(Marian)
[u/mrichter/AliRoot.git] / TPC / AliTPCPRF2D.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
4c039060 17
8c555625 18///////////////////////////////////////////////////////////////////////////////
6e7b5431 19// AliTPCPRF2D - //
8c555625 20// Pad response function object in two dimesions //
21// This class contains the basic functions for the //
22// calculation of PRF according generic charge distribution //
23// In Update function object calculate table of response function //
24// in discrete x and y position //
25// This table is used for interpolation od response function in any position //
26// (function GetPRF) //
27// //
28// Origin: Marian Ivanov, Uni. of Bratislava, ivanov@fmph.uniba.sk //
29// //
30///////////////////////////////////////////////////////////////////////////////
cc80f89e 31
32
8c555625 33#include "TMath.h"
34#include "AliTPCPRF2D.h"
35#include "TF2.h"
19364939 36#include <Riostream.h>
8c555625 37#include <string.h>
38#include "TCanvas.h"
39#include "TPad.h"
40#include "TStyle.h"
6e7b5431 41#include "TH1.h"
42#include "AliH2F.h"
43
44
8c555625 45#include "TPaveText.h"
46#include "TText.h"
47
48extern TStyle * gStyle;
49
6e7b5431 50const Double_t AliTPCPRF2D::fgkDegtoRad = 0.01745329251994;
51const Double_t AliTPCPRF2D::fgkSQRT12=3.464101;
52const Int_t AliTPCPRF2D::fgkNPRF = 100;
8c555625 53
54
55static Double_t funGauss2D(Double_t *x, Double_t * par)
56{
cc80f89e 57//Gauss function -needde by the generic function object
8c555625 58 return ( TMath::Exp(-(x[0]*x[0])/(2*par[0]*par[0]))*
59 TMath::Exp(-(x[1]*x[1])/(2*par[1]*par[1])));
60
61}
62
63static Double_t funCosh2D(Double_t *x, Double_t * par)
64{
cc80f89e 65 //Cosh function -needde by the generic function object
8c555625 66 return ( 1/(TMath::CosH(3.14159*x[0]/(2*par[0]))*
67 TMath::CosH(3.14159*x[1]/(2*par[1]))));
68}
69
70static Double_t funGati2D(Double_t *x, Double_t * par)
71{
cc80f89e 72 //Gati function -needde by the generic function object
73042f01 73 Float_t k3=par[1];
74 Float_t k3R=TMath::Sqrt(k3);
75 Float_t k2=(TMath::Pi()/2)*(1-k3R/2.);
76 Float_t k1=k2*k3R/(4*TMath::ATan(k3R));
8c555625 77 Float_t l=x[0]/par[0];
73042f01 78 Float_t tan2=TMath::TanH(k2*l);
8c555625 79 tan2*=tan2;
73042f01 80 Float_t res = k1*(1-tan2)/(1+k3*tan2);
8c555625 81 //par[4] = is equal to k3Y
73042f01 82 k3=par[4];
83 k3R=TMath::Sqrt(k3);
84 k2=(TMath::Pi()/2)*(1-k3R/2.);
85 k1=k2*k3R/(4*TMath::ATan(k3R));
8c555625 86 l=x[1]/par[0];
6e7b5431 87 tan2=TMath::TanH(k2*l);
8c555625 88 tan2*=tan2;
6e7b5431 89 res = res*k1*(1-tan2)/(1+k3*tan2);
8c555625 90 return res;
91}
92
8c555625 93///////////////////////////////////////////////////////////////////////////
94///////////////////////////////////////////////////////////////////////////
95
96ClassImp(AliTPCPRF2D)
97
98AliTPCPRF2D::AliTPCPRF2D()
99{
cc80f89e 100 //default constructor for response function object
7775178f 101 fcharge = 0;
6e7b5431 102 fNChargeArray = 0;
103 fChargeArray = 0;
104 fNPRF =fgkNPRF ;
8c555625 105 fSigmaX = 0;
cc80f89e 106 fSigmaY = 0;
8c555625 107
108 fGRF = 0;
6e7b5431 109 fKNorm = 1;
cc80f89e 110 fOrigSigmaY=0;
111 fOrigSigmaX=0;
8c555625 112 fNdiv = 5;
cc80f89e 113 //set daault angels
114 fChargeAngle = 0;
6e7b5431 115 fPadAngle = 0;
8c555625 116 //chewron default values
117 SetPad(0.8,0.8);
118 SetChevron(0.2,0.0,1.0);
119 SetY(-0.2,0.2,2);
6e7b5431 120 SetInterpolationType(2,0);
8c555625 121}
122
123AliTPCPRF2D::~AliTPCPRF2D()
124{
6e7b5431 125 if (fChargeArray!=0) delete [] fChargeArray;
