Some of the coding violations corrected
[u/mrichter/AliRoot.git] / TPC / AliTPCParamSR.cxx
CommitLineData
cc80f89e 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
cc80f89e 17
18///////////////////////////////////////////////////////////////////////
19// Manager and of geomety classes for set: TPC //
20// //
21// !sectors are numbered from 0 //
22// !pad rows are numbered from 0 //
23//
24// 27.7. - AliTPCPaaramSr object for TPC
25// TPC with straight pad rows
26// Origin: Marian Ivanov, Uni. of Bratislava, ivanov@fmph.uniba.sk //
27// //
28///////////////////////////////////////////////////////////////////////
29
b4de2219 30//#include <Riostream.h>
cc80f89e 31#include <TMath.h>
b4de2219 32
73042f01 33#include "AliTPCPRF2D.h"
b4de2219 34#include "AliTPCParamSR.h"
73042f01 35#include "AliTPCRF1D.h"
de61d5d5 36#include "TH1.h"
ab85d8c2 37#include "AliTPCROC.h"
38#include "TGeoManager.h"
cc80f89e 39
cc80f89e 40ClassImp(AliTPCParamSR)
176aff27 41static const Int_t kMaxRows=600;
42static const Float_t kEdgeSectorSpace = 2.5;
43static const Float_t kFacSigmaPadRow=3.;
44static const Float_t kFacSigmaPad=3.;
45static const Float_t kFacSigmaTime=3.;
cc80f89e 46
47
48AliTPCParamSR::AliTPCParamSR()
179c6296 49 :AliTPCParam(),
50 fInnerPRF(0),
51 fOuter1PRF(0),
52 fOuter2PRF(0),
53 fTimeRF(0),
54 fFacSigmaPadRow(0),
55 fFacSigmaPad(0),
56 fFacSigmaTime(0)
cc80f89e 57{
58 //
59 //constructor set the default parameters
179c6296 60 //
61
cc80f89e 62 fFacSigmaPadRow = Float_t(kFacSigmaPadRow);
63 fFacSigmaPad = Float_t(kFacSigmaPad);
64 fFacSigmaTime = Float_t(kFacSigmaTime);
cc80f89e 65 SetDefault();
66 Update();
67}
179c6296 68AliTPCParamSR::AliTPCParamSR(const AliTPCParamSR &param)
69 :AliTPCParam(),
70 fInnerPRF(0),
71 fOuter1PRF(0),
72 fOuter2PRF(0),
73 fTimeRF(0),
74 fFacSigmaPadRow(0),
75 fFacSigmaPad(0),
76 fFacSigmaTime(0)
77{
78 //
79 // copy constructor - dummy
80 //
81 fFacSigmaPadRow = param.fFacSigmaPadRow;
82}
83AliTPCParamSR & AliTPCParamSR::operator =(const AliTPCParamSR & param)
84{
85 //
86 // assignment operator - dummy
87 //
88 fZLength=param.fZLength;
89 return (*this);
90}
cc80f89e 91
92AliTPCParamSR::~AliTPCParamSR()
93{
94 //
95 //destructor destroy some dynmicaly alocated variables
96 if (fInnerPRF != 0) delete fInnerPRF;
f03e3423 97 if (fOuter1PRF != 0) delete fOuter1PRF;
98 if (fOuter2PRF != 0) delete fOuter2PRF;
cc80f89e 99 if (fTimeRF != 0) delete fTimeRF;
100}
101
102void AliTPCParamSR::SetDefault()
103{
104 //set default TPC param
105 fbStatus = kFALSE;
106 AliTPCParam::SetDefault();
107}
108
109Int_t AliTPCParamSR::CalcResponse(Float_t* xyz, Int_t * index, Int_t row)
110{
111 //
112 //calculate bin response as function of the input position -x
113 //return number of valid response bin
114 //
115 //we suppose that coordinate is expressed in float digits
116 // it's mean coordinate system 8
