his3= his1->Projection(4,idim); //projected histogram according selection 3
2329 Int_t nbins2 = his3->GetAxis(2)->GetNbins();
2330 Int_t first2 = his3->GetAxis(2)->GetFirst();
2331 Int_t last2 = his3->GetAxis(2)->GetLast();
2332 //
cfe2c39a 2333 for (Int_t ibin2=first2; ibin2<=last2; ibin2+=1){
8b63d99c 2334 his3->GetAxis(2)->SetRange(TMath::Max(ibin2-1,1),TMath::Min(ibin2+1,nbins2));
2335 Double_t x2= his3->GetAxis(2)->GetBinCenter(ibin2);
cfe2c39a 2336 hisDelta = his3->Projection(0);
8b63d99c 2337 //
2338 Double_t entries = hisDelta->GetEntries();
2339 Double_t mean=0, rms=0;
2340 if (entries>kMinEntries){
2341 mean = hisDelta->GetMean();
2342 rms = hisDelta->GetRMS();
2343 }
cfe2c39a 2344 Double_t sector = 9.*x2/TMath::Pi();
2345 if (sector<0) sector+=18;
2346 Double_t dsec = sector-Int_t(sector)-0.5;
2347 Double_t snp=0; // dummy snp - equal 0
8b63d99c 2348 (*pcstream)<<hname<<
2349 "run="<<run<<
cfe2c39a 2350 "bz="<<bz<< // magnetic field
2351 "theta="<<x1<< // theta
2352 "phi="<<x2<< // phi (alpha)
2353 "z="<<x3<< // z at "vertex"
2354 "snp="<<snp<< // dummy snp
2355 "entries="<<entries<< // entries in bin
2356 "mean="<<mean<< // mean
8b63d99c 2357 "rms="<<rms<<
cfe2c39a 2358 "refX="<<refX<< // track matching refernce plane
2359 "type="<<type<< // parameter type
2360 "sector="<<sector<< // sector
2361 "dsec="<<dsec<< // dummy delta sector
8b63d99c 2362 "\n";
2363 delete hisDelta;
2364 printf("%f\t%f\t%f\t%f\t%f\n",x1,x3,x2, entries,mean);
2365 }
2366 delete his3;
2367 }
2368 delete his1;
2369 }
cfe2c39a 2370 delete his0;
2371}
2372
2373
2374
2375void AliTPCCorrection::MakeDistortionMapSector(THnSparse * hisInput, TTreeSRedirector * const pcstream, const char* hname, Int_t run, Int_t type){
2376 //
2377 // make a distortion map out of the residual histogram
2378 // Results are written to the debug streamer - pcstream
2379 // Parameters:
2380 // his0 - input (4D) residual histogram
2381 // pcstream - file to write the tree
2382 // run - run number
2383 // type - 0- y 1-z,2 -snp, 3-theta
2384 // marian.ivanov@cern.ch
2385
2386 //Collection name='TObjArray', class='TObjArray', size=16
2387 //0 OBJ: TAxis delta delta
2388 //1 OBJ: TAxis phi phi
2389 //2 OBJ: TAxis localX localX
2390 //3 OBJ: TAxis kY kY
2391 //4 OBJ: TAxis kZ kZ
2392 //5 OBJ: TAxis is1 is1
2393 //6 OBJ: TAxis is0 is0
2394 //7. OBJ: TAxis z z
2395 //8. OBJ: TAxis IsPrimary IsPrimary
2396
2397 const Int_t kMinEntries=10;
2398 THnSparse * hisSector0=0;
2399 TH1 * htemp=0; // histogram to calculate mean value of parameter
2400 Double_t bz=AliTrackerBase::GetBz();
2401
2402 //
2403 // Loop over pair of sector:
2404 // isPrim - 8 ==> 8
2405 // isec0 - 6 ==> 7
2406 // isec1 - 5 ==> 6
2407 // refX - 2 ==> 5
2408 //
2409 // phi - 1 ==> 4
2410 // z - 7 ==> 3
2411 // snp - 3 ==> 2
2412 // theta- 4 ==> 1
2413 // 0 ==> 0;
2414 for (Int_t isec0=0; isec0<72; isec0++){
2415 Int_t index0[9]={0, 4, 3, 7, 1, 2, 5, 6,8}; //regroup indeces
2416 //
2417 //hisInput->GetAxis(8)->SetRangeUser(-0.1,0.4); // select secondaries only ? - get out later ?