126 if (fGRF !=0 ) fGRF->Delete();
8c555625 127}
128
129void AliTPCPRF2D::SetY(Float_t y1, Float_t y2, Int_t nYdiv)
130{
131 //
132 //set virtual line position
133 //first and last line and number of lines
134 fNYdiv = nYdiv;
8c555625 135 fY1=y1;
136 fY2=y2;
137}
138
139void AliTPCPRF2D::SetPad(Float_t width, Float_t height)
140{
141 //set base chevron parameters
142 fHeightFull=height;
143 fWidth=width;
144}
145void AliTPCPRF2D::SetChevron(Float_t hstep,
146 Float_t shifty,
147 Float_t fac)
148{
149 //set shaping of chewron parameters
150 fHeightS=hstep;
151 fShiftY=shifty;
6e7b5431 152 fK=fac;
8c555625 153}
154
155void AliTPCPRF2D::SetChParam(Float_t width, Float_t height,
156 Float_t hstep, Float_t shifty, Float_t fac)
157{
158 SetPad(width,height);
159 SetChevron(hstep,shifty,fac);
160}
161
162
6e7b5431 163Float_t AliTPCPRF2D::GetPRF(Float_t xin, Float_t yin)
8c555625 164{
cc80f89e 165 //function which return pad response
166 //for the charge in distance xin
167 //return cubic aproximation of PRF or PRF at nearest virtual wire
6e7b5431 168 if (fChargeArray==0) return 0;
8c555625 169 //transform position to "wire position"
170 Float_t y=fDYtoWire*(yin-fY1);
171 if (fNYdiv == 1) y=fY1;
172 //normaly it find nearest line charge
6e7b5431 173 if (fInterY ==0){
8c555625 174 Int_t i=Int_t(0.5+y);
175 if (y<0) i=Int_t(-0.5+y);
176 if ((i<0) || (i>=fNYdiv) ) return 0;
6e7b5431 177 fcharge = &(fChargeArray[i*fNPRF]);
8c555625 178 return GetPRFActiv(xin);
179 }
0798b21e 180 //make interpolation from more fore lines
181 Int_t i= Int_t(y);
182 Float_t res;
183 if ((i<0) || (i>=fNYdiv) ) return 0;
184 Float_t z0=0;
185 Float_t z1=0;
186 Float_t z2=0;
187 Float_t z3=0;
188 if (i>0) {
189 fcharge =&(fChargeArray[(i-1)*fNPRF]);
190 z0 = GetPRFActiv(xin);
191 }
192 fcharge =&(fChargeArray[i*fNPRF]);
193 z1=GetPRFActiv(xin);
194 if ((i+1)<fNYdiv){
195 fcharge =&(fChargeArray[(i+1)*fNPRF]);
196 z2 = GetPRFActiv(xin);
197 }
198 if ((i+2)<fNYdiv){
199 fcharge =&(fChargeArray[(i+2)*fNPRF]);
200 z3 = GetPRFActiv(xin);
201 }
202 Float_t a,b,c,d,k,l;
203 a=z1;
204 b=(z2-z0)/2.;
205 k=z2-a-b;
206 l=(z3-z1)/2.-b;
207 d=l-2*k;
208 c=k-d;
209 Float_t dy=y-Float_t(i);
210
211 res = a+b*dy+c*dy*dy+d*dy*dy*dy;
212 return res;
8c555625 213}
214
215
216Float_t AliTPCPRF2D::GetPRFActiv(Float_t xin)
217{
cc80f89e 218 //GEt response function on given charege line
219 //return spline aproximaton
8c555625 220 Float_t x = (xin*fDStepM1)+fNPRF/2;
221 Int_t i = Int_t(x);
222
6e7b5431 223 if ( (i>1) && ((i+2)<fNPRF)) {
73042f01 224 Float_t a,b,c,d,k,l;
8c555625 225 a = fcharge[i];
226 b = (fcharge[i+1]-fcharge[i-1])*0.5;
73042f01 227 k = fcharge[i+1]-a-b;
228 l = (fcharge[i+2]-fcharge[i])*0.5-b;
229 d=l-2.*k;
230 c=k-d;
8c555625 231 Float_t dx=x-Float_t(i);
232 Float_t res = a+b*dx+c*dx*dx+d*dx*dx*dx;
233 return res;
234 }
235 else return 0;
236}
237
238
239Float_t AliTPCPRF2D::GetGRF(Float_t xin, Float_t yin)
240{
cc80f89e 241 //function which returnoriginal charge distribution
242 //this function is just normalised for fKnorm
6e7b5431 243 if (GetGRF() != 0 )
244 return fKNorm*GetGRF()->Eval(xin,yin)/fInteg;
8c555625 245 else
246 return 0.;
247}
248
249
250void AliTPCPRF2D::SetParam( TF2 * GRF, Float_t kNorm,
251 Float_t sigmaX, Float_t sigmaY)
252{
cc80f89e 253 //adjust parameters of the original charge distribution
254 //and pad size parameters
8c555625 255 if (fGRF !=0 ) fGRF->Delete();
256 fGRF = GRF;
6e7b5431 257 fKNorm = kNorm;
258 sprintf(fType,"User");