117 //xyz[0] - float padrow xyz[1] is float pad (center pad is number 0) and xyz[2] is float time bin
e61fd20d 118 //xyz[3] - electron time in float time bin format
f03e3423 119 if ( (fInnerPRF==0)||(fOuter1PRF==0)||(fOuter2PRF==0) ||(fTimeRF==0) ){
cc80f89e 120 Error("AliTPCParamSR", "response function was not adjusted");
121 return -1;
122 }
123
124 Float_t sfpadrow; // sigma of response function
125 Float_t sfpad; // sigma of
126 Float_t sftime= fFacSigmaTime*fTimeRF->GetSigma()/fZWidth; //3 sigma of time response
127 if (index[1]<fNInnerSector){
128 sfpadrow =fFacSigmaPadRow*fInnerPRF->GetSigmaY()/fInnerPadPitchLength;
129 sfpad =fFacSigmaPad*fInnerPRF->GetSigmaX()/fInnerPadPitchWidth;
f03e3423 130 }
131 else{
132 if(row<fNRowUp1){
133 sfpadrow =fFacSigmaPadRow*fOuter1PRF->GetSigmaY()/fOuter1PadPitchLength;
134 sfpad =fFacSigmaPad*fOuter1PRF->GetSigmaX()/fOuterPadPitchWidth;}
135 else{
136 sfpadrow =fFacSigmaPadRow*fOuter2PRF->GetSigmaY()/fOuter2PadPitchLength;
137 sfpad =fFacSigmaPad*fOuter2PRF->GetSigmaX()/fOuterPadPitchWidth;
138 }
cc80f89e 139 }
140
141 Int_t fpadrow = TMath::Max(TMath::Nint(index[2]+xyz[0]-sfpadrow),0); //"first" padrow
142 Int_t fpad = TMath::Nint(xyz[1]-sfpad); //first pad
c2940e77 143 Int_t ftime = TMath::Max(TMath::Nint(xyz[2]+xyz[3]+GetZOffset()/GetZWidth()-sftime),0); // first time
cc80f89e 144 Int_t lpadrow = TMath::Min(TMath::Nint(index[2]+xyz[0]+sfpadrow),fpadrow+19); //"last" padrow
145 lpadrow = TMath::Min(GetNRow(index[1])-1,lpadrow);
146 Int_t lpad = TMath::Min(TMath::Nint(xyz[1]+sfpad),fpad+19); //last pad
c2940e77 147 Int_t ltime = TMath::Min(TMath::Nint(xyz[2]+xyz[3]+GetZOffset()/GetZWidth()+sftime),ftime+19); // last time
cc80f89e 148 ltime = TMath::Min(ltime,GetMaxTBin()-1);
de61d5d5 149 //
150 Int_t npads = GetNPads(index[1],row);
151 if (fpad<-npads/2)
152 fpad = -npads/2;
153 if (lpad>npads/2)
154 lpad= npads/2;
155 if (ftime<0) ftime=0;
156 //
cc80f89e 157 if (row>=0) { //if we are interesting about given pad row
158 if (fpadrow<=row) fpadrow =row;
159 else
160 return 0;
161 if (lpadrow>=row) lpadrow = row;
162 else
163 return 0;
164 }
165
166
167 Float_t padres[20][20]; //I don't expect bigger number of bins
168 Float_t timeres[20];
169 Int_t cindex3=0;
170 Int_t cindex=0;
171 Float_t cweight = 0;
172 if (fpadrow>=0) {
173 //calculate padresponse function
174 Int_t padrow, pad;
175 for (padrow = fpadrow;padrow<=lpadrow;padrow++)
176 for (pad = fpad;pad<=lpad;pad++){
f03e3423 177 Float_t dy = (xyz[0]+Float_t(index[2]-padrow));
178 Float_t dx = (xyz[1]+Float_t(pad));
cc80f89e 179 if (index[1]<fNInnerSector)
180 padres[padrow-fpadrow][pad-fpad]=fInnerPRF->GetPRF(dx*fInnerPadPitchWidth,dy*fInnerPadPitchLength);
f03e3423 181 else{
182 if(row<fNRowUp1){
183 padres[padrow-fpadrow][pad-fpad]=fOuter1PRF->GetPRF(dx*fOuterPadPitchWidth,dy*fOuter1PadPitchLength);}
184 else{
185 padres[padrow-fpadrow][pad-fpad]=fOuter2PRF->GetPRF(dx*fOuterPadPitchWidth,dy*fOuter2PadPitchLength);}}}