2418 hisInput->GetAxis(6)->SetRangeUser(isec0-0.1,isec0+0.1);
2419 hisSector0=hisInput->Projection(7,index0);
2420 //
2421 //
2422 for (Int_t isec1=isec0+1; isec1<72; isec1++){
2423 //if (isec1!=isec0+36) continue;
2424 if ( TMath::Abs((isec0%18)-(isec1%18))>1.5 && TMath::Abs((isec0%18)-(isec1%18))<16.5) continue;
2425 printf("Sectors %d\t%d\n",isec1,isec0);
2426 hisSector0->GetAxis(6)->SetRangeUser(isec1-0.1,isec1+0.1);
2427 TH1 * hisX=hisSector0->Projection(5);
2428 Double_t refX= hisX->GetMean();
2429 delete hisX;
2430 TH1 *hisDelta=hisSector0->Projection(0);
2431 Double_t dmean = hisDelta->GetMean();
2432 Double_t drms = hisDelta->GetRMS();
2433 hisSector0->GetAxis(0)->SetRangeUser(dmean-5.*drms, dmean+5.*drms);
2434 delete hisDelta;
2435 //
2436 // 1. make default selections
2437 //
2438 Int_t idim0[5]={0 , 1, 2, 3, 4}; // {delta, theta, snp, z, phi }
2439 THnSparse *hisSector1= hisSector0->Projection(5,idim0);
2440 //
2441 // 2. Get mean in diferent bins
2442 //
2443 Int_t idim[5]={0, 1, 2, 3, 4}; // {delta, theta-1,snp-2 ,z-3, phi-4}
2444 //
2445 // Int_t nbinsPhi=hisSector1->GetAxis(4)->GetNbins();
2446 Int_t firstPhi=hisSector1->GetAxis(4)->GetFirst();
2447 Int_t lastPhi =hisSector1->GetAxis(4)->GetLast();
2448 //
2449 for (Int_t ibinPhi=firstPhi; ibinPhi<=lastPhi; ibinPhi+=1){ //axis 4 - phi
2450 //
2451 // Phi loop
2452 //
2453 Double_t xPhi= hisSector1->GetAxis(4)->GetBinCenter(ibinPhi);
2454 Double_t psec = (9*xPhi/TMath::Pi());
2455 if (psec<0) psec+=18;
2456 Bool_t isOK0=kFALSE;
2457 Bool_t isOK1=kFALSE;
2458 if (TMath::Abs(psec-isec0%18-0.5)<1. || TMath::Abs(psec-isec0%18-17.5)<1.) isOK0=kTRUE;
2459 if (TMath::Abs(psec-isec1%18-0.5)<1. || TMath::Abs(psec-isec1%18-17.5)<1.) isOK1=kTRUE;
2460 if (!isOK0) continue;
2461 if (!isOK1) continue;
2462 //
2463 hisSector1->GetAxis(4)->SetRange(TMath::Max(ibinPhi-2,firstPhi),TMath::Min(ibinPhi+2,lastPhi));
2464 if (isec1!=isec0+36) {
2465 hisSector1->GetAxis(4)->SetRange(TMath::Max(ibinPhi-3,firstPhi),TMath::Min(ibinPhi+3,lastPhi));
2466 }
2467 //
2468 htemp = hisSector1->Projection(4);
2469 xPhi=htemp->GetMean();
2470 delete htemp;
2471 THnSparse * hisPhi = hisSector1->Projection(4,idim);
2472 //Int_t nbinsZ = hisPhi->GetAxis(3)->GetNbins();
2473 Int_t firstZ = hisPhi->GetAxis(3)->GetFirst();
2474 Int_t lastZ = hisPhi->GetAxis(3)->GetLast();
2475 //
2476 for (Int_t ibinZ=firstZ; ibinZ<=lastZ; ibinZ+=1){ // axis 3 - z
2477 //
2478 // Z loop
2479 //
2480 hisPhi->GetAxis(3)->SetRange(TMath::Max(ibinZ,firstZ),TMath::Min(ibinZ,lastZ));
2481 if (isec1!=isec0+36) {
2482 hisPhi->GetAxis(3)->SetRange(TMath::Max(ibinZ-1,firstZ),TMath::Min(ibinZ-1,lastZ));
2483 }
2484 htemp = hisPhi->Projection(3);
2485 Double_t xZ= htemp->GetMean();
2486 delete htemp;
2487 THnSparse * hisZ= hisPhi->Projection(3,idim);
2488 //projected histogram according selection 3 -z
2489 //
2490 //