259 if (sigmaX ==0) sigmaX=(fWidth*(1+TMath::Abs(fK)))/fgkSQRT12;
260 if (sigmaY ==0) sigmaY=(fWidth*(1+TMath::Abs(fK)))/fgkSQRT12;
cc80f89e 261 fOrigSigmaX=sigmaX;
262 fOrigSigmaY=sigmaY;
6e7b5431 263 Double_t estimsigma =
264 TMath::Sqrt(sigmaX*sigmaX+(fWidth*fWidth*(1+TMath::Abs(fK))/12)+
265 TMath::Tan(fPadAngle*fgkDegtoRad)*TMath::Tan(fPadAngle*fgkDegtoRad)*fHeightFull*fHeightFull/12);
266 if (estimsigma < 5*sigmaX) {
267 fDStep = estimsigma/10.;
268 fNPRF = Int_t(estimsigma*8./fDStep);
269 }
270 else{
271 fDStep = sigmaX;
272 Double_t width = fWidth*(1+TMath::Abs(fK))+TMath::Abs(TMath::Tan(fPadAngle*fgkDegtoRad))*fHeightFull;
273 fNPRF = Int_t((width+8.*sigmaX)/fDStep);
274 };
275
8c555625 276}
277
278
279void AliTPCPRF2D::SetGauss(Float_t sigmaX, Float_t sigmaY,
280 Float_t kNorm)
281{
cc80f89e 282 //
283 // set parameters for Gauss generic charge distribution
284 //
6e7b5431 285 fKNorm = kNorm;
286 fOrigSigmaX=sigmaX;
287 fOrigSigmaY=sigmaY;
288 sprintf(fType,"Gauss");
8c555625 289 if (fGRF !=0 ) fGRF->Delete();
2a336e15 290 fGRF = new TF2("funGauss2D",funGauss2D,-5.,5.,-5.,5.,4);
6e7b5431 291
8c555625 292 funParam[0]=sigmaX;
293 funParam[1]=sigmaY;
294 funParam[2]=fK;
295 funParam[3]=fHeightS;
6e7b5431 296
297 fGRF->SetParameters(funParam);
298 Double_t estimsigma =
299 TMath::Sqrt(sigmaX*sigmaX+(fWidth*fWidth*(1+TMath::Abs(fK))/12)+
300 TMath::Tan(fPadAngle)*TMath::Tan(fPadAngle*fgkDegtoRad)*fHeightFull*fHeightFull/12);
301 if (estimsigma < 5*sigmaX) {
302 fDStep = estimsigma/10.;
303 fNPRF = Int_t(estimsigma*8./fDStep);
304 }
305 else{
306 fDStep = sigmaX;
307 Double_t width = fWidth*(1+TMath::Abs(fK))+TMath::Abs(TMath::Tan(fPadAngle*fgkDegtoRad))*fHeightFull;
308 fNPRF = Int_t((width+8.*sigmaX)/fDStep);
309 };
310
311
8c555625 312}
8c555625 313void AliTPCPRF2D::SetCosh(Float_t sigmaX, Float_t sigmaY,
314 Float_t kNorm)
cc80f89e 315{
316 // set parameters for Cosh generic charge distribution
317 //
6e7b5431 318 fKNorm = kNorm;
319 fOrigSigmaX=sigmaX;
320 fOrigSigmaY=sigmaY;
321 sprintf(fType,"Cosh");
8c555625 322 if (fGRF !=0 ) fGRF->Delete();
2a336e15 323 fGRF = new TF2("funCosh2D", funCosh2D,-5.,5.,-5.,5.,4);
8c555625 324 funParam[0]=sigmaX;
325 funParam[1]=sigmaY;
326 funParam[2]=fK;
327 funParam[3]=fHeightS;
328 fGRF->SetParameters(funParam);
6e7b5431 329
330 Double_t estimsigma = TMath::Sqrt(sigmaX*sigmaX+fWidth*fWidth*(1+TMath::Abs(fK))/12);
331 if (estimsigma < 5*sigmaX) {
332 fDStep = estimsigma/10.;
333 fNPRF = Int_t(estimsigma*8./fDStep);
334 }
335 else{
336 fDStep = sigmaX;
337 fNPRF = Int_t((1.2*fWidth*(1+TMath::Abs(fK))+8.*sigmaX)/fDStep);
338 };
339
8c555625 340}
341
342void AliTPCPRF2D::SetGati(Float_t K3X, Float_t K3Y,
343 Float_t padDistance,
344 Float_t kNorm)
345{
cc80f89e 346 // set parameters for Gati generic charge distribution
347 //
6e7b5431 348 fKNorm = kNorm;
8c555625 349 fK3X=K3X;
350 fK3Y=K3Y;
6e7b5431 351 fPadDistance=padDistance;
352 sprintf(fType,"Gati");
353 if (fGRF !=0 ) fGRF->Delete();
2a336e15 354 fGRF = new TF2("funGati2D", funGati2D,-5.,5.,-5.,5.,5);
6e7b5431 355
8c555625 356 funParam[0]=padDistance;
357 funParam[1]=K3X;
358 funParam[2]=fK;
359 funParam[3]=fHeightS;
360 funParam[4]=K3Y;
361 fGRF->SetParameters(funParam);
cc80f89e 362 fOrigSigmaX=padDistance;
363 fOrigSigmaY=padDistance;
6e7b5431 364 Float_t sigmaX = fOrigSigmaX;
365 Double_t estimsigma = TMath::Sqrt(sigmaX*sigmaX+fWidth*fWidth*(1+TMath::Abs(fK))/12);
366 if (estimsigma < 5*sigmaX) {
367 fDStep = estimsigma/10.;
