]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TPC/AliTPCTempMap.cxx
filter out additional compile defines to fit into rootcints 1024 char limit
[u/mrichter/AliRoot.git] / TPC / AliTPCTempMap.cxx
CommitLineData
1209231c 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17///////////////////////////////////////////////////////////////////////////////
18// //
19// TPC calibration class for temperature maps and tendencies //
20// (based on TPC Temperature Sensors and FiniteElement Simulation) //
21// //
22// Authors: Stefan Rossegger, Haavard Helstrup //
23// //
24///////////////////////////////////////////////////////////////////////////////
25
26#include "AliTPCSensorTempArray.h"
27#include "TLinearFitter.h"
28#include "TString.h"
29#include "TGraph2D.h"
30
31#include "AliTPCTempMap.h"
32
33
34ClassImp(AliTPCTempMap)
35
36 const char kStringFEsimulation[] = "FEsimulation.txt";
37
38//_____________________________________________________________________________
39AliTPCTempMap::AliTPCTempMap(AliTPCSensorTempArray *sensorDCS):
40 TNamed(),
41 ft(0),
42 fStringFEsimulation(kStringFEsimulation)
43{
44 //
45 // AliTPCTempMap default constructor
46 //
47
48 ft = sensorDCS;
49
50}
51
52//_____________________________________________________________________________
53AliTPCTempMap::AliTPCTempMap(const AliTPCTempMap &c):
54 TNamed(c),
55 ft(c.ft),
56 fStringFEsimulation(c.fStringFEsimulation)
57{
58 //
59 // AliTPCTempMap copy constructor
60 //
61
62}
63
64//_____________________________________________________________________________
65AliTPCTempMap::~AliTPCTempMap()
66{
67 //
68 // AliTPCTempMap destructor
69 //
70
71}
72
73//_____________________________________________________________________________
74AliTPCTempMap &AliTPCTempMap::operator=(const AliTPCTempMap &c)
75{
76 //
77 // Assignment operator
78 //
79
80 if (this != &c) ((AliTPCTempMap &) c).Copy(*this);
81 return *this;
82
83}
84
85//_____________________________________________________________________________
86void AliTPCTempMap::Copy(TObject &c) const
87{
88 //
89 // Copy function
90 //
91
92 TObject::Copy(c);
93
94}
95
96//_____________________________________________________________________________
97
98Double_t AliTPCTempMap::GetTempGradientY(UInt_t timeSec, Int_t side){
99 //
100 // Extract Linear Vertical Temperature Gradient [K/cm] within the TPC on
101 // Shaft Side(A): 0
102 // Muon Side(C): 1
103 // Values based on TemperatureSensors within the TPC ( type: 3 (TPC) )
104 //
105 // FIXME: Also return residual-distribution, covariance Matrix
106 // or simply chi2 for validity check?
107 // -> better use GetLinearFitter - function in this case!
108
109 TLinearFitter fitter(3,"x0++x1++x2");
110 TVectorD param(3);
111 Int_t i = 0;
112
113 Int_t nsensors = ft->NumSensors();
114 for (Int_t isensor=0; isensor<nsensors; isensor++) { // loop over all sensors
115 AliTPCSensorTemp *entry = (AliTPCSensorTemp*)ft->GetSensorNum(isensor);
116
117 if (entry->GetType()==3 && entry->GetSide()==side) { // take SensorType:TPC
118 Double_t x[3];
119 x[0]=1;
120 x[1]=entry->GetX();
121 x[2]=entry->GetY();
122 Double_t y = entry->GetValue(timeSec); // get temperature value
123 fitter.AddPoint(x,y,1); // add values to LinearFitter
124 i++;
125 }
126
127 }
128 fitter.Eval();
129 fitter.GetParameters(param);
130 fitter.~TLinearFitter();
131
132 return param[2]; // return vertical (Y) tempGradient in [K/cm]
133
134}
135
136//_____________________________________________________________________________
137
138TLinearFitter *AliTPCTempMap::GetLinearFitter(Int_t type, Int_t side, UInt_t timeSec)
139{
140 //
141 // Creates a TlinearFitter object for the desired region of the TPC
142 // (via choosen type and side of TPC temperature sensors) at a given
143 // timeSec (in secounds) after start time
144 // type: 0 ... ReadOutChambers (ROC)
145 // 1 ... OuterContainmentVessel (OFC)
146 // 2 ... InnerContainmentVessel (IFC) + ThermalScreener (TS)