2491 //Int_t nbinsSnp = hisZ->GetAxis(2)->GetNbins();
2492 Int_t firstSnp = hisZ->GetAxis(2)->GetFirst();
2493 Int_t lastSnp = hisZ->GetAxis(2)->GetLast();
2494 for (Int_t ibinSnp=firstSnp; ibinSnp<=lastSnp; ibinSnp+=2){ // axis 2 - snp
2495 //
2496 // Snp loop
2497 //
2498 hisZ->GetAxis(2)->SetRange(TMath::Max(ibinSnp-1,firstSnp),TMath::Min(ibinSnp+1,lastSnp));
2499 if (isec1!=isec0+36) {
2500 hisZ->GetAxis(2)->SetRange(TMath::Max(ibinSnp-2,firstSnp),TMath::Min(ibinSnp+2,lastSnp));
2501 }
2502 htemp = hisZ->Projection(2);
2503 Double_t xSnp= htemp->GetMean();
2504 delete htemp;
2505 THnSparse * hisSnp= hisZ->Projection(2,idim);
2506 //projected histogram according selection 2 - snp
2507
2508 //Int_t nbinsTheta = hisSnp->GetAxis(1)->GetNbins();
2509 Int_t firstTheta = hisSnp->GetAxis(1)->GetFirst();
2510 Int_t lastTheta = hisSnp->GetAxis(1)->GetLast();
2511 //
2512 for (Int_t ibinTheta=firstTheta; ibinTheta<=lastTheta; ibinTheta+=2){ // axis1 theta
2513
2514
2515 hisSnp->GetAxis(1)->SetRange(TMath::Max(ibinTheta-2,firstTheta),TMath::Min(ibinTheta+2,lastTheta));
2516 if (isec1!=isec0+36) {
2517 hisSnp->GetAxis(1)->SetRange(TMath::Max(ibinTheta-3,firstTheta),TMath::Min(ibinTheta+3,lastTheta));
2518 }
2519 htemp = hisSnp->Projection(1);
2520 Double_t xTheta=htemp->GetMean();
2521 delete htemp;
2522 hisDelta = hisSnp->Projection(0);
2523 //
2524 Double_t entries = hisDelta->GetEntries();
2525 Double_t mean=0, rms=0;
2526 if (entries>kMinEntries){
2527 mean = hisDelta->GetMean();
2528 rms = hisDelta->GetRMS();
2529 }
2530 Double_t sector = 9.*xPhi/TMath::Pi();
2531 if (sector<0) sector+=18;
2532 Double_t dsec = sector-Int_t(sector)-0.5;
2533 Int_t dtype=1; // TPC alignment type
2534 (*pcstream)<<hname<<
2535 "run="<<run<<
2536 "bz="<<bz<< // magnetic field
2537 "ptype="<<type<< // parameter type
2538 "dtype="<<dtype<< // parameter type
2539 "isec0="<<isec0<< // sector 0
2540 "isec1="<<isec1<< // sector 1
2541 "sector="<<sector<< // sector as float
2542 "dsec="<<dsec<< // delta sector
2543 //
2544 "theta="<<xTheta<< // theta
2545 "phi="<<xPhi<< // phi (alpha)
2546 "z="<<xZ<< // z
2547 "snp="<<xSnp<< // snp
2548 //
2549 "entries="<<entries<< // entries in bin
2550 "mean="<<mean<< // mean
2551 "rms="<<rms<< // rms
2552 "refX="<<refX<< // track matching reference plane
2553 "\n";
2554 delete hisDelta;
2555 printf("%d\t%d\t%f\t%f\t%f\t%f\t%f\t%f\n",isec0, isec1, xPhi,xZ,xSnp, xTheta, entries,mean);
2556 //
2557 }//ibinTheta
2558 delete hisSnp;
2559 } //ibinSnp
2560 delete hisZ;
2561 }//ibinZ
2562 delete hisPhi;
2563 }//ibinPhi
2564 delete hisSector1;
2565 }//isec1
2566 delete hisSector0;
2567 }//isec0
8b63d99c 2568}
2569
2570
2571
2572
2573
cfe2c39a 2574
2575
ffab0c37 2576void AliTPCCorrection::StoreInOCDB(Int_t startRun, Int_t endRun, const char *comment){
2577 //
2578 // Store object in the OCDB
2579 // By default the object is stored in the current directory
