]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TPC/AliTPCParamSR.cxx
Adding macro to create Pad response function for the GEM readout
[u/mrichter/AliRoot.git] / TPC / AliTPCParamSR.cxx
CommitLineData
cc80f89e 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
cc80f89e 17
18///////////////////////////////////////////////////////////////////////
19// Manager and of geomety classes for set: TPC //
20// //
21// !sectors are numbered from 0 //
22// !pad rows are numbered from 0 //
23//
24// 27.7. - AliTPCPaaramSr object for TPC
25// TPC with straight pad rows
26// Origin: Marian Ivanov, Uni. of Bratislava, ivanov@fmph.uniba.sk //
27// //
28///////////////////////////////////////////////////////////////////////
29
b4de2219 30//#include <Riostream.h>
cc80f89e 31#include <TMath.h>
b4de2219 32
73042f01 33#include "AliTPCPRF2D.h"
b4de2219 34#include "AliTPCParamSR.h"
73042f01 35#include "AliTPCRF1D.h"
de61d5d5 36#include "TH1.h"
ab85d8c2 37#include "AliTPCROC.h"
38#include "TGeoManager.h"
cc80f89e 39
cc80f89e 40ClassImp(AliTPCParamSR)
176aff27 41static const Int_t kMaxRows=600;
42static const Float_t kEdgeSectorSpace = 2.5;
43static const Float_t kFacSigmaPadRow=3.;
44static const Float_t kFacSigmaPad=3.;
45static const Float_t kFacSigmaTime=3.;
cc80f89e 46
47
48AliTPCParamSR::AliTPCParamSR()
179c6296 49 :AliTPCParam(),
50 fInnerPRF(0),
51 fOuter1PRF(0),
52 fOuter2PRF(0),
53 fTimeRF(0),
54 fFacSigmaPadRow(0),
55 fFacSigmaPad(0),
56 fFacSigmaTime(0)
cc80f89e 57{
58 //
59 //constructor set the default parameters
179c6296 60 //
61
cc80f89e 62 fFacSigmaPadRow = Float_t(kFacSigmaPadRow);
63 fFacSigmaPad = Float_t(kFacSigmaPad);
64 fFacSigmaTime = Float_t(kFacSigmaTime);
cc80f89e 65 SetDefault();
66 Update();
67}
68
69AliTPCParamSR::~AliTPCParamSR()
70{
71 //
72 //destructor destroy some dynmicaly alocated variables
73 if (fInnerPRF != 0) delete fInnerPRF;
f03e3423 74 if (fOuter1PRF != 0) delete fOuter1PRF;
75 if (fOuter2PRF != 0) delete fOuter2PRF;
cc80f89e 76 if (fTimeRF != 0) delete fTimeRF;
77}
78
79void AliTPCParamSR::SetDefault()
80{
81 //set default TPC param
82 fbStatus = kFALSE;
83 AliTPCParam::SetDefault();
84}
85
86Int_t AliTPCParamSR::CalcResponse(Float_t* xyz, Int_t * index, Int_t row)
87{
88 //
89 //calculate bin response as function of the input position -x
90 //return number of valid response bin
91 //
92 //we suppose that coordinate is expressed in float digits
93 // it's mean coordinate system 8
94 //xyz[0] - float padrow xyz[1] is float pad (center pad is number 0) and xyz[2] is float time bin
e61fd20d 95 //xyz[3] - electron time in float time bin format
f03e3423 96 if ( (fInnerPRF==0)||(fOuter1PRF==0)||(fOuter2PRF==0) ||(fTimeRF==0) ){
cc80f89e 97 Error("AliTPCParamSR", "response function was not adjusted");
98 return -1;
99 }
100
101 Float_t sfpadrow; // sigma of response function
102 Float_t sfpad; // sigma of
103 Float_t sftime= fFacSigmaTime*fTimeRF->GetSigma()/fZWidth; //3 sigma of time response