cc80f89e 186 //calculate time response function
187 Int_t time;
188 for (time = ftime;time<=ltime;time++)
c2940e77 189 timeres[time-ftime]= fTimeRF->GetRF((-xyz[2]-xyz[3]+Float_t(time))*fZWidth);
cc80f89e 190 //write over threshold values to stack
191 for (padrow = fpadrow;padrow<=lpadrow;padrow++)
192 for (pad = fpad;pad<=lpad;pad++)
193 for (time = ftime;time<=ltime;time++){
194 cweight = timeres[time-ftime]*padres[padrow-fpadrow][pad-fpad];
195 if (cweight>fResponseThreshold) {
196 fResponseBin[cindex3]=padrow;
197 fResponseBin[cindex3+1]=pad;
198 fResponseBin[cindex3+2]=time;
199 cindex3+=3;
200 fResponseWeight[cindex]=cweight;
201 cindex++;
202 }
203 }
204 }
205 fCurrentMax=cindex;
206 return fCurrentMax;
207}
208
209void AliTPCParamSR::TransformTo8(Float_t *xyz, Int_t *index) const
210{
211 //
212 // transformate point to digit coordinate
213 //
214 if (index[0]==0) Transform0to1(xyz,index);
215 if (index[0]==1) Transform1to2(xyz,index);
216 if (index[0]==2) Transform2to3(xyz,index);
217 if (index[0]==3) Transform3to4(xyz,index);
218 if (index[0]==4) Transform4to8(xyz,index);
219}
220
221void AliTPCParamSR::TransformTo2(Float_t *xyz, Int_t *index) const
222{
223 //
224 //transformate point to rotated coordinate
225 //
226 //we suppose that
227 if (index[0]==0) Transform0to1(xyz,index);
228 if (index[0]==1) Transform1to2(xyz,index);
229 if (index[0]==4) Transform4to3(xyz,index);
230 if (index[0]==8) { //if we are in digit coordinate system transform to global
231 Transform8to4(xyz,index);
232 Transform4to3(xyz,index);
233 }
234}
235
236void AliTPCParamSR::CRXYZtoXYZ(Float_t *xyz,
237 const Int_t &sector, const Int_t & padrow, Int_t option) const
238{
239 //transform relative coordinates to absolute
240 Bool_t rel = ( (option&2)!=0);
f99d7d41 241 Int_t index[3]={sector,padrow,0};
cc80f89e 242 if (rel==kTRUE) Transform4to3(xyz,index);//if the position is relative to pad row
243 Transform2to1(xyz,index);
244}
245
246void AliTPCParamSR::XYZtoCRXYZ(Float_t *xyz,
247 Int_t &sector, Int_t & padrow, Int_t option) const
248{
249 //transform global position to the position relative to the sector padrow
250 //if option=0 X calculate absolute calculate sector
251 //if option=1 X absolute use input sector
252 //if option=2 X relative to pad row calculate sector
253 //if option=3 X relative use input sector
254 //!!!!!!!!! WE start to calculate rows from row = 0
712976a6 255 Int_t index[3];
cc80f89e 256 Bool_t rel = ( (option&2)!=0);
257
258 //option 0 and 2 means that we don't have information about sector
259 if ((option&1)==0) Transform0to1(xyz,index); //we calculate sector number
260 else
261 index[0]=sector;
262 Transform1to2(xyz,index);
263 Transform2to3(xyz,index);
264 //if we store relative position calculate position relative to pad row
265 if (rel==kTRUE) Transform3to4(xyz,index);
266 sector = index[0];