368 fNPRF = Int_t(estimsigma*8./fDStep);
369 }
370 else{
371 fDStep = sigmaX;
372 fNPRF = Int_t((1.2*fWidth*(1+TMath::Abs(fK))+8.*sigmaX)/fDStep);
373 };
8c555625 374}
375
376
377
378void AliTPCPRF2D::Update()
379{
cc80f89e 380 //
381 //update fields with interpolated values for
382 //PRF calculation
383
384 if ( fGRF == 0 ) return;
385 //initialize interpolated values to 0
386 Int_t i;
6e7b5431 387 if (fChargeArray!=0) delete [] fChargeArray;
388 fChargeArray = new Float_t[fNPRF*fNYdiv];
389 fNChargeArray = fNPRF*fNYdiv;
390 for (i =0; i<fNPRF*fNYdiv;i++) fChargeArray[i] = 0;
cc80f89e 391 //firstly calculate total integral of charge
392
393 ////////////////////////////////////////////////////////
394 //I'm waiting for normal integral
395 //in this moment only sum
396 Float_t x2= 4*fOrigSigmaX;
397 Float_t y2= 4*fOrigSigmaY;
398 Float_t dx = fOrigSigmaX/Float_t(fNdiv*6);
399 Float_t dy = fOrigSigmaY/Float_t(fNdiv*6);
400 Int_t nx = Int_t(0.5+x2/dx);
401 Int_t ny = Int_t(0.5+y2/dy);
402 Int_t ix,iy;
403 fInteg = 0;
404 Double_t dInteg =0;
405 for (ix=-nx;ix<=nx;ix++)
406 for ( iy=-ny;iy<=ny;iy++)
407 dInteg+=fGRF->Eval(Float_t(ix)*dx,Float_t(iy)*dy)*dx*dy;
408 /////////////////////////////////////////////////////
409 fInteg =dInteg;
410 if ( fInteg == 0 ) fInteg = 1;
411
412 for (i=0; i<fNYdiv; i++){
413 if (fNYdiv == 1) fCurrentY = fY1;
8c555625 414 else
cc80f89e 415 fCurrentY = fY1+Double_t(i)*(fY2-fY1)/Double_t(fNYdiv-1);
6e7b5431 416 fcharge = &(fChargeArray[i*fNPRF]);
8c555625 417 Update1();
418 }
cc80f89e 419 //calculate conversion coefitient to convert position to virtual wire
420 fDYtoWire=Float_t(fNYdiv-1)/(fY2-fY1);
421 fDStepM1=1/fDStep;
422 UpdateSigma();
8c555625 423}
424
8c555625 425void AliTPCPRF2D::Update1()
426{
cc80f89e 427 //
428 //update fields with interpolated values for
429 //PRF calculation for given charge line
8c555625 430 Int_t i;
cc80f89e 431 Double_t cos = TMath::Cos(fChargeAngle);
432 Double_t sin = TMath::Sin(fChargeAngle);
6e7b5431 433 const Double_t kprec =0.00000001;
434 //integrate charge over pad for different distance of pad
435 for (i =0; i<fNPRF;i++){
436 //x in cm fWidth in cm
437 //calculate integral
438 Double_t xch = fDStep * (Double_t)(i-fNPRF/2);
439 fcharge[i]=0;
440 Double_t k=1;
cc80f89e 441
6e7b5431 442
443 for (Double_t ym=-fHeightFull/2.-fShiftY; ym<fHeightFull/2.-kprec;ym+=fHeightS){
444 Double_t y2chev=TMath::Min((ym+fHeightS),Double_t(fHeightFull/2.)); // end of chevron step
445 Double_t y1chev= ym; //beginning of chevron step
446 Double_t y2 = TMath::Min(y2chev,fCurrentY+3.5*fOrigSigmaY);
447 Double_t y1 = TMath::Max((y1chev),Double_t(-fHeightFull/2.));
448 y1 = TMath::Max(y1chev,fCurrentY-3.5*fOrigSigmaY);
449
450 Double_t x0 = fWidth*(-1.-(Double_t(k)*fK))*0.5+ym*TMath::Tan(fPadAngle*fgkDegtoRad);
451 Double_t kx = Double_t(k)*(fK*fWidth)/fHeightS;
452 kx = TMath::Tan(TMath::ATan(kx))+TMath::Tan(fPadAngle*fgkDegtoRad);
453
454 Int_t ny = TMath::Max(Int_t(fNdiv*TMath::Exp(-(y1-fCurrentY)*(y1-fCurrentY)/(2*fOrigSigmaY*fOrigSigmaY))),4);
455 Double_t dy = TMath::Min(fOrigSigmaY/Double_t(ny),y2-y1);
456 Double_t ndy = dy;
457
458 //loop over different y strips with variable step size dy
459 if (y2>(y1+kprec)) for (Double_t y = y1; y<y2+kprec;){
460 //new step SIZE
cc80f89e 461
6e7b5431 462 ny = TMath::Max(Int_t(fNdiv*TMath::Exp(-(y-fCurrentY)*(y-fCurrentY)/(2*fOrigSigmaY*fOrigSigmaY))),5);
463 ndy = fOrigSigmaY/Double_t(ny);
464 if (ndy>(y2-y-dy)) {
465 ndy =y2-y-dy;