104 if (index[1]<fNInnerSector){
105 sfpadrow =fFacSigmaPadRow*fInnerPRF->GetSigmaY()/fInnerPadPitchLength;
106 sfpad =fFacSigmaPad*fInnerPRF->GetSigmaX()/fInnerPadPitchWidth;
f03e3423 107 }
108 else{
109 if(row<fNRowUp1){
110 sfpadrow =fFacSigmaPadRow*fOuter1PRF->GetSigmaY()/fOuter1PadPitchLength;
111 sfpad =fFacSigmaPad*fOuter1PRF->GetSigmaX()/fOuterPadPitchWidth;}
112 else{
113 sfpadrow =fFacSigmaPadRow*fOuter2PRF->GetSigmaY()/fOuter2PadPitchLength;
114 sfpad =fFacSigmaPad*fOuter2PRF->GetSigmaX()/fOuterPadPitchWidth;
115 }
cc80f89e 116 }
117
118 Int_t fpadrow = TMath::Max(TMath::Nint(index[2]+xyz[0]-sfpadrow),0); //"first" padrow
119 Int_t fpad = TMath::Nint(xyz[1]-sfpad); //first pad
c2940e77 120 Int_t ftime = TMath::Max(TMath::Nint(xyz[2]+xyz[3]+GetZOffset()/GetZWidth()-sftime),0); // first time
cc80f89e 121 Int_t lpadrow = TMath::Min(TMath::Nint(index[2]+xyz[0]+sfpadrow),fpadrow+19); //"last" padrow
122 lpadrow = TMath::Min(GetNRow(index[1])-1,lpadrow);
123 Int_t lpad = TMath::Min(TMath::Nint(xyz[1]+sfpad),fpad+19); //last pad
c2940e77 124 Int_t ltime = TMath::Min(TMath::Nint(xyz[2]+xyz[3]+GetZOffset()/GetZWidth()+sftime),ftime+19); // last time
cc80f89e 125 ltime = TMath::Min(ltime,GetMaxTBin()-1);
de61d5d5 126 //
127 Int_t npads = GetNPads(index[1],row);
128 if (fpad<-npads/2)
129 fpad = -npads/2;
130 if (lpad>npads/2)
131 lpad= npads/2;
132 if (ftime<0) ftime=0;
133 //
cc80f89e 134 if (row>=0) { //if we are interesting about given pad row
135 if (fpadrow<=row) fpadrow =row;
136 else
137 return 0;
138 if (lpadrow>=row) lpadrow = row;
139 else
140 return 0;
141 }
142
143
144 Float_t padres[20][20]; //I don't expect bigger number of bins
145 Float_t timeres[20];
146 Int_t cindex3=0;
147 Int_t cindex=0;
148 Float_t cweight = 0;
149 if (fpadrow>=0) {
150 //calculate padresponse function
151 Int_t padrow, pad;
152 for (padrow = fpadrow;padrow<=lpadrow;padrow++)
153 for (pad = fpad;pad<=lpad;pad++){
f03e3423 154 Float_t dy = (xyz[0]+Float_t(index[2]-padrow));
155 Float_t dx = (xyz[1]+Float_t(pad));
cc80f89e 156 if (index[1]<fNInnerSector)
157 padres[padrow-fpadrow][pad-fpad]=fInnerPRF->GetPRF(dx*fInnerPadPitchWidth,dy*fInnerPadPitchLength);
f03e3423 158 else{
159 if(row<fNRowUp1){
160 padres[padrow-fpadrow][pad-fpad]=fOuter1PRF->GetPRF(dx*fOuterPadPitchWidth,dy*fOuter1PadPitchLength);}
161 else{
162 padres[padrow-fpadrow][pad-fpad]=fOuter2PRF->GetPRF(dx*fOuterPadPitchWidth,dy*fOuter2PadPitchLength);}}}
cc80f89e 163 //calculate time response function
164 Int_t time;
165 for (time = ftime;time<=ltime;time++)
c2940e77 166 timeres[time-ftime]= fTimeRF->GetRF((-xyz[2]-xyz[3]+Float_t(time))*fZWidth);
cc80f89e 167 //write over threshold values to stack
168 for (padrow = fpadrow;padrow<=lpadrow;padrow++)
169 for (pad = fpad;pad<=lpad;pad++)
170 for (time = ftime;time<=ltime;time++){
171 cweight = timeres[time-ftime]*padres[padrow-fpadrow][pad-fpad];
172 if (cweight>fResponseThreshold) {
173 fResponseBin[cindex3]=padrow;