2580 // default comment consit of user name and the date
2581 //
2582 TString ocdbStorage="";
2583 ocdbStorage+="local://"+gSystem->GetFromPipe("pwd")+"/OCDB";
2584 AliCDBMetaData *metaData= new AliCDBMetaData();
2585 metaData->SetObjectClassName("AliTPCCorrection");
2586 metaData->SetResponsible("Marian Ivanov");
2587 metaData->SetBeamPeriod(1);
2588 metaData->SetAliRootVersion("05-25-01"); //root version
2589 TString userName=gSystem->GetFromPipe("echo $USER");
2590 TString date=gSystem->GetFromPipe("date");
2591
2592 if (!comment) metaData->SetComment(Form("Space point distortion calibration\n User: %s\n Data%s",userName.Data(),date.Data()));
2593 if (comment) metaData->SetComment(comment);
2594 AliCDBId* id1=NULL;
2595 id1=new AliCDBId("TPC/Calib/Correction", startRun, endRun);
2596 AliCDBStorage* gStorage = AliCDBManager::Instance()->GetStorage(ocdbStorage);
2597 gStorage->Put(this, (*id1), metaData);
2598}
2599
ca58ed4e 2600
7d85e147 2601void AliTPCCorrection::FastSimDistortedVertex(Double_t orgVertex[3], Int_t nTracks, AliESDVertex &aV, AliESDVertex &avOrg, AliESDVertex &cV, AliESDVertex &cvOrg, TTreeSRedirector * const pcstream, Double_t etaCuts){
c9cbd2f2 2602 //
2603 // Fast method to simulate the influence of the given distortion on the vertex reconstruction
2604 //
ca58ed4e 2605
c9cbd2f2 2606 AliMagF* magF= (AliMagF*)TGeoGlobalMagField::Instance()->GetField();
2607 if (!magF) AliError("Magneticd field - not initialized");
2608 Double_t bz = magF->SolenoidField(); //field in kGauss
9f3b99e2 2609 printf("bz: %f\n",bz);
c9cbd2f2 2610 AliVertexerTracks *vertexer = new AliVertexerTracks(bz); // bz in kGauss
ca58ed4e 2611
c9cbd2f2 2612 TObjArray aTrk; // Original Track array of Aside
2613 TObjArray daTrk; // Distorted Track array of A side
2614 UShort_t *aId = new UShort_t[nTracks]; // A side Track ID
2615 TObjArray cTrk;
2616 TObjArray dcTrk;
2617 UShort_t *cId = new UShort_t [nTracks];
2618 Int_t id=0;
ca58ed4e 2619 Double_t mass = TDatabasePDG::Instance()->GetParticle("pi+")->Mass();
7d85e147 2620 TF1 fpt("fpt",Form("x*(1+(sqrt(x*x+%f^2)-%f)/([0]*[1]))^(-[0])",mass,mass),0.4,10);
ca58ed4e 2621 fpt.SetParameters(7.24,0.120);
2622 fpt.SetNpx(10000);
2623 for(Int_t nt=0; nt<nTracks; nt++){
2624 Double_t phi = gRandom->Uniform(0.0, 2*TMath::Pi());
7d85e147 2625 Double_t eta = gRandom->Uniform(-etaCuts, etaCuts);
c9cbd2f2 2626 Double_t pt = fpt.GetRandom(); // momentum for f1
2627 // printf("phi %lf eta %lf pt %lf\n",phi,eta,pt);
ca58ed4e 2628 Short_t sign=1;
2629 if(gRandom->Rndm() < 0.5){
2630 sign =1;
2631 }else{
2632 sign=-1;
2633 }
2634
2635 Double_t theta = 2*TMath::ATan(TMath::Exp(-eta))-TMath::Pi()/2.;
2636 Double_t pxyz[3];
2637 pxyz[0]=pt*TMath::Cos(phi);
2638 pxyz[1]=pt*TMath::Sin(phi);
2639 pxyz[2]=pt*TMath::Tan(theta);
2640 Double_t cv[21]={0};
2641 AliExternalTrackParam *t= new AliExternalTrackParam(orgVertex, pxyz, cv, sign);