466 if (ndy<kprec) ndy=2*kprec; //calculate new delta y
467 }
468 //
469 Double_t sumch=0;
470 //calculation of x borders and initial step
471 Double_t deltay = (y-y1chev);
472
473 Double_t xp1 = x0+deltay*kx;
474 //x begining of pad at position y
475 Double_t xp2 =xp1+fWidth; //x end of pad at position y
476 Double_t xp3 =xp1+kx*dy; //...at position y+dy
477 Double_t xp4 =xp2+kx*dy; //..
8c555625 478
6e7b5431 479 Double_t x1 = TMath::Min(xp1,xp3);
480 x1 = TMath::Max(xp1,xch-3.5*fOrigSigmaX); //beging of integration
481 Double_t x2 = TMath::Max(xp2,xp4);
482 x2 = TMath::Min(xp2+dy*kx,xch+3.5*fOrigSigmaX); //end of integration
483
484 Int_t nx = TMath::Max(Int_t(fNdiv*TMath::Exp(-(x1-xch)*(x1-xch)/(2*fOrigSigmaX*fOrigSigmaX))*
485 TMath::Exp(-(y1-fCurrentY)*(y1-fCurrentY)/(2*fOrigSigmaY*fOrigSigmaY))),2);
486 Double_t dx = TMath::Min(fOrigSigmaX/Double_t(nx),x2-x1)/5.; //on the border more iteration
487 Double_t ndx=dx;
488
489 if (x2>(x1+kprec)) {
490 for (Double_t x = x1; x<x2+kprec ;){
491 //new step SIZE
492 nx = TMath::Max(Int_t(fNdiv*TMath::Exp(-(x-xch)*(x-xch)/(2*fOrigSigmaX*fOrigSigmaX))),3);
493 ndx = fOrigSigmaX/Double_t(nx);
494 if (ndx>(x2-x-dx)) {
495 ndx =x2-x-dx;
8c555625 496 }
6e7b5431 497 if ( ( (x+dx+ndx)<TMath::Max(xp3,xp1)) || ( (x+dx+ndx)>TMath::Min(xp4,xp2))) {
498 ndx/=5.;
499 }
500 if (ndx<kprec) ndx=2*kprec;
501 //INTEGRAL APROXIMATION
502 Double_t ddx,ddy,dddx,dddy;
503 ddx = xch-(x+dx/2.);
504 ddy = fCurrentY-(y+dy/2.);
505 dddx = cos*ddx-sin*ddy;
506 dddy = sin*ddx+cos*ddy;
507 Double_t z0=fGRF->Eval(dddx,dddy); //middle point
508
509 ddx = xch-(x+dx/2.);
510 ddy = fCurrentY-(y);
511 dddx = cos*ddx-sin*ddy;
512 dddy = sin*ddx+cos*ddy;
513 Double_t z1=fGRF->Eval(dddx,dddy); //point down
514
515 ddx = xch-(x+dx/2.);
516 ddy = fCurrentY-(y+dy);
517 dddx = cos*ddx-sin*ddy;
518 dddy = sin*ddx+cos*ddy;
519 Double_t z3=fGRF->Eval(dddx,dddy); //point up
520
521 ddx = xch-(x);
522 ddy = fCurrentY-(y+dy/2.);
523 dddx = cos*ddx-sin*ddy;
524 dddy = sin*ddx+cos*ddy;
525 Double_t z2=fGRF->Eval(dddx,dddy); //point left
526
527 ddx = xch-(x+dx);
528 ddy = fCurrentY-(y+dy/2.);
529 dddx = cos*ddx-sin*ddy;
530 dddy = sin*ddx+cos*ddy;
531 Double_t z4=fGRF->Eval(dddx,dddy); //point right
532
533
534 if (z0<0) {z0=0;z1=0;z2=0;z3=0;z4=0;}
535
536 Double_t f2x= (z3+z1-2*z0)*4.;//second derivation in y
537 Double_t f2y= (z2+z4-2*z0)*4.;//second derivation in x
538 Double_t f1y= (z3-z1);
539 Double_t z ;
540 z = (z0+f2x/6.+f2y/6.);//second order aproxiation of integral
541 if (kx>kprec){ //positive derivation
542 if (x<(xp1+dy*kx)){ //calculate volume at left border
543 Double_t xx1 = x;
544 Double_t xx2 = TMath::Min(x+dx,xp1+dy*kx);
545 Double_t yy1 = y+(xx1-xp1)/kx;
546 Double_t yy2 = TMath::Min(y+(xx2-xp1)/kx,y+dy);
547 z=z0;
548 if (yy2<y+dy) {
549 z-= z0*(y+dy-yy2)/dy; //constant part rectangle
550 z-= f1y*(xx2-xx1)*(y+dy-yy2)*(y+dy-yy2)/(2.*dx*dy);
551 }
552 z-=z0*(xx2-xx1)*(yy2-yy1)/(2*dx*dy); //constant part rectangle
553
554 }
555 if (x>xp2){ //calculate volume at right border
556 Double_t xx1 = x;
557 Double_t xx2 = x+dx;
558 Double_t yy1 = y+(xx1-xp2)/kx;
559 Double_t yy2 = y+(xx2-xp2)/kx;
560 z=z0;
561 //rectangle part
562 z-=z0*(yy1-y)/dy; //constant part
563 z-=f1y*(xx2-xx1)*(yy1-y)*(yy1-y)/(2*dx*dy);
564 //triangle part
565 z-=z0*(xx2-xx1)*(yy2-yy1)/(2*dx*dy); //constant part
566 }
567 }
568 if (kx<-kprec){ //negative derivation
569 if (x<(xp1+dy*kx)){ //calculate volume at left border
570 Double_t xx1 = x;
571 Double_t xx2 = TMath::Min(x+dx,xp3-dy/kx);