174 fResponseBin[cindex3+1]=pad;
175 fResponseBin[cindex3+2]=time;
176 cindex3+=3;
177 fResponseWeight[cindex]=cweight;
178 cindex++;
179 }
180 }
181 }
182 fCurrentMax=cindex;
183 return fCurrentMax;
184}
185
186void AliTPCParamSR::TransformTo8(Float_t *xyz, Int_t *index) const
187{
188 //
189 // transformate point to digit coordinate
190 //
191 if (index[0]==0) Transform0to1(xyz,index);
192 if (index[0]==1) Transform1to2(xyz,index);
193 if (index[0]==2) Transform2to3(xyz,index);
194 if (index[0]==3) Transform3to4(xyz,index);
195 if (index[0]==4) Transform4to8(xyz,index);
196}
197
198void AliTPCParamSR::TransformTo2(Float_t *xyz, Int_t *index) const
199{
200 //
201 //transformate point to rotated coordinate
202 //
203 //we suppose that
204 if (index[0]==0) Transform0to1(xyz,index);
205 if (index[0]==1) Transform1to2(xyz,index);
206 if (index[0]==4) Transform4to3(xyz,index);
207 if (index[0]==8) { //if we are in digit coordinate system transform to global
208 Transform8to4(xyz,index);
209 Transform4to3(xyz,index);
210 }
211}
212
213void AliTPCParamSR::CRXYZtoXYZ(Float_t *xyz,
214 const Int_t &sector, const Int_t & padrow, Int_t option) const
215{
216 //transform relative coordinates to absolute
217 Bool_t rel = ( (option&2)!=0);
f99d7d41 218 Int_t index[3]={sector,padrow,0};
cc80f89e 219 if (rel==kTRUE) Transform4to3(xyz,index);//if the position is relative to pad row
220 Transform2to1(xyz,index);
221}
222
223void AliTPCParamSR::XYZtoCRXYZ(Float_t *xyz,
224 Int_t &sector, Int_t & padrow, Int_t option) const
225{
226 //transform global position to the position relative to the sector padrow
227 //if option=0 X calculate absolute calculate sector
228 //if option=1 X absolute use input sector
229 //if option=2 X relative to pad row calculate sector
230 //if option=3 X relative use input sector
231 //!!!!!!!!! WE start to calculate rows from row = 0
712976a6 232 Int_t index[3];
cc80f89e 233 Bool_t rel = ( (option&2)!=0);
234
235 //option 0 and 2 means that we don't have information about sector
236 if ((option&1)==0) Transform0to1(xyz,index); //we calculate sector number
237 else
238 index[0]=sector;
239 Transform1to2(xyz,index);
240 Transform2to3(xyz,index);
241 //if we store relative position calculate position relative to pad row
242 if (rel==kTRUE) Transform3to4(xyz,index);
243 sector = index[0];
244 padrow = index[1];
245}
246
176aff27 247Float_t AliTPCParamSR::GetPrimaryLoss(Float_t */*x*/, Int_t *index, Float_t *angle)
cc80f89e 248{
249 //
250 //
251 Float_t padlength=GetPadPitchLength(index[1]);
252 Float_t a1=TMath::Sin(angle[0]);
253 a1*=a1;
254 Float_t a2=TMath::Sin(angle[1]);
255 a2*=a2;
256 Float_t length =padlength*TMath::Sqrt(1+a1+a2);
257 return length*fNPrimLoss;
258}
259
176aff27 260Float_t AliTPCParamSR::GetTotalLoss(Float_t */*x*/, Int_t *index, Float_t *angle)
cc80f89e 261{
262 //
263 //
264 Float_t padlength=GetPadPitchLength(index[1]);
265 Float_t a1=TMath::Sin(angle[0]);
266 a1*=a1;