2642
2643 Double_t refX=1.;
2644 Int_t dir=-1;
2645 AliExternalTrackParam *td = FitDistortedTrack(*t, refX, dir, NULL);
2646 if (!td) continue;
2647 if (pcstream) (*pcstream)<<"track"<<
2648 "eta="<<eta<<
2649 "theta="<<theta<<
2650 "tOrig.="<<t<<
2651 "td.="<<td<<
2652 "\n";
7d85e147 2653 if(( eta>0.07 )&&( eta<etaCuts )) { // - log(tan(0.5*theta)), theta = 0.5*pi - ATan(5.0/80.0)
ca58ed4e 2654 if (td){
c9cbd2f2 2655 daTrk.AddLast(td);
2656 aTrk.AddLast(t);
2657 Int_t nn=aTrk.GetEntriesFast();
2658 aId[nn]=id;
ca58ed4e 2659 }
7d85e147 2660 }else if(( eta<-0.07 )&&( eta>-etaCuts )){
ca58ed4e 2661 if (td){
c9cbd2f2 2662 dcTrk.AddLast(td);
2663 cTrk.AddLast(t);
2664 Int_t nn=cTrk.GetEntriesFast();
2665 cId[nn]=id;
ca58ed4e 2666 }
2667 }
c9cbd2f2 2668 id++;
ca58ed4e 2669 }// end of track loop
2670
2671 vertexer->SetTPCMode();
2672 vertexer->SetConstraintOff();
2673
c9cbd2f2 2674 aV = *((AliESDVertex*)vertexer->FindPrimaryVertex(&daTrk,aId));
2675 avOrg = *((AliESDVertex*)vertexer->FindPrimaryVertex(&aTrk,aId));
2676 cV = *((AliESDVertex*)vertexer->FindPrimaryVertex(&dcTrk,cId));
2677 cvOrg = *((AliESDVertex*)vertexer->FindPrimaryVertex(&cTrk,cId));
ca58ed4e 2678 if (pcstream) (*pcstream)<<"vertex"<<
2679 "x="<<orgVertex[0]<<
2680 "y="<<orgVertex[1]<<
2681 "z="<<orgVertex[2]<<
2682 "av.="<<&aV<< // distorted vertex A side
2683 "cv.="<<&cV<< // distroted vertex C side
2684 "avO.="<<&avOrg<< // original vertex A side
2685 "cvO.="<<&cvOrg<<
2686 "\n";
c9cbd2f2 2687 delete []aId;
2688 delete []cId;
ca58ed4e 2689}
f1817479 2690
2691void AliTPCCorrection::AddVisualCorrection(AliTPCCorrection* corr, Int_t position){
2692 //
2693 // make correction available for visualization using
2694 // TFormula, TFX and TTree::Draw
2695 // important in order to check corrections and also compute dervied variables
2696 // e.g correction partial derivatives
2697 //
2698 // NOTE - class is not owner of correction
2699 //
cfe2c39a 2700 if (!fgVisualCorrection) fgVisualCorrection=new TObjArray(10000);
2701 if (position>=fgVisualCorrection->GetEntriesFast())
2702 fgVisualCorrection->Expand((position+10)*2);
f1817479 2703 fgVisualCorrection->AddAt(corr, position);
2704}
2705
2706
2707
287fbdfa 2708Double_t AliTPCCorrection::GetCorrSector(Double_t sector, Double_t r, Double_t kZ, Int_t axisType, Int_t corrType){
f1817479 2709 //
2710 // calculate the correction at given position - check the geffCorr
2711 //
cfe2c39a 2712 // corrType return values
2713 // 0 - delta R
2714 // 1 - delta RPhi
2715 // 2 - delta Z
2716 // 3 - delta RPHI
2717 //
f1817479 2718 if (!fgVisualCorrection) return 0;
2719 AliTPCCorrection *corr = (AliTPCCorrection*)fgVisualCorrection->At(corrType);
2720 if (!corr) return 0;
25732bff 2721
f1817479 2722 Double_t phi=sector*TMath::Pi()/9.;
287fbdfa 2723 Double_t gx = r*TMath::Cos(phi);