267 padrow = index[1];
268}
269
176aff27 270Float_t AliTPCParamSR::GetPrimaryLoss(Float_t */*x*/, Int_t *index, Float_t *angle)
cc80f89e 271{
272 //
273 //
274 Float_t padlength=GetPadPitchLength(index[1]);
275 Float_t a1=TMath::Sin(angle[0]);
276 a1*=a1;
277 Float_t a2=TMath::Sin(angle[1]);
278 a2*=a2;
279 Float_t length =padlength*TMath::Sqrt(1+a1+a2);
280 return length*fNPrimLoss;
281}
282
176aff27 283Float_t AliTPCParamSR::GetTotalLoss(Float_t */*x*/, Int_t *index, Float_t *angle)
cc80f89e 284{
285 //
286 //
287 Float_t padlength=GetPadPitchLength(index[1]);
288 Float_t a1=TMath::Sin(angle[0]);
289 a1*=a1;
290 Float_t a2=TMath::Sin(angle[1]);
291 a2*=a2;
292 Float_t length =padlength*TMath::Sqrt(1+a1+a2);
293 return length*fNTotalLoss;
294
295}
296
297
176aff27 298void AliTPCParamSR::GetClusterSize(Float_t *x, Int_t *index, Float_t */*angle*/, Int_t /*mode*/, Float_t *sigma)
cc80f89e 299{
300 //
301 //return cluster sigma2 (x,y) for particle at position x
302 // in this case x coordinata is in drift direction
303 //and y in pad row direction
304 //we suppose that input coordinate system is digit system
305
306 Float_t xx;
307 Float_t lx[3] = {x[0],x[1],x[2]};
308 Int_t li[3] = {index[0],index[1],index[2]};
309 TransformTo2(lx,li);
310 // Float_t sigmadiff;
311 sigma[0]=0;
312 sigma[1]=0;
313
314 xx = lx[2]; //calculate drift length in cm
315 if (xx>0) {
316 sigma[0]+= xx*GetDiffL()*GetDiffL();
317 sigma[1]+= xx*GetDiffT()*GetDiffT();
318 }
319
320
321 //sigma[0]=sigma[1]=0;
322 if (GetTimeRF()!=0) sigma[0]+=GetTimeRF()->GetSigma()*GetTimeRF()->GetSigma();
323 if ( (index[1]<fNInnerSector) &&(GetInnerPRF()!=0))
324 sigma[1]+=GetInnerPRF()->GetSigmaX()*GetInnerPRF()->GetSigmaX();
f03e3423 325 if ( (index[1]>=fNInnerSector) &&(index[2]<fNRowUp1) && (GetOuter1PRF()!=0))
326 sigma[1]+=GetOuter1PRF()->GetSigmaX()*GetOuter1PRF()->GetSigmaX();
327 if( (index[1]>=fNInnerSector) &&(index[2]>=fNRowUp1) && (GetOuter2PRF()!=0))
328 sigma[1]+=GetOuter2PRF()->GetSigmaX()*GetOuter2PRF()->GetSigmaX();
cc80f89e 329
330
331 sigma[0]/= GetZWidth()*GetZWidth();
332 sigma[1]/=GetPadPitchWidth(index[0])*GetPadPitchWidth(index[0]);
333}
334
335
336
337
176aff27 338void AliTPCParamSR::GetSpaceResolution(Float_t */*x*/, Int_t */*index*/, Float_t */*angle*/,
339 Float_t /*amplitude*/, Int_t /*mode*/, Float_t */*sigma*/)
cc80f89e 340{
341 //
342 //
343 //
344
345}
176aff27 346Float_t AliTPCParamSR::GetAmp(Float_t */*x*/, Int_t */*index*/, Float_t */*angle*/)
cc80f89e 347{
348 //
349 //
350 //
351 return 0;
352}
353
354Float_t * AliTPCParamSR::GetAnglesAccMomentum(Float_t *x, Int_t * index, Float_t* momentum, Float_t *angle)
355{
356 //
357 //calculate angle of track to padrow at given position
358 // for given magnetic field and momentum of the particle
359 //
360
361 TransformTo2(x,index);
362 AliDetectorParam::GetAnglesAccMomentum(x,index,momentum,angle);
