]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDmcmSim.cxx
AliESDCentrality replaced by AliCentrality
[u/mrichter/AliRoot.git] / TRD / AliTRDmcmSim.cxx
CommitLineData
dfd03fc3 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
5eba8ada 16/* $Id$ */
17
dfd03fc3 18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD MCM (Multi Chip Module) simulator //
ce4786b9 21// which simulates the TRAP processing after the AD-conversion. //
22// The relevant parameters (i.e. configuration settings of the TRAP) //
23// are taken from AliTRDtrapConfig. //
dfd03fc3 24// //
25///////////////////////////////////////////////////////////////////////////////
26
ce4786b9 27#include <iostream>
28#include <iomanip>
ecf39416 29
ce4786b9 30#include "TCanvas.h"
31#include "TH1F.h"
32#include "TH2F.h"
33#include "TGraph.h"
34#include "TLine.h"
35#include "TRandom.h"
36#include "TClonesArray.h"
ce51199c 37#include "TMath.h"
0c349049 38
dfd03fc3 39#include "AliLog.h"
b0a41e80 40#include "AliRunLoader.h"
41#include "AliLoader.h"
0c349049 42
dfd03fc3 43#include "AliTRDfeeParam.h"
b0a41e80 44#include "AliTRDtrapConfig.h"
4cc89512 45#include "AliTRDdigitsManager.h"
b65e5048 46#include "AliTRDarrayADC.h"
40bd6ee4 47#include "AliTRDarrayDictionary.h"
52c19022 48#include "AliTRDtrackletMCM.h"
b0a41e80 49#include "AliTRDmcmSim.h"
1d93b218 50
dfd03fc3 51ClassImp(AliTRDmcmSim)
52
40bd6ee4 53Bool_t AliTRDmcmSim::fgApplyCut = kTRUE;
ce4786b9 54Int_t AliTRDmcmSim::fgAddBaseline = 0;
55
56const Int_t AliTRDmcmSim::fgkFormatIndex = std::ios_base::xalloc();
57
58const Int_t AliTRDmcmSim::fgkNADC = AliTRDfeeParam::GetNadcMcm();
59const UShort_t AliTRDmcmSim::fgkFPshifts[4] = {11, 14, 17, 21};
60
61
62AliTRDmcmSim::AliTRDmcmSim() :
63 TObject(),
64 fInitialized(kFALSE),
65 fDetector(-1),
66 fRobPos(-1),
67 fMcmPos(-1),
68 fRow (-1),
69 fNTimeBin(-1),
70 fADCR(NULL),
71 fADCF(NULL),
72 fMCMT(NULL),
73 fTrackletArray(NULL),
74 fZSMap(NULL),
6b094867 75 fTrklBranchName("mcmtrklbranch"),
ce4786b9 76 fFeeParam(NULL),
77 fTrapConfig(NULL),
78 fDigitsManager(NULL),
79 fPedAcc(NULL),
80 fGainCounterA(NULL),
81 fGainCounterB(NULL),
82 fTailAmplLong(NULL),
83 fTailAmplShort(NULL),
84 fNHits(0),
85 fFitReg(NULL)
dfd03fc3 86{
87 //
b0a41e80 88 // AliTRDmcmSim default constructor
dfd03fc3 89 // By default, nothing is initialized.
90 // It is necessary to issue Init before use.
54d34aac 91
92 for (Int_t iDict = 0; iDict < 3; iDict++)
93 fDict[iDict] = 0x0;
94
95 fFitPtr[0] = 0;
96 fFitPtr[1] = 0;
97 fFitPtr[2] = 0;
98 fFitPtr[3] = 0;
dfd03fc3 99}
100
dfd03fc3 101AliTRDmcmSim::~AliTRDmcmSim()
102{
103 //
104 // AliTRDmcmSim destructor
105 //
0c349049 106
b0a41e80 107 if(fInitialized) {
ce4786b9 108 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
109 delete [] fADCR[iAdc];
110 delete [] fADCF[iAdc];
dfd03fc3 111 }
16e077d0 112 delete [] fADCR;
113 delete [] fADCF;
ce4786b9 114 delete [] fZSMap;
1d93b218 115 delete [] fMCMT;
b0a41e80 116
117 delete [] fPedAcc;
118 delete [] fGainCounterA;
119 delete [] fGainCounterB;
120 delete [] fTailAmplLong;
121 delete [] fTailAmplShort;
122 delete [] fFitReg;
123
124 fTrackletArray->Delete();
125 delete fTrackletArray;
1d93b218 126 }
dfd03fc3 127}
128
b0a41e80 129void AliTRDmcmSim::Init( Int_t det, Int_t robPos, Int_t mcmPos, Bool_t /* newEvent */ )
dfd03fc3 130{
0c349049 131 //
ce4786b9 132 // Initialize the class with new MCM position information
133 // memory is allocated in the first initialization
0c349049 134 //
96e6312d 135
b0a41e80 136 if (!fInitialized) {
137 fFeeParam = AliTRDfeeParam::Instance();
138 fTrapConfig = AliTRDtrapConfig::Instance();
b0a41e80 139 }
140
141 fDetector = det;
0c349049 142 fRobPos = robPos;
143 fMcmPos = mcmPos;
ce4786b9 144 fNTimeBin = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kC13CPUA);
dfd03fc3 145 fRow = fFeeParam->GetPadRowFromMCM( fRobPos, fMcmPos );
23200400 146
b0a41e80 147 if (!fInitialized) {
ce4786b9 148 fADCR = new Int_t *[fgkNADC];
149 fADCF = new Int_t *[fgkNADC];
150 fZSMap = new Int_t [fgkNADC];
151 fGainCounterA = new UInt_t[fgkNADC];
152 fGainCounterB = new UInt_t[fgkNADC];
153 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
154 fADCR[iAdc] = new Int_t[fNTimeBin];
155 fADCF[iAdc] = new Int_t[fNTimeBin];