572 Double_t yy1 = y+(xx1-xp1)/kx;
573 Double_t yy2 = TMath::Max(y,yy1+(xx2-xx1)/kx); //yy2<yy1
574 z = z0;
575 z-= z0*(yy2-y)/dy; // constant part rectangle
576 z-= f1y*(xx2-xx1)*(yy2-y)*(yy2-y)/(2.*dx*dy);
577 z-=z0*(xx2-xx1)*(yy1-yy2)/(2*dx*dy); //constant part triangle
578 }
579 if (x>xp2){ //calculate volume at right border
580 Double_t xx1 = TMath::Max(x,xp2+dy*kx);
581 Double_t xx2 = x+dx;
582 Double_t yy1 = TMath::Min(y+dy,y-(xp2-xx1)/kx);
583 Double_t yy2 = y-(xp2-xx2)/kx;
584 z=z0;
585 z-=z0*(yy2-y)/dy; //constant part rextangle
586 z-= f1y*(xx2-xx1)*(yy2-y)*(yy2-y)/(2.*dx*dy);
587 z-=z0*(xx2-xx1)*(yy1-yy2)/(2*dx*dy); //constant part triangle
588 }
589 }
590
591 if (z>0.) sumch+=fKNorm*z*dx*dy/fInteg;
592
593 x+=dx;
594 dx = ndx;
595 }; //loop over x
596 fcharge[i]+=sumch;
597 }//if x2>x1
598 y+=dy;
599 dy =ndy;
600 }//step over different y
601 k*=-1.;
602 }//step over chevron
cc80f89e 603
6e7b5431 604 }//step over different points on line NPRF
cc80f89e 605}
606
607void AliTPCPRF2D::UpdateSigma()
608{
609 //
610 //calulate effective sigma X and sigma y of PRF
611 fMeanX = 0;
612 fMeanY = 0;
613 fSigmaX = 0;
614 fSigmaY = 0;
615
8c555625 616 Float_t sum =0;
cc80f89e 617 Int_t i;
618 Float_t x,y;
619
620 for (i=-1; i<=fNYdiv; i++){
621 if (fNYdiv == 1) y = fY1;
622 else
623 y = fY1+Float_t(i)*(fY2-fY1)/Float_t(fNYdiv-1);
624 for (x =-fNPRF*fDStep; x<fNPRF*fDStep;x+=fDStep)
625 {
626 //x in cm fWidth in cm
627 Float_t weight = GetPRF(x,y);
628 fSigmaX+=x*x*weight;
629 fSigmaY+=y*y*weight;
630 fMeanX+=x*weight;
631 fMeanY+=y*weight;
632 sum+=weight;
8c555625 633 };
cc80f89e 634 }
8c555625 635 if (sum>0){
cc80f89e 636 fMeanX/=sum;
637 fMeanY/=sum;
638 fSigmaX = TMath::Sqrt(fSigmaX/sum-fMeanX*fMeanX);
639 fSigmaY = TMath::Sqrt(fSigmaY/sum-fMeanY*fMeanY);
8c555625 640 }
641 else fSigmaX=0;
8c555625 642}
643
cc80f89e 644
8c555625 645void AliTPCPRF2D::Streamer(TBuffer &R__b)
646{
647 // Stream an object of class AliTPCPRF2D
648
649 if (R__b.IsReading()) {
a8a6107b 650 UInt_t R__s, R__c;
651 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
652 AliTPCPRF2D::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
8c555625 653 //read functions
a8a6107b 654 if (strncmp(fType,"User",3)!=0){
655 delete fGRF;
656 if (strncmp(fType,"Gauss",3)==0)
2a336e15 657 fGRF = new TF2("funGauss2D",funGauss2D,-5.,5.,-5.,5.,4);
a8a6107b 658 if (strncmp(fType,"Cosh",3)==0)
2a336e15 659 fGRF = new TF2("funCosh2D",funCosh2D,-5.,5.,-5.,5.,4);
a8a6107b 660 if (strncmp(fType,"Gati",3)==0)
2a336e15 661 fGRF = new TF2("funGati2D",funGati2D,-5.,5.,-5.,5.,5);
a8a6107b 662 if (fGRF!=0) fGRF->SetParameters(funParam);
6e7b5431 663 }
8c555625 664 //calculate conversion coefitient to convert position to virtual wire
665 fDYtoWire=Float_t(fNYdiv-1)/(fY2-fY1);
666 fDStepM1=1/fDStep;
667 } else {
a8a6107b 668 AliTPCPRF2D::Class()->WriteBuffer(R__b,this);
8c555625 669 }
670}
671
672
6e7b5431 673TH1F * AliTPCPRF2D::GenerDrawXHisto(Float_t x1, Float_t x2,Float_t y)
674{
675 //gener one dimensional hist of pad response function
676 // at position y
677 char s[100];
678 const Int_t kn=200;
679 sprintf(s,"Pad Response Function");
680 TH1F * hPRFc = new TH1F("hPRFc",s,kn+1,x1,x2);
8c555625 681 Float_t x=x1;
682 Float_t y1;
8c555625 683
6e7b5431 684 for (Int_t i = 0;i<kn+1;i++)
8c555625 685 {
6e7b5431 686 x+=(x2-x1)/Float_t(kn);
687 y1 = GetPRF(x,y);
8c555625 688 hPRFc->Fill(x,y1);
689 };
6e7b5431 690 hPRFc->SetXTitle("pad (cm)");
691 return hPRFc;
692}
8c555625 693