2724 Double_t gy = r*TMath::Sin(phi);
2725 Double_t gz = r*kZ;
f1817479 2726 Int_t nsector=(gz>0) ? 0:18;
2727 //
2728 //
2729 //
2730 Float_t distPoint[3]={gx,gy,gz};
2731 corr->DistortPoint(distPoint, nsector);
2732 Double_t r0=TMath::Sqrt(gx*gx+gy*gy);
2733 Double_t r1=TMath::Sqrt(distPoint[0]*distPoint[0]+distPoint[1]*distPoint[1]);
2734 Double_t phi0=TMath::ATan2(gy,gx);
2735 Double_t phi1=TMath::ATan2(distPoint[1],distPoint[0]);
2736 if (axisType==0) return r1-r0;
2737 if (axisType==1) return (phi1-phi0)*r0;
2738 if (axisType==2) return distPoint[2]-gz;
cfe2c39a 2739 if (axisType==3) return (TMath::Cos(phi)*(distPoint[0]-gx)+ TMath::Cos(phi)*(distPoint[1]-gy));
f1817479 2740 return phi1-phi0;
2741}
2742
2743Double_t AliTPCCorrection::GetCorrXYZ(Double_t gx, Double_t gy, Double_t gz, Int_t axisType, Int_t corrType){
2744 //
2745 // return correction at given x,y,z
2746 //
2747 if (!fgVisualCorrection) return 0;
2748 AliTPCCorrection *corr = (AliTPCCorrection*)fgVisualCorrection->At(corrType);
2749 if (!corr) return 0;
2750 Double_t phi0= TMath::ATan2(gy,gx);
2751 Int_t nsector=(gz>0) ? 0:18;
2752 Float_t distPoint[3]={gx,gy,gz};
2753 corr->DistortPoint(distPoint, nsector);
2754 Double_t r0=TMath::Sqrt(gx*gx+gy*gy);
2755 Double_t r1=TMath::Sqrt(distPoint[0]*distPoint[0]+distPoint[1]*distPoint[1]);
2756 Double_t phi1=TMath::ATan2(distPoint[1],distPoint[0]);
2757 if (axisType==0) return r1-r0;
2758 if (axisType==1) return (phi1-phi0)*r0;
2759 if (axisType==2) return distPoint[2]-gz;
2760 return phi1-phi0;
2761}
46e89793 2762
2763
2764
2765
2766
284418bc 2767void AliTPCCorrection::MakeLaserDistortionTree(TTree* tree, TObjArray */*corrArray*/, Int_t /*itype*/){
46e89793 2768 //
2769 // Make a laser fit tree for global minimization
2770 //
2771 AliTPCcalibDB* calib=AliTPCcalibDB::Instance();
2772 AliTPCCorrection * correction = calib->GetTPCComposedCorrection();
2773 if (!correction) correction = calib->GetTPCComposedCorrection(AliTrackerBase::GetBz());
2774 correction->AddVisualCorrection(correction,0); //register correction
2775
284418bc 2776 // AliTPCTransform *transform = AliTPCcalibDB::Instance()->GetTransform() ;
2777 //AliTPCParam *param = AliTPCcalibDB::Instance()->GetParameters();
46e89793 2778 //
2779 const Double_t cutErrY=0.05;
2780 const Double_t kSigmaCut=4;
2781 // const Double_t cutErrZ=0.03;
2782 const Double_t kEpsilon=0.00000001;
284418bc 2783 // const Double_t kMaxDist=1.; // max distance - space correction
46e89793 2784 TVectorD *vecdY=0;
2785 TVectorD *vecdZ=0;
2786 TVectorD *veceY=0;
2787 TVectorD *veceZ=0;
2788 AliTPCLaserTrack *ltr=0;
2789 AliTPCLaserTrack::LoadTracks();
2790 tree->SetBranchAddress("dY.",&vecdY);
2791 tree->SetBranchAddress("dZ.",&vecdZ);
2792 tree->SetBranchAddress("eY.",&veceY);
2793 tree->SetBranchAddress("eZ.",&veceZ);
2794 tree->SetBranchAddress("LTr.",&ltr);
2795 Int_t entries= tree->GetEntries();