363 Float_t addangle = TMath::ASin(x[1]/GetPadRowRadii(index[1],index[2]));
364 angle[1] +=addangle;
365 return angle;
366}
367
368
369Bool_t AliTPCParamSR::Update()
370{
cc80f89e 371 Int_t i;
372 if (AliTPCParam::Update()==kFALSE) return kFALSE;
373 fbStatus = kFALSE;
374
c254a4cb 375 Float_t firstrow = fInnerRadiusLow + 1.575;
f03e3423 376 for( i= 0;i<fNRowLow;i++)
377 {
378 Float_t x = firstrow + fInnerPadPitchLength*(Float_t)i;
379 fPadRowLow[i]=x;
380 // number of pads per row
ab85d8c2 381 // Float_t y = (x-0.5*fInnerPadPitchLength)*tan(fInnerAngle/2.)-fInnerWireMount-
382 // fInnerPadPitchWidth/2.;
b584c7dd 383 // 0 and fNRowLow+1 reserved for cross talk rows
384 fYInner[i+1] = x*tan(fInnerAngle/2.)-fInnerWireMount;
ab85d8c2 385 //fNPadsLow[i] = 1+2*(Int_t)(y/fInnerPadPitchWidth) ;
386 fNPadsLow[i] = AliTPCROC::Instance()->GetNPads(0,i) ; // ROC implement
f03e3423 387 }
b584c7dd 388 // cross talk rows
389 fYInner[0]=(fPadRowLow[0]-fInnerPadPitchLength)*tan(fInnerAngle/2.)-fInnerWireMount;
390 fYInner[fNRowLow+1]=(fPadRowLow[fNRowLow-1]+fInnerPadPitchLength)*tan(fInnerAngle/2.)-fInnerWireMount;
f03e3423 391 firstrow = fOuterRadiusLow + 1.6;
392 for(i=0;i<fNRowUp;i++)
393 {
394 if(i<fNRowUp1){
395 Float_t x = firstrow + fOuter1PadPitchLength*(Float_t)i;
396 fPadRowUp[i]=x;
ab85d8c2 397// Float_t y =(x-0.5*fOuter1PadPitchLength)*tan(fOuterAngle/2.)-fOuterWireMount-
398// fOuterPadPitchWidth/2.;
b584c7dd 399 fYOuter[i+1]= x*tan(fOuterAngle/2.)-fOuterWireMount;
ab85d8c2 400 //fNPadsUp[i] = 1+2*(Int_t)(y/fOuterPadPitchWidth) ;
401 fNPadsUp[i] = AliTPCROC::Instance()->GetNPads(36,i) ; // ROC implement
f03e3423 402 if(i==fNRowUp1-1) {
401bc5a5 403 fLastWireUp1=fPadRowUp[i] +0.625;
f03e3423 404 firstrow = fPadRowUp[i] + 0.5*(fOuter1PadPitchLength+fOuter2PadPitchLength);
405 }
406 }
407 else
408 {
409 Float_t x = firstrow + fOuter2PadPitchLength*(Float_t)(i-64);
410 fPadRowUp[i]=x;
ab85d8c2 411 //Float_t y =(x-0.5*fOuter2PadPitchLength)*tan(fOuterAngle/2.)-fOuterWireMount-
412 // fOuterPadPitchWidth/2.;
413 //fNPadsUp[i] = 1+2*(Int_t)(y/fOuterPadPitchWidth) ;
414 fNPadsUp[i] = AliTPCROC::Instance()->GetNPads(36,i) ; // ROC implement
cc80f89e 415 }
b584c7dd 416 fYOuter[i+1] = fPadRowUp[i]*tan(fOuterAngle/2.)-fOuterWireMount;
f03e3423 417 }
b584c7dd 418 // cross talk rows
419 fYOuter[0]=(fPadRowUp[0]-fOuter1PadPitchLength)*tan(fOuterAngle/2.)-fOuterWireMount;
420 fYOuter[fNRowUp+1]=(fPadRowUp[fNRowUp-1]+fOuter2PadPitchLength)*tan(fOuterAngle/2.)-fOuterWireMount;
f03e3423 421 fNtRows = fNInnerSector*fNRowLow+fNOuterSector*fNRowUp;
422 fbStatus = kTRUE;
423 return kTRUE;
424}
425Float_t AliTPCParamSR::GetYInner(Int_t irow) const
426{
427 return fYInner[irow];
428}
429Float_t AliTPCParamSR::GetYOuter(Int_t irow) const
430{
431 return fYOuter[irow];
cc80f89e 432}
cc80f89e 433
cc80f89e 434void AliTPCParamSR::Streamer(TBuffer &R__b)
435{
436 // Stream an object of class AliTPC.