6e7b5431 694AliH2F * AliTPCPRF2D::GenerDrawHisto(Float_t x1, Float_t x2, Float_t y1, Float_t y2, Int_t Nx, Int_t Ny)
695{
696 //
697 //gener two dimensional histogram with PRF
698 //
699 char s[100];
700 sprintf(s,"Pad Response Function");
701 AliH2F * hPRFc = new AliH2F("hPRFc",s,Nx,x1,x2,Ny,y1,y2);
702 Float_t dx=(x2-x1)/Float_t(Nx);
703 Float_t dy=(y2-y1)/Float_t(Ny) ;
704 Float_t x,y,z;
705 x = x1;
706 y = y1;
707 for ( Int_t i = 0;i<=Nx;i++,x+=dx){
708 y=y1;
709 for (Int_t j = 0;j<=Ny;j++,y+=dy){
710 z = GetPRF(x,y);
711 hPRFc->SetCellContent(i,j,z);
712 };
713 };
714 hPRFc->SetXTitle("pad direction (cm)");
715 hPRFc->SetYTitle("pad row direction (cm)");
716 hPRFc->SetTitleOffset(1.5,"X");
717 hPRFc->SetTitleOffset(1.5,"Y");
718 return hPRFc;
719}
720
721
722AliH2F * AliTPCPRF2D::GenerDrawDistHisto(Float_t x1, Float_t x2, Float_t y1, Float_t y2, Int_t Nx, Int_t Ny, Float_t thr)
723{
724 //return histogram with distortion
725 const Float_t kminth=0.00001;
726 if (thr<kminth) thr=kminth;
727 char s[100];
728 sprintf(s,"COG distortion of PRF (threshold=%2.2f)",thr);
729 AliH2F * hPRFDist = new AliH2F("hDistortion",s,Nx,x1,x2,Ny,y1,y2);
730 Float_t dx=(x2-x1)/Float_t(Nx);
731 Float_t dy=(y2-y1)/Float_t(Ny) ;
732 Float_t x,y,z,ddx;
733 x=x1;
734 for ( Int_t i = 0;i<=Nx;i++,x+=dx){
735 y=y1;
736 for(Int_t j = 0;j<=Ny;j++,y+=dy)
737 {
738 Float_t sumx=0;
739 Float_t sum=0;
740 for (Int_t k=-3;k<=3;k++)
741 {
742 Float_t padx=Float_t(k)*fWidth;
743 z = GetPRF(x-padx,y);
744 if (z>thr){
745 sum+=z;
746 sumx+=z*padx;
747 }
748 };
749 if (sum>kminth)
750 {
751 ddx = (x-(sumx/sum));
752 }
753 else ddx=-1;
754 if (TMath::Abs(ddx)<10) hPRFDist->SetCellContent(i,j,ddx);
755 }
756 }
757
758 hPRFDist->SetXTitle("pad direction (cm)");
759 hPRFDist->SetYTitle("pad row direction (cm)");
760 hPRFDist->SetTitleOffset(1.5,"X");
761 hPRFDist->SetTitleOffset(1.5,"Y");
762 return hPRFDist;
763}
764
765
766
767
768
769void AliTPCPRF2D::DrawX(Float_t x1 ,Float_t x2,Float_t y1,Float_t y2, Int_t N)
770{
771 //
772 //draw pad response function at interval <x1,x2> at given y position
773 //
774 if (N<0) return;
775 TCanvas * c1 = new TCanvas("PRFX","Pad response function",700,900);
776 c1->cd();
777
8c555625 778 TPaveText * comment = new TPaveText(0.05,0.02,0.95,0.20,"NDC");
779 comment->SetTextAlign(12);
780 comment->SetFillColor(42);
6e7b5431 781 DrawComment(comment);
8c555625 782 comment->Draw();
6e7b5431 783 c1->cd();
784
785 TPad * pad2 = new TPad("pPRF","",0.05,0.22,0.95,0.95);
786 pad2->Divide(2,(N+1)/2);
787 pad2->Draw();
788 gStyle->SetOptFit(1);
789 gStyle->SetOptStat(1);
790 for (Int_t i=0;i<N;i++){
791 char ch[200];
792 Float_t y;
793 if (N==1) y=y1;
794 else y = y1+i*(y2-y1)/Float_t(N-1);
795 pad2->cd(i+1);
796 TH1F * hPRFc =GenerDrawXHisto(x1, x2,y);
797 sprintf(ch,"PRF at wire position: %2.3f",y);
798 hPRFc->SetTitle(ch);
799 sprintf(ch,"PRF %d",i);
800 hPRFc->SetName(ch);
801 hPRFc->Fit("gaus");
802 }
803
8c555625 804}
805
806
807
6e7b5431 808void AliTPCPRF2D::DrawPRF(Float_t x1 ,Float_t x2,Float_t y1, Float_t y2, Int_t Nx, Int_t Ny)
8c555625 809{
6e7b5431 810 //
811 //
8c555625 812 TCanvas * c1 = new TCanvas("canPRF","Pad response function",700,900);
813 c1->cd();
6e7b5431 814 TPad * pad2 = new TPad("pad2PRF","",0.05,0.22,0.95,0.95);
815 pad2->Draw();
8c555625 816 gStyle->SetOptFit(1);
8c555625 817 gStyle->SetOptStat(1);
6e7b5431 818 TH2F * hPRFc = GenerDrawHisto(x1, x2, y1, y2, Nx,Ny);
8c555625 819 pad2->cd();
6e7b5431 820 hPRFc->Draw("surf");
8c555625 821 c1->cd();