267 Float_t a2=TMath::Sin(angle[1]);
268 a2*=a2;
269 Float_t length =padlength*TMath::Sqrt(1+a1+a2);
270 return length*fNTotalLoss;
271
272}
273
274
176aff27 275void AliTPCParamSR::GetClusterSize(Float_t *x, Int_t *index, Float_t */*angle*/, Int_t /*mode*/, Float_t *sigma)
cc80f89e 276{
277 //
278 //return cluster sigma2 (x,y) for particle at position x
279 // in this case x coordinata is in drift direction
280 //and y in pad row direction
281 //we suppose that input coordinate system is digit system
282
283 Float_t xx;
284 Float_t lx[3] = {x[0],x[1],x[2]};
285 Int_t li[3] = {index[0],index[1],index[2]};
286 TransformTo2(lx,li);
287 // Float_t sigmadiff;
288 sigma[0]=0;
289 sigma[1]=0;
290
291 xx = lx[2]; //calculate drift length in cm
292 if (xx>0) {
293 sigma[0]+= xx*GetDiffL()*GetDiffL();
294 sigma[1]+= xx*GetDiffT()*GetDiffT();
295 }
296
297
298 //sigma[0]=sigma[1]=0;
299 if (GetTimeRF()!=0) sigma[0]+=GetTimeRF()->GetSigma()*GetTimeRF()->GetSigma();
300 if ( (index[1]<fNInnerSector) &&(GetInnerPRF()!=0))
301 sigma[1]+=GetInnerPRF()->GetSigmaX()*GetInnerPRF()->GetSigmaX();
f03e3423 302 if ( (index[1]>=fNInnerSector) &&(index[2]<fNRowUp1) && (GetOuter1PRF()!=0))
303 sigma[1]+=GetOuter1PRF()->GetSigmaX()*GetOuter1PRF()->GetSigmaX();
304 if( (index[1]>=fNInnerSector) &&(index[2]>=fNRowUp1) && (GetOuter2PRF()!=0))
305 sigma[1]+=GetOuter2PRF()->GetSigmaX()*GetOuter2PRF()->GetSigmaX();
cc80f89e 306
307
308 sigma[0]/= GetZWidth()*GetZWidth();
309 sigma[1]/=GetPadPitchWidth(index[0])*GetPadPitchWidth(index[0]);
310}
311
312
313
314
176aff27 315void AliTPCParamSR::GetSpaceResolution(Float_t */*x*/, Int_t */*index*/, Float_t */*angle*/,
316 Float_t /*amplitude*/, Int_t /*mode*/, Float_t */*sigma*/)
cc80f89e 317{
318 //
319 //
320 //
321
322}
176aff27 323Float_t AliTPCParamSR::GetAmp(Float_t */*x*/, Int_t */*index*/, Float_t */*angle*/)
cc80f89e 324{
325 //
326 //
327 //
328 return 0;
329}
330
331Float_t * AliTPCParamSR::GetAnglesAccMomentum(Float_t *x, Int_t * index, Float_t* momentum, Float_t *angle)
332{
333 //
334 //calculate angle of track to padrow at given position
335 // for given magnetic field and momentum of the particle
336 //
337
338 TransformTo2(x,index);
339 AliDetectorParam::GetAnglesAccMomentum(x,index,momentum,angle);
340 Float_t addangle = TMath::ASin(x[1]/GetPadRowRadii(index[1],index[2]));
341 angle[1] +=addangle;
342 return angle;
343}
344
345
346Bool_t AliTPCParamSR::Update()
347{
cc80f89e 348 Int_t i;
349 if (AliTPCParam::Update()==kFALSE) return kFALSE;
350 fbStatus = kFALSE;
351
c254a4cb 352 Float_t firstrow = fInnerRadiusLow + 1.575;
f03e3423 353 for( i= 0;i<fNRowLow;i++)
354 {
355 Float_t x = firstrow + fInnerPadPitchLength*(Float_t)i;
356 fPadRowLow[i]=x;
357 // number of pads per row
ab85d8c2 358 // Float_t y = (x-0.5*fInnerPadPitchLength)*tan(fInnerAngle/2.)-fInnerWireMount-
359 // fInnerPadPitchWidth/2.;
b584c7dd 360 // 0 and fNRowLow+1 reserved for cross talk rows