147 // 3 ... Within the TPC (DriftVolume) (TPC)
148 // side: Can be choosen for type 0 and 3 (otherwise it will be ignored in
149 // in order to get all temperature sensors of interest)
150 // 0 ... Shaft Side (A)
151 // 1 ... Muon Side (C)
152 //
153
154 TLinearFitter *fitter = new TLinearFitter(3);
155 Double_t *x = new Double_t[3];
156 Double_t y = 0;
157
158 if (type == 1 || type == 2) {
159 fitter->SetFormula("x0++x1++TMath::Sin(x2)"); // returns Z,Y gradient
160 } else {
161 fitter->SetFormula("x0++x1++x2"); // returns X,Y gradient
162 }
163
164 Int_t i = 0;
165 Int_t nsensors = ft->NumSensors();
166 for (Int_t isensor=0; isensor<nsensors; isensor++) { // loop over all sensors
167 AliTPCSensorTemp *entry = (AliTPCSensorTemp*)ft->GetSensorNum(isensor);
168
169 if (type==0 || type==3) { // 'side' information used
170 if (entry->GetType()==type && entry->GetSide()==side) {
171 x[0]=1;
172 x[1]=entry->GetX();
173 x[2]=entry->GetY();
174 y = entry->GetValue(timeSec); // get temperature value
175 fitter->AddPoint(x,y,1); // add values to LinearFitter
176 i++;
177 }
178 } else if (type==2) { // in case of IFC also usage of TS values
179 if ((entry->GetType()==2) || (entry->GetType()==5)) {
180 x[0]=1;
181 x[1]=entry->GetZ();
182 x[2]=entry->GetPhi();
183 y = entry->GetValue(timeSec);
184 fitter->AddPoint(x,y,1);
185 i++;
186 }
187 } else if (type==1){
188 if (entry->GetType()==type) {
189 x[0]=1;
190 x[1]=entry->GetZ();
191 x[2]=entry->GetPhi();
192 y = entry->GetValue(timeSec);
193 fitter->AddPoint(x,y,1);
194 i++;
195 }
196 }
197 }
198 fitter->Eval(); // Evaluates fitter
199
200 delete [] x;
201
202 return fitter;
203
204 // returns TLinearFitter object where Chi2, Fitparameters and residuals can
205 // be extracted via usual memberfunctions
206 // example: fitter.GetParameters(param)
207 // In case of type IFC or OFC, the parameters are the gradients in
208 // Z and Y direction (see fitformula)
209 // Caution: Parameters are [K/cm] except Y at IFC,OFC ([K/radius])
210}
211
212//_____________________________________________________________________________
213
214TGraph2D *AliTPCTempMap::GetTempMapsViaSensors(Int_t type, Int_t side, UInt_t timeSec)
215{
216 //
217 // Creates a TGraph2D object for the desired region of the TPC
218 // (via choosen type and side of TPC temperature sensors) at a given
219 // timeSec (in secounds) after start time
220 // type: 0 ... ReadOutChambers (ROC)
221 // 1 ... OuterContainmentVessel (OFC)
222 // 2 ... InnerContainmentVessel (IFC) + ThermalScreener (TS)
223 // 3 ... Within the TPC (DriftVolume) (TPC)
224 // side: Can be choosen for type 0 and 3 (otherwise it will be ignored in
225 // in order to get all temperature sensors of interest)
226 // 0 ... Shaft Side (A)
227 // 1 ... Muon Side (C)
228 //
229
230 TGraph2D *graph2D = new TGraph2D();
231
232 Int_t i = 0;
233
234
235 Int_t nsensors = ft->NumSensors();
236
237
238 for (Int_t isensor=0; isensor<nsensors; isensor++) { // loop over all sensors
239 AliTPCSensorTemp *entry = (AliTPCSensorTemp*)ft->GetSensorNum(isensor);
240
241 Double_t x, y, z, r, phi, tempValue;
242 x = entry->GetX();
243 y = entry->GetY();
244 z = entry->GetZ();
245 r = entry->GetR();
246 phi = entry->GetPhi();
247 tempValue = entry->GetValue(timeSec);
248
249 if (type==0 || type==3) { // 'side' information used
250 if (entry->GetType()==type && entry->GetSide()==side) {
251 graph2D->SetPoint(i,x,y,tempValue);
252 i++;
253 }
254 } else if (type==2) { // in case of IFC also usage of TS values
255 if (entry->GetType()==2 || entry->GetType()==5) {
256 graph2D->SetPoint(i,z,phi,tempValue);
257 i++;
258 }
259 } else if (type==1){
260 if (entry->GetType()==type) {
261 graph2D->SetPoint(i,z,phi,tempValue);
262 i++;
263 }
264 }
265 }
266
267 if (type==0 || type==3) {
268 graph2D->GetXaxis()->SetTitle("X[cm]");
269 graph2D->GetYaxis()->SetTitle("Y[cm]");
270 if (type==0 && side==0) {
271 graph2D->SetTitle("ROC A - Endplate Shaft Side");
272 } else if (type==0 && side==1) {