822 TPaveText * comment = new TPaveText(0.05,0.02,0.95,0.20,"NDC");
823 comment->SetTextAlign(12);
824 comment->SetFillColor(42);
6e7b5431 825 DrawComment(comment);
8c555625 826 comment->Draw();
827}
828
6e7b5431 829void AliTPCPRF2D::DrawDist(Float_t x1 ,Float_t x2,Float_t y1, Float_t y2, Int_t Nx, Int_t Ny, Float_t thr)
8c555625 830{
6e7b5431 831 //
832 //draw distortion of the COG method - for different threshold parameter
8c555625 833 TCanvas * c1 = new TCanvas("padDistortion","COG distortion",700,900);
834 c1->cd();
6e7b5431 835 TPad * pad1 = new TPad("dist","",0.05,0.55,0.95,0.95,21);
8c555625 836 pad1->Draw();
6e7b5431 837 TPad * pad2 = new TPad("dist","",0.05,0.22,0.95,0.53,21);
8c555625 838 pad2->Draw();
8c555625 839 gStyle->SetOptFit(1);
840 gStyle->SetOptStat(0);
6e7b5431 841
842 AliH2F * hPRFDist = GenerDrawDistHisto(x1, x2, y1, y2, Nx,Ny,thr);
843
8c555625 844 pad1->cd();
6e7b5431 845 hPRFDist->Draw("surf");
846 Float_t distmax =hPRFDist->GetMaximum();
847 Float_t distmin =hPRFDist->GetMinimum();
848 gStyle->SetOptStat(1);
8c555625 849
6e7b5431 850 TH1F * dist = hPRFDist->GetAmplitudes(distmin,distmax,distmin-1);
851 pad2->cd();
852 dist->Draw();
8c555625 853 c1->cd();
854 TPaveText * comment = new TPaveText(0.05,0.02,0.95,0.20,"NDC");
855 comment->SetTextAlign(12);
856 comment->SetFillColor(42);
6e7b5431 857 DrawComment(comment);
858 comment->Draw();
859}
860
861void AliTPCPRF2D::DrawComment(TPaveText *comment)
862{
863 //
864 //function to write comment to picture
865
866 char s[100];
867 //draw comments to picture
868 TText * title = comment->AddText("Pad Response Function parameters:");
8c555625 869 title->SetTextSize(0.03);
6e7b5431 870 sprintf(s,"Height of pad: %2.2f cm",fHeightFull);
8c555625 871 comment->AddText(s);
6e7b5431 872 sprintf(s,"Width pad: %2.2f cm",fWidth);
8c555625 873 comment->AddText(s);
6e7b5431 874 sprintf(s,"Pad Angle: %2.2f ",fPadAngle);
8c555625 875 comment->AddText(s);
8c555625 876
6e7b5431 877 if (TMath::Abs(fK)>0.0001){
878 sprintf(s,"Height of one chevron unit h: %2.2f cm",2*fHeightS);
879 comment->AddText(s);
880 sprintf(s,"Overlap factor: %2.2f",fK);
881 comment->AddText(s);
882 }
883
884 if (strncmp(fType,"User",3)==0){
885 sprintf(s,"Charge distribution - user defined function %s ",fGRF->GetTitle());
886 comment->AddText(s);
887 sprintf(s,"Sigma x of charge distribution: %2.2f ",fOrigSigmaX);
888 comment->AddText(s);
889 sprintf(s,"Sigma y of charge distribution: %2.2f ",fOrigSigmaY);
890 comment->AddText(s);
891 }
892 if (strncmp(fType,"Gauss",3)==0){
893 sprintf(s,"Gauss charge distribution");
894 comment->AddText(s);
895 sprintf(s,"Sigma x of charge distribution: %2.2f ",fOrigSigmaX);
896 comment->AddText(s);
897 sprintf(s,"Sigma y of charge distribution: %2.2f ",fOrigSigmaY);
898 comment->AddText(s);
899 }
900 if (strncmp(fType,"Gati",3)==0){
901 sprintf(s,"Gati charge distribution");
902 comment->AddText(s);
903 sprintf(s,"K3X of Gati : %2.2f ",fK3X);
904 comment->AddText(s);
905 sprintf(s,"K3Y of Gati: %2.2f ",fK3Y);
906 comment->AddText(s);
907 sprintf(s,"Wire to Pad Distance: %2.2f ",fPadDistance);
908 comment->AddText(s);
909 }
910 if (strncmp(fType,"Cosh",3)==0){
911 sprintf(s,"Cosh charge distribution");
912 comment->AddText(s);
913 sprintf(s,"Sigma x of charge distribution: %2.2f ",fOrigSigmaX);
914 comment->AddText(s);
915 sprintf(s,"Sigma y of charge distribution: %2.2f ",fOrigSigmaY);
916 comment->AddText(s);
917 }
918 sprintf(s,"Normalisation: %2.2f ",fKNorm);
919 comment->AddText(s);
8c555625 920}
921