361 fYInner[i+1] = x*tan(fInnerAngle/2.)-fInnerWireMount;
ab85d8c2 362 //fNPadsLow[i] = 1+2*(Int_t)(y/fInnerPadPitchWidth) ;
363 fNPadsLow[i] = AliTPCROC::Instance()->GetNPads(0,i) ; // ROC implement
f03e3423 364 }
b584c7dd 365 // cross talk rows
366 fYInner[0]=(fPadRowLow[0]-fInnerPadPitchLength)*tan(fInnerAngle/2.)-fInnerWireMount;
367 fYInner[fNRowLow+1]=(fPadRowLow[fNRowLow-1]+fInnerPadPitchLength)*tan(fInnerAngle/2.)-fInnerWireMount;
f03e3423 368 firstrow = fOuterRadiusLow + 1.6;
369 for(i=0;i<fNRowUp;i++)
370 {
371 if(i<fNRowUp1){
372 Float_t x = firstrow + fOuter1PadPitchLength*(Float_t)i;
373 fPadRowUp[i]=x;
ab85d8c2 374// Float_t y =(x-0.5*fOuter1PadPitchLength)*tan(fOuterAngle/2.)-fOuterWireMount-
375// fOuterPadPitchWidth/2.;
b584c7dd 376 fYOuter[i+1]= x*tan(fOuterAngle/2.)-fOuterWireMount;
ab85d8c2 377 //fNPadsUp[i] = 1+2*(Int_t)(y/fOuterPadPitchWidth) ;
378 fNPadsUp[i] = AliTPCROC::Instance()->GetNPads(36,i) ; // ROC implement
f03e3423 379 if(i==fNRowUp1-1) {
401bc5a5 380 fLastWireUp1=fPadRowUp[i] +0.625;
f03e3423 381 firstrow = fPadRowUp[i] + 0.5*(fOuter1PadPitchLength+fOuter2PadPitchLength);
382 }
383 }
384 else
385 {
386 Float_t x = firstrow + fOuter2PadPitchLength*(Float_t)(i-64);
387 fPadRowUp[i]=x;
ab85d8c2 388 //Float_t y =(x-0.5*fOuter2PadPitchLength)*tan(fOuterAngle/2.)-fOuterWireMount-
389 // fOuterPadPitchWidth/2.;
390 //fNPadsUp[i] = 1+2*(Int_t)(y/fOuterPadPitchWidth) ;
391 fNPadsUp[i] = AliTPCROC::Instance()->GetNPads(36,i) ; // ROC implement
cc80f89e 392 }
b584c7dd 393 fYOuter[i+1] = fPadRowUp[i]*tan(fOuterAngle/2.)-fOuterWireMount;
f03e3423 394 }
b584c7dd 395 // cross talk rows
396 fYOuter[0]=(fPadRowUp[0]-fOuter1PadPitchLength)*tan(fOuterAngle/2.)-fOuterWireMount;
397 fYOuter[fNRowUp+1]=(fPadRowUp[fNRowUp-1]+fOuter2PadPitchLength)*tan(fOuterAngle/2.)-fOuterWireMount;
f03e3423 398 fNtRows = fNInnerSector*fNRowLow+fNOuterSector*fNRowUp;
399 fbStatus = kTRUE;
400 return kTRUE;
401}
402Float_t AliTPCParamSR::GetYInner(Int_t irow) const
403{
404 return fYInner[irow];
405}
406Float_t AliTPCParamSR::GetYOuter(Int_t irow) const
407{
408 return fYOuter[irow];
cc80f89e 409}
cc80f89e 410
cc80f89e 411void AliTPCParamSR::Streamer(TBuffer &R__b)
412{
413 // Stream an object of class AliTPC.
414
415 if (R__b.IsReading()) {
416 Version_t R__v = R__b.ReadVersion(); if (R__v) { }
417 // TObject::Streamer(R__b);
418 AliTPCParam::Streamer(R__b);
419 // if (R__v < 2) return;
420 Update();
ab85d8c2 421 if (gGeoManager) ReadGeoMatrices();
cc80f89e 422 } else {
423 R__b.WriteVersion(AliTPCParamSR::IsA());
424 //TObject::Streamer(R__b);
425 AliTPCParam::Streamer(R__b);
426 }
427}
f546a4b4 428Int_t AliTPCParamSR::CalcResponseFast(Float_t* xyz, Int_t * index, Int_t row, Float_t phase)
de61d5d5 429{
430 //
431 //calculate bin response as function of the input position -x
432 //return number of valid response bin
433 //
434 //we suppose that coordinate is expressed in float digits
435 // it's mean coordinate system 8