2796 TTreeSRedirector *pcstream= new TTreeSRedirector("distortionLaser_0.root");
2797 Double_t bz=AliTrackerBase::GetBz();
2798 //
284418bc 2799 // Double_t globalXYZ[3];
2800 //Double_t globalXYZCorr[3];
46e89793 2801 for (Int_t ientry=0; ientry<entries; ientry++){
2802 tree->GetEntry(ientry);
2803 if (!ltr->GetVecGX()){
2804 ltr->UpdatePoints();
2805 }
2806 //
2807 TVectorD fit10(5);
2808 TVectorD fit5(5);
2809 printf("Entry\t%d\n",ientry);
2810 for (Int_t irow0=0; irow0<158; irow0+=1){
2811 //
2812 TLinearFitter fitter10(4,"hyp3");
2813 TLinearFitter fitter5(2,"hyp1");
2814 Int_t sector= (Int_t)(*ltr->GetVecSec())[irow0];
2815 if (sector<0) continue;
2816 //if (TMath::Abs(vecdY->GetMatrixArray()[irow0])<kEpsilon) continue;
2817
2818 Double_t refX= (*ltr->GetVecLX())[irow0];
2819 Int_t firstRow1 = TMath::Max(irow0-10,0);
2820 Int_t lastRow1 = TMath::Min(irow0+10,158);
2821 Double_t padWidth=(irow0<64)?0.4:0.6;
2822 // make long range fit
2823 for (Int_t irow1=firstRow1; irow1<=lastRow1; irow1++){
2824 if (TMath::Abs((*ltr->GetVecSec())[irow1]-sector)>kEpsilon) continue;
2825 if (veceY->GetMatrixArray()[irow1]>cutErrY) continue;
2826 if (TMath::Abs(vecdY->GetMatrixArray()[irow1])<kEpsilon) continue;
2827 Double_t idealX= (*ltr->GetVecLX())[irow1];
2828 Double_t idealY= (*ltr->GetVecLY())[irow1];
284418bc 2829 // Double_t idealZ= (*ltr->GetVecLZ())[irow1];
46e89793 2830 Double_t gx= (*ltr->GetVecGX())[irow1];
2831 Double_t gy= (*ltr->GetVecGY())[irow1];
2832 Double_t gz= (*ltr->GetVecGZ())[irow1];
2833 Double_t measY=(*vecdY)[irow1]+idealY;
2834 Double_t deltaR = GetCorrXYZ(gx, gy, gz, 0,0);
2835 // deltaR = R distorted -R ideal
2836 Double_t xxx[4]={idealX+deltaR-refX,TMath::Cos(idealY/padWidth), TMath::Sin(idealY/padWidth)};
2837 fitter10.AddPoint(xxx,measY,1);
2838 }
2839 Bool_t isOK=kTRUE;
2840 Double_t rms10=0;//TMath::Sqrt(fitter10.GetChisquare()/(fitter10.GetNpoints()-4));
2841 Double_t mean10 =0;// fitter10.GetParameter(0);
2842 Double_t slope10 =0;// fitter10.GetParameter(0);
2843 Double_t cosPart10 = 0;// fitter10.GetParameter(2);
2844 Double_t sinPart10 =0;// fitter10.GetParameter(3);
2845
2846 if (fitter10.GetNpoints()>10){
2847 fitter10.Eval();
2848 rms10=TMath::Sqrt(fitter10.GetChisquare()/(fitter10.GetNpoints()-4));
2849 mean10 = fitter10.GetParameter(0);
2850 slope10 = fitter10.GetParameter(1);
2851 cosPart10 = fitter10.GetParameter(2);
2852 sinPart10 = fitter10.GetParameter(3);
2853 //
2854 // make short range fit
2855 //
2856 for (Int_t irow1=firstRow1+5; irow1<=lastRow1-5; irow1++){
2857 if (TMath::Abs((*ltr->GetVecSec())[irow1]-sector)>kEpsilon) continue;
2858 if (veceY->GetMatrixArray()[irow1]>cutErrY) continue;
2859 if (TMath::Abs(vecdY->GetMatrixArray()[irow1])<kEpsilon) continue;
2860 Double_t idealX= (*ltr->GetVecLX())[irow1];
2861 Double_t idealY= (*ltr->GetVecLY())[irow1];
