Replace AliTRDCalibra
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.h
CommitLineData
dd9a6ee3 1#ifndef ALITRDGEOMETRY_H
2#define ALITRDGEOMETRY_H
f7336fa3 3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
db30bf0f 6/* $Id$ */
f7336fa3 7
0a29d0f1 8///////////////////////////////////////////////////////////////////////////////
9// //
10// TRD geometry class //
11// //
12///////////////////////////////////////////////////////////////////////////////
13
94de3818 14#include "AliGeometry.h"
2745a409 15
b4a9cd27 16#include "TObjArray.h"
2745a409 17
bdbb05bb 18class AliRunLoader;
b4a9cd27 19class TGeoHMatrix;
5443e65e 20
f7336fa3 21class AliTRDgeometry : public AliGeometry {
22
23 public:
24
7925de54 25 enum { kNplan = 6
26 , kNcham = 5
27 , kNsect = 18
28 , kNdet = 540
29 , kNdets = 30 };
dd56b762 30
f7336fa3 31 AliTRDgeometry();
2745a409 32 AliTRDgeometry(const AliTRDgeometry &g);
8230f242 33 virtual ~AliTRDgeometry();
2745a409 34 AliTRDgeometry &operator=(const AliTRDgeometry &g);
f7336fa3 35
793ff80c 36 virtual void Init();
030b4415 37 virtual void CreateGeometry(Int_t *idtmed);
38 virtual Int_t IsVersion() { return 1; }
afb9f880 39 virtual Bool_t Impact(const TParticle *) const { return kTRUE; }
030b4415 40 virtual Bool_t IsHole(Int_t /*p*/, Int_t /*c*/, Int_t /*s*/) const { return kFALSE; }
bd0f8685 41
a5cadd36 42 virtual Bool_t Rotate(Int_t d, Double_t *pos, Double_t *rot) const;
43 virtual Bool_t RotateBack(Int_t d, Double_t *rot, Double_t *pos) const;
793ff80c 44
bd0f8685 45 void GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed);
46 void CreateFrame(Int_t *idtmed);
47 void CreateServices(Int_t *idtmed);
48
49 Bool_t ReadGeoMatrices();
030b4415 50
51 void SetSMstatus(Int_t sm, Char_t status) { fSMstatus[sm] = status; }
52
53 static AliTRDgeometry* GetGeometry(AliRunLoader *runLoader = NULL);
54
9c782af4 55 static Int_t GetDetectorSec(Int_t p, Int_t c);
56 static Int_t GetDetector(Int_t p, Int_t c, Int_t s);
0a5f3331 57 virtual Int_t GetPlane(Int_t d) const;
afc51ac2 58 virtual Int_t GetChamber(Int_t d) const;
0a5f3331 59 virtual Int_t GetSector(Int_t d) const;
afc51ac2 60
bd63bf88 61 // Translation from MCM to Pad and vice versa
62 virtual Int_t GetPadRowFromMCM(Int_t irob, Int_t imcm) const;
63 virtual Int_t GetPadColFromADC(Int_t irob, Int_t imcm, Int_t iadc) const;
64 virtual Int_t GetMCMfromPad(Int_t irow, Int_t icol) const;
65 virtual Int_t GetROBfromPad(Int_t irow, Int_t icol) const;
7925de54 66 virtual Int_t GetRobSide(Int_t irob) const;
67 virtual Int_t GetColSide(Int_t icol) const;
68
030b4415 69 static Float_t GetTime0(Int_t p) { return fgkTime0[p]; }
0a770ac9 70
030b4415 71 Char_t GetSMstatus(Int_t sm) const { return fSMstatus[sm]; }
72 Float_t GetChamberWidth(Int_t p) const { return fCwidth[p]; }
73 Float_t GetChamberLength(Int_t p, Int_t c) const { return fClength[p][c]; }
f7336fa3 74
afb9f880 75 virtual void GetGlobal(const AliRecPoint*, TVector3&, TMatrixF&) const { };
76 virtual void GetGlobal(const AliRecPoint*, TVector3&) const { };
030b4415 77
78 static Double_t GetAlpha() { return 2.0
79 * 3.14159265358979324
80 / fgkNsect; }
81
82 static Int_t Nsect() { return fgkNsect; }
83 static Int_t Nplan() { return fgkNplan; }
84 static Int_t Ncham() { return fgkNcham; }
85 static Int_t Ndet() { return fgkNdet; }
86
030b4415 87 static Float_t Cheight() { return fgkCH; }
88 static Float_t Cspace() { return fgkVspace; }
89 static Float_t CraHght() { return fgkCraH; }
90 static Float_t CdrHght() { return fgkCdrH; }
91 static Float_t CamHght() { return fgkCamH; }
92 static Float_t CroHght() { return fgkCroH; }
93 static Float_t CroWid() { return fgkCroW; }
94 static Float_t MyThick() { return fgkMyThick; }
95 static Float_t DrThick() { return fgkDrThick; }
96 static Float_t AmThick() { return fgkAmThick; }
97 static Float_t DrZpos() { return fgkDrZpos; }
98 static Float_t RpadW() { return fgkRpadW; }
99 static Float_t CpadW() { return fgkCpadW; }
100
101 static Float_t Cwidcha() { return (fgkSwidth2 - fgkSwidth1)
102 / fgkSheight
103 * (fgkCH + fgkVspace); }
104