b584c7dd 436 //xyz[0] - electron position w.r.t. pad center, normalized to pad length,
437 //xyz[1] is float pad (center pad is number 0) and xyz[2] is float time bin
e61fd20d 438 //xyz[3] - electron time in float time bin format
f03e3423 439 if ( (fInnerPRF==0)||(fOuter1PRF==0)||(fOuter2PRF==0) ||(fTimeRF==0) ){
de61d5d5 440 Error("AliTPCParamSR", "response function was not adjusted");
441 return -1;
442 }
443
b4de2219 444 const Int_t kpadn = 500;
445 const Float_t kfpadn = 500.;
446 const Int_t ktimen = 500;
447 const Float_t kftimen = 500.;
448 const Int_t kpadrn = 500;
449 const Float_t kfpadrn = 500.;
de61d5d5 450
451
cc80f89e 452
b4de2219 453 static Float_t prfinner[2*kpadrn][5*kpadn]; //pad divided by 50
454 static Float_t prfouter1[2*kpadrn][5*kpadn]; //prfouter division
455 static Float_t prfouter2[2*kpadrn][5*kpadn];
ab85d8c2 456 static Float_t kTanMax =0;
f03e3423 457
b4de2219 458 static Float_t rftime[5*ktimen]; //time division
de61d5d5 459 static Int_t blabla=0;
460 static Float_t zoffset=0;
461 static Float_t zwidth=0;
462 static Float_t zoffset2=0;
463 static TH1F * hdiff=0;
464 static TH1F * hdiff1=0;
465 static TH1F * hdiff2=0;
466
467 if (blabla==0) { //calculate Response function - only at the begginning
ab85d8c2 468 kTanMax = TMath::ATan(10.*TMath::DegToRad());
de61d5d5 469 hdiff =new TH1F("prf_diff","prf_diff",10000,-1,1);
470 hdiff1 =new TH1F("no_repsonse1","no_response1",10000,-1,1);
471 hdiff2 =new TH1F("no_response2","no_response2",10000,-1,1);
472
473 blabla=1;
474 zoffset = GetZOffset();
475 zwidth = fZWidth;
476 zoffset2 = zoffset/zwidth;
b4de2219 477 for (Int_t i=0;i<5*ktimen;i++){
478 rftime[i] = fTimeRF->GetRF(((i-2.5*kftimen)/kftimen)*zwidth+zoffset);
de61d5d5 479 }
b4de2219 480 for (Int_t i=0;i<5*kpadn;i++){
481 for (Int_t j=0;j<2*kpadrn;j++){
de61d5d5 482 prfinner[j][i] =
b4de2219 483 fInnerPRF->GetPRF((i-2.5*kfpadn)/kfpadn
484 *fInnerPadPitchWidth,(j-kfpadrn)/kfpadrn*fInnerPadPitchLength);
f03e3423 485 prfouter1[j][i] =
b4de2219 486 fOuter1PRF->GetPRF((i-2.5*kfpadn)/kfpadn
487 *fOuterPadPitchWidth,(j-kfpadrn)/kfpadrn*fOuter1PadPitchLength);
f03e3423 488
489 //
490 prfouter2[j][i] =
b4de2219 491 fOuter2PRF->GetPRF((i-2.5*kfpadn)/kfpadn
492 *fOuterPadPitchWidth,(j-kfpadrn)/kfpadrn*fOuter2PadPitchLength);
de61d5d5 493 }
494 }
f03e3423 495 } // the above is calculated only once
496
de61d5d5 497 // calculate central padrow, pad, time
b584c7dd 498 Int_t npads = GetNPads(index[1],index[3]-1);
f03e3423 499 Int_t cpadrow = index[2]; // electrons are here
e30e6a9c 500 Int_t cpad = TMath::Nint(xyz[1]);
c2940e77 501 Int_t ctime = TMath::Nint(xyz[2]+zoffset2+xyz[3]);
de61d5d5 502 //calulate deviation
503 Float_t dpadrow = xyz[0];
504 Float_t dpad = xyz[1]-cpad;
f546a4b4 505 Float_t dtime = xyz[2]+zoffset2+xyz[3]-ctime+phase*0.25;
de61d5d5 506 Int_t cindex =0;
507 Int_t cindex3 =0;
508 Int_t maxt =GetMaxTBin();
509
510 Int_t fpadrow;
511 Int_t lpadrow;
512
513 if (row>=0) { //if we are interesting about given pad row