273 graph2D->SetTitle("ROC C - Endplate Muon Side");
274 } else if (type==3 && side==0) {
275 graph2D->SetTitle("TPC A - Inside the TPC Shaft Side");
276 } else if (type==3 && side==1) {
277 graph2D->SetTitle("TPC C - Inside the TPC Muon Side");
278 }
279 } else if (type==1 || type==2) {
280 graph2D->GetXaxis()->SetTitle("Z[cm]");
281 graph2D->GetYaxis()->SetTitle("Phi[RAD]");
282 if (type==1) {
283 graph2D->SetTitle("Outer Containment Vessel");
284 } else if (type==2) {
285 graph2D->SetTitle("InnerContainmentVessel + ThermalScreeners");
286 }
287 }
288
289 if (!graph2D->GetN()) {
290 printf("Returned TGraph2D is empty: check type and side values\n");
291 }
292
293 graph2D->GetXaxis()->SetLabelOffset(0.0);
294 graph2D->GetYaxis()->SetLabelOffset(0.005);
295 graph2D->GetZaxis()->SetLabelOffset(-0.04);
296
297
298 return graph2D; // returns TGgraph2D object
299
300}
301
302
303//_____________________________________________________________________________
304
305TGraph *AliTPCTempMap::MakeGraphGradient(Int_t axis, Int_t side, Int_t nPoints)
306{
307 //
308 // Make graph from start time to end time of TempGradient in axis direction
309 // axis: 0 ... horizontal Temperature Gradient (X)
310 // 1 ... vertical Temperature Gradient (Y)
311 // 2 ... longitudenal Temperature Gradient (Z) (side is ignored)
312 // z gradient value based on OFC temperature sensors
313 // Caution!: better z gradient values through difference between
314 // param[0] A- and param[0] C-side !
315 // side for X and Y gradient:
316 // 0 ... Shaft Side (A)
317 // 1 ... Muon Side (C)
318 //
319
320 TVectorD param(3);
321 TLinearFitter *fitter = new TLinearFitter(3);
322
323 UInt_t fStartTime = ft->AliTPCSensorTempArray::GetStartTime();
324 UInt_t fEndTime = ft->AliTPCSensorTempArray::GetEndTime();
325
326 UInt_t stepTime = (fEndTime-fStartTime)/nPoints;
327
328 Double_t *x = new Double_t[nPoints];
329 Double_t *y = new Double_t[nPoints];
330 for (Int_t ip=0; ip<nPoints; ip++) {
331 x[ip] = fStartTime+ip*stepTime;
332 if (axis==2) {// Gradient in Z direction (based on OFC tempSensors)
333 fitter = GetLinearFitter(1, side, ip*stepTime);
334 } else {// Gradient in X or Y direction (based on TPC tempSensors)
335 fitter = GetLinearFitter(3, side, ip*stepTime);
336 }
337 fitter->GetParameters(param);
338 // multiplied by 500 since TempGradient is in [K/cm]
339 // (TPC diameter and length ~500cm)
340 if (axis==1) { // Y axis
341 y[ip] = param[2]*500;
342 } else { // X axis
343 y[ip] = param[1]*500;
344 }
345 }
346
347 TGraph *graph = new TGraph(nPoints,x,y);
348
349 fitter->~TLinearFitter();
350 delete [] x;
351 delete [] y;
352
353 graph->GetXaxis()->SetTimeDisplay(1);
354 graph->GetXaxis()->SetLabelOffset(0.02);
355 graph->GetXaxis()->SetTimeFormat("#splitline{%d/%m}{%H:%M}");
356
357 return graph;
358}
359
360//_____________________________________________________________________________
361
362Double_t AliTPCTempMap::GetTemperature(Double_t x, Double_t y, Double_t z, UInt_t timeSec)
363{
364 //
365 // Returns estimated Temperature at given position (x,y,z) at given time
366 // (timeSec) after starttime
367 // Method: so far just a linear interpolation between Linar fits of
368 // the TPC temperature sensors
369 // FIXME: 'Educated Fit' through FiniteElement Simulation results!
370 // FIXXME: Return 0? if x,y,z out of range
371 //
372
373 TVectorD paramA(3), paramC(3);
374 TLinearFitter *fitterA = new TLinearFitter(3);
375 TLinearFitter *fitterC = new TLinearFitter(3);
376
377 fitterA = GetLinearFitter(3, 0, timeSec);
378 fitterA->GetParameters(paramA);
379 fitterC = GetLinearFitter(3, 1, timeSec);
380 fitterC->GetParameters(paramC);
381
382 Double_t fvalA = paramA[0]+paramA[1]*x+paramA[2]*y;
383 Double_t fvalC = paramC[0]+paramC[1]*x+paramC[2]*y;
384
385 Double_t k = (fvalA-fvalC)/(2*247);
386 Double_t tempValue = fvalC+(fvalA-fvalC)/2+k*z;
387
388 fitterA->~TLinearFitter();
389 fitterC->~TLinearFitter();
390
391 return tempValue;
392}
393