284418bc 2862 // Double_t idealZ= (*ltr->GetVecLZ())[irow1];
46e89793 2863 Double_t gx= (*ltr->GetVecGX())[irow1];
2864 Double_t gy= (*ltr->GetVecGY())[irow1];
2865 Double_t gz= (*ltr->GetVecGZ())[irow1];
2866 Double_t measY=(*vecdY)[irow1]+idealY;
2867 Double_t deltaR = GetCorrXYZ(gx, gy, gz, 0,0);
2868 // deltaR = R distorted -R ideal
2869 Double_t expY= mean10+slope10*(idealX+deltaR-refX);
2870 if (TMath::Abs(measY-expY)>kSigmaCut*rms10) continue;
2871 //
2872 Double_t corr=cosPart10*TMath::Cos(idealY/padWidth)+sinPart10*TMath::Sin(idealY/padWidth);
2873 Double_t xxx[4]={idealX+deltaR-refX,TMath::Cos(idealY/padWidth), TMath::Sin(idealY/padWidth)};
2874 fitter5.AddPoint(xxx,measY-corr,1);
2875 }
2876 }else{
2877 isOK=kFALSE;
2878 }
2879 if (fitter5.GetNpoints()<8) isOK=kFALSE;
2880
2881 Double_t rms5=0;//TMath::Sqrt(fitter5.GetChisquare()/(fitter5.GetNpoints()-4));
2882 Double_t offset5 =0;// fitter5.GetParameter(0);
2883 Double_t slope5 =0;// fitter5.GetParameter(0);
2884 if (isOK){
2885 fitter5.Eval();
2886 rms5=TMath::Sqrt(fitter5.GetChisquare()/(fitter5.GetNpoints()-4));
2887 offset5 = fitter5.GetParameter(0);
2888 slope5 = fitter5.GetParameter(0);
2889 }
2890 //
2891 Double_t dtype=5;
2892 Double_t ptype=0;
2893 Double_t phi =(*ltr->GetVecPhi())[irow0];
2894 Double_t theta =ltr->GetTgl();
2895 Double_t mean=(vecdY)->GetMatrixArray()[irow0];
2896 Double_t gx=0,gy=0,gz=0;
2897 Double_t snp = (*ltr->GetVecP2())[irow0];
2898 Int_t bundle= ltr->GetBundle();
2899 Int_t id= ltr->GetId();
2900 // Double_t rms = err->GetMatrixArray()[irow];
2901 //
2902 gx = (*ltr->GetVecGX())[irow0];
2903 gy = (*ltr->GetVecGY())[irow0];
2904 gz = (*ltr->GetVecGZ())[irow0];
2905 Double_t dRrec = GetCorrXYZ(gx, gy, gz, 0,0);
2906 fitter10.GetParameters(fit10);
2907 fitter5.GetParameters(fit5);
2908 Double_t idealY= (*ltr->GetVecLY())[irow0];
2909 Double_t measY=(*vecdY)[irow0]+idealY;
2910 Double_t corr=cosPart10*TMath::Cos(idealY/padWidth)+sinPart10*TMath::Sin(idealY/padWidth);
2911 if (TMath::Max(rms5,rms10)>0.06) isOK=kFALSE;
2912 //
2913 (*pcstream)<<"fitFull"<< // dumpe also intermediate results
2914 "bz="<<bz<< // magnetic filed used
2915 "dtype="<<dtype<< // detector match type
2916 "ptype="<<ptype<< // parameter type
2917 "theta="<<theta<< // theta
2918 "phi="<<phi<< // phi
2919 "snp="<<snp<< // snp
2920 "sector="<<sector<<
2921 "bundle="<<bundle<<
2922// // "dsec="<<dsec<<
2923 "refX="<<refX<< // reference radius
2924 "gx="<<gx<< // global position
2925 "gy="<<gy<< // global position
2926 "gz="<<gz<< // global position
2927 "dRrec="<<dRrec<< // delta Radius in reconstruction
2928 "id="<<id<< //bundle
2929 "rms10="<<rms10<<
2930 "rms5="<<rms5<<
2931 "fit10.="<<&fit10<<
2932 "fit5.="<<&fit5<<
2933 "measY="<<measY<<
2934 "mean="<<mean<<
2935 "idealY="<<idealY<<
2936 "corr="<<corr<<
2937 "isOK="<<isOK<<
2938 "\n";
2939 }
2940 }
2941 delete pcstream;
2942}