437
438 if (R__b.IsReading()) {
439 Version_t R__v = R__b.ReadVersion(); if (R__v) { }
440 // TObject::Streamer(R__b);
441 AliTPCParam::Streamer(R__b);
442 // if (R__v < 2) return;
443 Update();
ab85d8c2 444 if (gGeoManager) ReadGeoMatrices();
cc80f89e 445 } else {
446 R__b.WriteVersion(AliTPCParamSR::IsA());
447 //TObject::Streamer(R__b);
448 AliTPCParam::Streamer(R__b);
449 }
450}
f546a4b4 451Int_t AliTPCParamSR::CalcResponseFast(Float_t* xyz, Int_t * index, Int_t row, Float_t phase)
de61d5d5 452{
453 //
454 //calculate bin response as function of the input position -x
455 //return number of valid response bin
456 //
457 //we suppose that coordinate is expressed in float digits
458 // it's mean coordinate system 8
b584c7dd 459 //xyz[0] - electron position w.r.t. pad center, normalized to pad length,
460 //xyz[1] is float pad (center pad is number 0) and xyz[2] is float time bin
e61fd20d 461 //xyz[3] - electron time in float time bin format
f03e3423 462 if ( (fInnerPRF==0)||(fOuter1PRF==0)||(fOuter2PRF==0) ||(fTimeRF==0) ){
de61d5d5 463 Error("AliTPCParamSR", "response function was not adjusted");
464 return -1;
465 }
466
b4de2219 467 const Int_t kpadn = 500;
468 const Float_t kfpadn = 500.;
469 const Int_t ktimen = 500;
470 const Float_t kftimen = 500.;
471 const Int_t kpadrn = 500;
472 const Float_t kfpadrn = 500.;
de61d5d5 473
474
cc80f89e 475
b4de2219 476 static Float_t prfinner[2*kpadrn][5*kpadn]; //pad divided by 50
477 static Float_t prfouter1[2*kpadrn][5*kpadn]; //prfouter division
478 static Float_t prfouter2[2*kpadrn][5*kpadn];
ab85d8c2 479 static Float_t kTanMax =0;
f03e3423 480
b4de2219 481 static Float_t rftime[5*ktimen]; //time division
de61d5d5 482 static Int_t blabla=0;
483 static Float_t zoffset=0;
484 static Float_t zwidth=0;
485 static Float_t zoffset2=0;
486 static TH1F * hdiff=0;
487 static TH1F * hdiff1=0;
488 static TH1F * hdiff2=0;
489
490 if (blabla==0) { //calculate Response function - only at the begginning
ab85d8c2 491 kTanMax = TMath::ATan(10.*TMath::DegToRad());
de61d5d5 492 hdiff =new TH1F("prf_diff","prf_diff",10000,-1,1);
493 hdiff1 =new TH1F("no_repsonse1","no_response1",10000,-1,1);
494 hdiff2 =new TH1F("no_response2","no_response2",10000,-1,1);
495
496 blabla=1;
497 zoffset = GetZOffset();
498 zwidth = fZWidth;
499 zoffset2 = zoffset/zwidth;
b4de2219 500 for (Int_t i=0;i<5*ktimen;i++){
501 rftime[i] = fTimeRF->GetRF(((i-2.5*kftimen)/kftimen)*zwidth+zoffset);
de61d5d5 502 }
b4de2219 503 for (Int_t i=0;i<5*kpadn;i++){
504 for (Int_t j=0;j<2*kpadrn;j++){
de61d5d5 505 prfinner[j][i] =
b4de2219 506 fInnerPRF->GetPRF((i-2.5*kfpadn)/kfpadn
507 *fInnerPadPitchWidth,(j-kfpadrn)/kfpadrn*fInnerPadPitchLength);
f03e3423 508 prfouter1[j][i] =
b4de2219 509 fOuter1PRF->GetPRF((i-2.5*kfpadn)/kfpadn
510 *fOuterPadPitchWidth,(j-kfpadrn)/kfpadrn*fOuter1PadPitchLength);
f03e3423 511
512 //
513 prfouter2[j][i] =
b4de2219 514 fOuter2PRF->GetPRF((i-2.5*kfpadn)/kfpadn
515 *fOuterPadPitchWidth,(j-kfpadrn)/kfpadrn*fOuter2PadPitchLength);
de61d5d5 516 }
517 }
f03e3423 518 } // the above is calculated only once
519
de61d5d5 520 // calculate central padrow, pad, time
b584c7dd 521 Int_t npads = GetNPads(index[1],index[3]-1);
f03e3423 522 Int_t cpadrow = index[2]; // electrons are here
e30e6a9c 523 Int_t cpad = TMath::Nint(xyz[1]);