7925de54 105 static Int_t MCMmax() { return fgkMCMmax; }
106 static Int_t MCMrow() { return fgkMCMrow; }
107 static Int_t ROBmaxC0() { return fgkROBmaxC0; }
108 static Int_t ROBmaxC1() { return fgkROBmaxC1; }
109 static Int_t ADCmax() { return fgkADCmax; }
110 static Int_t TBmax() { return fgkTBmax; }
111 static Int_t Padmax() { return fgkPadmax; }
112 static Int_t Colmax() { return fgkColmax; }
113 static Int_t RowmaxC0() { return fgkRowmaxC0; }
114 static Int_t RowmaxC1() { return fgkRowmaxC1; }
115
030b4415 116 TGeoHMatrix *GetGeoMatrix(Int_t det) { return (TGeoHMatrix *)
117 fMatrixGeo->At(det); }
118 TGeoHMatrix *GetMatrix(Int_t det) { return (TGeoHMatrix *)
119 fMatrixArray->At(det); }
120 TGeoHMatrix *GetCorrectionMatrix(Int_t det) { return (TGeoHMatrix *)
121 fMatrixCorrectionArray->At(det); }
bdbb05bb 122
793ff80c 123 protected:
0a5f3331 124
030b4415 125 static const Int_t fgkNsect; // Number of sectors in the full detector (18)
126 static const Int_t fgkNplan; // Number of planes of the TRD (6)
127 static const Int_t fgkNcham; // Number of chambers in z-direction (5)
128 static const Int_t fgkNdet; // Total number of detectors (18 * 6 * 5 = 540)
129
0a5f3331 130 static const Float_t fgkSheight; // Height of the TRD-volume in spaceframe (BTRD)
131 static const Float_t fgkSwidth1; // Lower width of the TRD-volume in spaceframe (BTRD)
132 static const Float_t fgkSwidth2; // Upper width of the TRD-volume in spaceframe (BTRD)
133 static const Float_t fgkSlength; // Length of the TRD-volume in spaceframe (BTRD)
030b4415 134
135 static const Float_t fgkSMpltT; // Thickness of the super module side plates
136
137 static const Float_t fgkCraH; // Height of the radiator part of the chambers
138 static const Float_t fgkCdrH; // Height of the drift region of the chambers
139 static const Float_t fgkCamH; // Height of the amplification region of the chambers
140 static const Float_t fgkCroH; // Height of the readout of the chambers
141 static const Float_t fgkCH; // Total height of the chambers
142
143 static const Float_t fgkVspace; // Vertical spacing of the chambers
144 static const Float_t fgkHspace; // Horizontal spacing of the chambers
145 static const Float_t fgkVrocsm; // Radial distance of the first ROC to the outer SM plates
146 static const Float_t fgkCalT; // Thickness of the lower aluminum frame
0a5f3331 147 static const Float_t fgkCalW; // Width of additional aluminum on lower frame
148 static const Float_t fgkCclsT; // Thickness of the lower Wacosit frame sides
149 static const Float_t fgkCclfT; // Thickness of the lower Wacosit frame front
150 static const Float_t fgkCglT; // Thichness of the glue around the radiator
151 static const Float_t fgkCcuT; // Thickness of the upper Wacosit frame
152 static const Float_t fgkCauT; // Thickness of the aluminum frame of the back panel
030b4415 153
154 static const Float_t fgkCroW; // Additional width of the readout chamber frames
155
156 static const Float_t fgkCpadW; // Difference of outer chamber width and pad plane width
157 static const Float_t fgkRpadW; // Difference of outer chamber width and pad plane width
158
030b4415 159 static const Float_t fgkMyThick; // Thickness of the mylar-layer
0a5f3331 160 static const Float_t fgkRaThick; // Thickness of the radiator
030b4415 161 static const Float_t fgkXeThick; // Thickness of the gas volume
162 static const Float_t fgkDrThick; // Thickness of the drift region
163 static const Float_t fgkAmThick; // Thickness of the amplification region
0a5f3331 164 static const Float_t fgkWrThick; // Thickness of the wire planes
030b4415 165 static const Float_t fgkCuThick; // Thickness of the pad plane
0a5f3331 166 static const Float_t fgkGlThick; // Thickness of the glue layer
167 static const Float_t fgkSuThick; // Thickness of the NOMEX support structure
030b4415 168 static const Float_t fgkRpThick; // Thickness of the PCB readout boards
169 static const Float_t fgkRcThick; // Thickness of the PCB copper layers
0a5f3331 170 static const Float_t fgkRoThick; // Thickness of all other ROB componentes (caps, etc.)