514 fpadrow = row-cpadrow;
515 lpadrow = row-cpadrow;
516 }else{
517 fpadrow = (index[2]>1) ? -1 :0;
518 lpadrow = (index[2]<GetNRow(index[1])-1) ? 1:0;
519 }
ab85d8c2 520
e30e6a9c 521 Int_t fpad = (cpad > -npads/2+1) ? -2: -npads/2-cpad;
522 Int_t lpad = (cpad < npads/2-2) ? 2: npads/2-1-cpad;
de61d5d5 523 Int_t ftime = (ctime>1) ? -2: -ctime;
524 Int_t ltime = (ctime<maxt-2) ? 2: maxt-ctime-1;
525
f03e3423 526 // cross talk from long pad to short one
b584c7dd 527 if(row==fNRowUp1 && fpadrow==-1) {
f03e3423 528 dpadrow *= fOuter2PadPitchLength;
529 dpadrow += fOuterWWPitch;
530 dpadrow /= fOuter1PadPitchLength;
531 }
532 // cross talk from short pad to long one
b584c7dd 533 if(row==fNRowUp1+1 && fpadrow==1){
f03e3423 534 dpadrow *= fOuter1PadPitchLength;
b584c7dd 535 if(dpadrow < 0.) dpadrow = -1.; //protection against 3rd wire
f03e3423 536 dpadrow += fOuterWWPitch;
537 dpadrow /= fOuter2PadPitchLength;
538
539 }
ab85d8c2 540
f03e3423 541 // "normal"
b4de2219 542 Int_t apadrow = TMath::Nint((dpadrow-fpadrow)*kfpadrn+kfpadrn);
de61d5d5 543 for (Int_t ipadrow = fpadrow; ipadrow<=lpadrow;ipadrow++){
b4de2219 544 if ( (apadrow<0) || (apadrow>=2*kpadrn))
de61d5d5 545 continue;
ab85d8c2 546 // pad angular correction
af6a0f3f 547 Float_t angle = 0.;
548 if (npads != 0)
549 angle = kTanMax*2.*(cpad+0.5)/Float_t(npads);
ab85d8c2 550 Float_t dpadangle =0;
551 if (index[1]<fNInnerSector){
552 dpadangle = angle*dpadrow*fInnerPadPitchLength/fInnerPadPitchWidth;
553 }
554 else{
555 if(row < fNRowUp1+1){
556 dpadangle = angle*dpadrow*fOuter1PadPitchLength/fOuterPadPitchWidth;
557 }
558 else {
559 dpadangle = angle*dpadrow*fOuter2PadPitchLength/fOuterPadPitchWidth;
560 }
561 }
562 if (ipadrow==0) dpadangle *=-1;
563 //
564 // Int_t apad= TMath::Nint((dpad-fpad)*kfpadn+2.5*kfpadn);
565 Int_t apad= TMath::Nint((dpad+dpadangle-fpad)*kfpadn+2.5*kfpadn);
de61d5d5 566 for (Int_t ipad = fpad; ipad<=lpad;ipad++){
567 Float_t cweight;
ab85d8c2 568 if (index[1]<fNInnerSector){
de61d5d5 569 cweight=prfinner[apadrow][apad];
ab85d8c2 570 }
f03e3423 571 else{
ab85d8c2 572 if(row < fNRowUp1+1){
f03e3423 573 cweight=prfouter1[apadrow][apad];
ab85d8c2 574 }
575 else {
576 cweight=prfouter2[apadrow][apad];
577 }
f03e3423 578 }
de61d5d5 579 // if (cweight<fResponseThreshold) continue;
b4de2219 580 Int_t atime = TMath::Nint((dtime-ftime)*kftimen+2.5*kftimen);
de61d5d5 581 for (Int_t itime = ftime;itime<=ltime;itime++){
582 Float_t cweight2 = cweight*rftime[atime];
583 if (cweight2>fResponseThreshold) {
584 fResponseBin[cindex3++]=cpadrow+ipadrow;
e30e6a9c 585 fResponseBin[cindex3++]=cpad+ipad;
de61d5d5 586 fResponseBin[cindex3++]=ctime+itime;
ab85d8c2 587 fResponseWeight[cindex++]=cweight2;
de61d5d5 588 }
b4de2219 589 atime-=ktimen;
de61d5d5 590 }
b4de2219 591 apad-= kpadn;
de61d5d5 592 }
b4de2219 593 apadrow-=kpadrn;
de61d5d5 594 }
595 fCurrentMax=cindex;
596 return fCurrentMax;
597
598}
cc80f89e 599
600
601
c11cb93f 602
603
604
605