c2940e77 524 Int_t ctime = TMath::Nint(xyz[2]+zoffset2+xyz[3]);
de61d5d5 525 //calulate deviation
526 Float_t dpadrow = xyz[0];
527 Float_t dpad = xyz[1]-cpad;
f546a4b4 528 Float_t dtime = xyz[2]+zoffset2+xyz[3]-ctime+phase*0.25;
de61d5d5 529 Int_t cindex =0;
530 Int_t cindex3 =0;
531 Int_t maxt =GetMaxTBin();
532
533 Int_t fpadrow;
534 Int_t lpadrow;
535
536 if (row>=0) { //if we are interesting about given pad row
537 fpadrow = row-cpadrow;
538 lpadrow = row-cpadrow;
539 }else{
540 fpadrow = (index[2]>1) ? -1 :0;
541 lpadrow = (index[2]<GetNRow(index[1])-1) ? 1:0;
542 }
ab85d8c2 543
e30e6a9c 544 Int_t fpad = (cpad > -npads/2+1) ? -2: -npads/2-cpad;
545 Int_t lpad = (cpad < npads/2-2) ? 2: npads/2-1-cpad;
de61d5d5 546 Int_t ftime = (ctime>1) ? -2: -ctime;
547 Int_t ltime = (ctime<maxt-2) ? 2: maxt-ctime-1;
548
f03e3423 549 // cross talk from long pad to short one
b584c7dd 550 if(row==fNRowUp1 && fpadrow==-1) {
f03e3423 551 dpadrow *= fOuter2PadPitchLength;
552 dpadrow += fOuterWWPitch;
553 dpadrow /= fOuter1PadPitchLength;
554 }
555 // cross talk from short pad to long one
b584c7dd 556 if(row==fNRowUp1+1 && fpadrow==1){
f03e3423 557 dpadrow *= fOuter1PadPitchLength;
b584c7dd 558 if(dpadrow < 0.) dpadrow = -1.; //protection against 3rd wire
f03e3423 559 dpadrow += fOuterWWPitch;
560 dpadrow /= fOuter2PadPitchLength;
561
562 }
ab85d8c2 563
f03e3423 564 // "normal"
b4de2219 565 Int_t apadrow = TMath::Nint((dpadrow-fpadrow)*kfpadrn+kfpadrn);
de61d5d5 566 for (Int_t ipadrow = fpadrow; ipadrow<=lpadrow;ipadrow++){
b4de2219 567 if ( (apadrow<0) || (apadrow>=2*kpadrn))
de61d5d5 568 continue;
ab85d8c2 569 // pad angular correction
570 Float_t angle = kTanMax*2.*(cpad+0.5)/Float_t(npads);
571 Float_t dpadangle =0;
572 if (index[1]<fNInnerSector){
573 dpadangle = angle*dpadrow*fInnerPadPitchLength/fInnerPadPitchWidth;
574 }
575 else{
576 if(row < fNRowUp1+1){
577 dpadangle = angle*dpadrow*fOuter1PadPitchLength/fOuterPadPitchWidth;
578 }
579 else {
580 dpadangle = angle*dpadrow*fOuter2PadPitchLength/fOuterPadPitchWidth;
581 }
582 }
583 if (ipadrow==0) dpadangle *=-1;
584 //
585 // Int_t apad= TMath::Nint((dpad-fpad)*kfpadn+2.5*kfpadn);
586 Int_t apad= TMath::Nint((dpad+dpadangle-fpad)*kfpadn+2.5*kfpadn);
de61d5d5 587 for (Int_t ipad = fpad; ipad<=lpad;ipad++){
588 Float_t cweight;
ab85d8c2 589 if (index[1]<fNInnerSector){
de61d5d5 590 cweight=prfinner[apadrow][apad];
ab85d8c2 591 }
f03e3423 592 else{
ab85d8c2 593 if(row < fNRowUp1+1){
f03e3423 594 cweight=prfouter1[apadrow][apad];
ab85d8c2 595 }
596 else {
597 cweight=prfouter2[apadrow][apad];
598 }
f03e3423 599 }
de61d5d5 600 // if (cweight<fResponseThreshold) continue;
b4de2219 601 Int_t atime = TMath::Nint((dtime-ftime)*kftimen+2.5*kftimen);
de61d5d5 602 for (Int_t itime = ftime;itime<=ltime;itime++){
603 Float_t cweight2 = cweight*rftime[atime];
604 if (cweight2>fResponseThreshold) {
605 fResponseBin[cindex3++]=cpadrow+ipadrow;
e30e6a9c 606 fResponseBin[cindex3++]=cpad+ipad;
de61d5d5 607 fResponseBin[cindex3++]=ctime+itime;
ab85d8c2 608 fResponseWeight[cindex++]=cweight2;
de61d5d5 609 }
b4de2219 610 atime-=ktimen;
de61d5d5 611 }
b4de2219 612 apad-= kpadn;
de61d5d5 613 }
b4de2219 614 apadrow-=kpadrn;
de61d5d5 615 }
616 fCurrentMax=cindex;
617 return fCurrentMax;
618
619}
cc80f89e 620
621
622
c11cb93f 623
624
625
626