030b4415 171
172 static const Float_t fgkRaZpos; // Position of the radiator
030b4415 173 static const Float_t fgkDrZpos; // Position of the drift region
174 static const Float_t fgkAmZpos; // Position of the amplification region
0a5f3331 175 static const Float_t fgkWrZpos; // Position of the wire planes
030b4415 176 static const Float_t fgkCuZpos; // Position of the pad plane
0a5f3331 177 static const Float_t fgkGlZpos; // Position of the glue layer
030b4415 178 static const Float_t fgkSuZpos; // Position of the HEXCEL+G10 support structure
030b4415 179 static const Float_t fgkRpZpos; // Position of the PCB readout boards
180 static const Float_t fgkRcZpos; // Position of the PCB copper layers
0a5f3331 181 static const Float_t fgkRoZpos; // Position of all other ROB componentes (caps, etc.)
030b4415 182
7925de54 183 static const Int_t fgkMCMmax; // Maximum number of MCMs per ROB
184 static const Int_t fgkMCMrow; // Maximum number of MCMs per ROB Row
185 static const Int_t fgkROBmaxC0; // Maximum number of ROBs per C0 chamber
186 static const Int_t fgkROBmaxC1; // Maximum number of ROBs per C1 chamber
187 static const Int_t fgkADCmax; // Maximum number of ADC channels per MCM
188 static const Int_t fgkTBmax; // Maximum number of Time bins
189 static const Int_t fgkPadmax; // Maximum number of pads per MCM
190 static const Int_t fgkColmax; // Maximum number of pads per padplane row
191 static const Int_t fgkRowmaxC0; // Maximum number of Rows per C0 chamber
192 static const Int_t fgkRowmaxC1; // Maximum number of Rows per C1 chamber
193
030b4415 194 Char_t fSMstatus[kNsect]; // Super module status byte
195
196 Float_t fCwidth[kNplan]; // Outer widths of the chambers
197 Float_t fClength[kNplan][kNcham]; // Outer lengths of the chambers
198
199 Float_t fRotA11[kNsect]; // Matrix elements for the rotation
200 Float_t fRotA12[kNsect]; // Matrix elements for the rotation
201 Float_t fRotA21[kNsect]; // Matrix elements for the rotation
202 Float_t fRotA22[kNsect]; // Matrix elements for the rotation
203
204 Float_t fRotB11[kNsect]; // Matrix elements for the backward rotation
205 Float_t fRotB12[kNsect]; // Matrix elements for the backward rotation
206 Float_t fRotB21[kNsect]; // Matrix elements for the backward rotation
207 Float_t fRotB22[kNsect]; // Matrix elements for the backward rotation
208
209 static const Double_t fgkTime0Base; // Base value for calculation of Time-position of pad 0
210 static const Float_t fgkTime0[kNplan]; // Time-position of pad 0
3551db50 211
030b4415 212 Float_t fChamberUAorig[3*kNdets][3]; // Volumes origin in
213 Float_t fChamberUDorig[3*kNdets][3]; // the chamber
214 Float_t fChamberUForig[3*kNdets][3]; // [3] = x, y, z
2745a409 215 Float_t fChamberUUorig[3*kNdets][3]; //
9c782af4 216
030b4415 217 Float_t fChamberUAboxd[3*kNdets][3]; // Volumes box
218 Float_t fChamberUDboxd[3*kNdets][3]; // dimensions (half)
219 Float_t fChamberUFboxd[3*kNdets][3]; // [3] = x, y, z
2745a409 220 Float_t fChamberUUboxd[3*kNdets][3]; //
bd0f8685 221
afb9f880 222 TObjArray *fMatrixArray; //! Transformation global to local
223 TObjArray *fMatrixCorrectionArray; //! Transformation cluster to tracking system
7925de54 224 TObjArray *fMatrixGeo; //! Geo matrices
bd0f8685 225
7925de54 226 ClassDef(AliTRDgeometry,12) // TRD geometry class
f7336fa3 227
228};
229
230#endif