dfd03fc3 156 }
b0a41e80 157
158 // filter registers
ce4786b9 159 fPedAcc = new UInt_t[fgkNADC]; // accumulator for pedestal filter
160 fTailAmplLong = new UShort_t[fgkNADC];
161 fTailAmplShort = new UShort_t[fgkNADC];
b0a41e80 162
163 // tracklet calculation
ce4786b9 164 fFitReg = new FitReg_t[fgkNADC];
165 fTrackletArray = new TClonesArray("AliTRDtrackletMCM", fgkMaxTracklets);
b0a41e80 166
ce4786b9 167 fMCMT = new UInt_t[fgkMaxTracklets];
dfd03fc3 168 }
169
b0a41e80 170 fInitialized = kTRUE;
171
172 Reset();
173}
174
175void AliTRDmcmSim::Reset()
176{
177 // Resets the data values and internal filter registers
178 // by re-initialising them
179
ce4786b9 180 if( !CheckInitialized() )
181 return;
5896bc23 182
ce4786b9 183 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
184 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
185 fADCR[iAdc][it] = 0;
186 fADCF[iAdc][it] = 0;
dfd03fc3 187 }
ce4786b9 188 fZSMap[iAdc] = -1; // Default unread, low active bit mask
189 fGainCounterA[iAdc] = 0;
190 fGainCounterB[iAdc] = 0;
dfd03fc3 191 }
ecf39416 192
ce4786b9 193 for(Int_t i = 0; i < fgkMaxTracklets; i++) {
1d93b218 194 fMCMT[i] = 0;
195 }
ce4786b9 196
197 for (Int_t iDict = 0; iDict < 3; iDict++)
198 fDict[iDict] = 0x0;
b0a41e80 199
200 FilterPedestalInit();
201 FilterGainInit();
ce4786b9 202 FilterTailInit();
b0a41e80 203}
1d93b218 204
4ff7ed2b 205void AliTRDmcmSim::SetNTimebins(Int_t ntimebins)
206{
ce4786b9 207 // Reallocate memory if a change in the number of timebins
208 // is needed (should not be the case for real data)
209
210 if( !CheckInitialized() )
211 return;
212
4ff7ed2b 213 fNTimeBin = ntimebins;
ce4786b9 214 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
215 delete fADCR[iAdc];
216 delete fADCF[iAdc];
217 fADCR[iAdc] = new Int_t[fNTimeBin];
218 fADCF[iAdc] = new Int_t[fNTimeBin];
4ff7ed2b 219 }
220}
221
ab9f7002 222Bool_t AliTRDmcmSim::LoadMCM(AliRunLoader* const runloader, Int_t det, Int_t rob, Int_t mcm)
b0a41e80 223{
ce4786b9 224 // loads the ADC data as obtained from the digitsManager for the specified MCM.
225 // This method is meant for rare execution, e.g. in the visualization. When called
226 // frequently use SetData(...) instead.
b0a41e80 227
64e3d742 228 Init(det, rob, mcm);
b0a41e80 229
230 if (!runloader) {
231 AliError("No Runloader given");
232 return kFALSE;
233 }
234
235 AliLoader *trdLoader = runloader->GetLoader("TRDLoader");
236 if (!trdLoader) {
237 AliError("Could not get TRDLoader");
238 return kFALSE;
239 }
240
5eba8ada 241 Bool_t retval = kTRUE;
b0a41e80 242 trdLoader->LoadDigits();
40bd6ee4 243 fDigitsManager = 0x0;
b0a41e80 244 AliTRDdigitsManager *digMgr = new AliTRDdigitsManager();
245 digMgr->SetSDigits(0);
246 digMgr->CreateArrays();
247 digMgr->ReadDigits(trdLoader->TreeD());
248 AliTRDarrayADC *digits = (AliTRDarrayADC*) digMgr->GetDigits(det);
5eba8ada 249 if (digits->HasData()) {
250 digits->Expand();
251
5896bc23 252 if (fNTimeBin != digits->GetNtime()) {
ce4786b9 253 AliWarning(Form("Changing no. of timebins from %i to %i", fNTimeBin, digits->GetNtime()));
4ff7ed2b 254 SetNTimebins(digits->GetNtime());
5896bc23 255 }
4ff7ed2b 256
ce4786b9 257 SetData(digits);
b0a41e80 258 }
5eba8ada 259 else
260 retval = kFALSE;
4ff7ed2b 261
b0a41e80 262 delete digMgr;
4ff7ed2b 263
264 return retval;
b0a41e80 265}
266
267void AliTRDmcmSim::NoiseTest(Int_t nsamples, Int_t mean, Int_t sigma, Int_t inputGain, Int_t inputTail)
268{
269 // This function can be used to test the filters.
270 // It feeds nsamples of ADC values with a gaussian distribution specified by mean and sigma.
271 // The filter chain implemented here consists of:
272 // Pedestal -> Gain -> Tail
273 // With inputGain and inputTail the input to the gain and tail filter, respectively,
274 // can be chosen where
275 // 0: noise input
276 // 1: pedestal output
277 // 2: gain output
278 // The input has to be chosen from a stage before.
279 // The filter behaviour is controlled by the TRAP parameters from AliTRDtrapConfig in the
280 // same way as in normal simulation.
281 // The functions produces four histograms with the values at the different stages.
282
ce4786b9 283 if( !CheckInitialized() )
284 return;
285
286 TString nameInputGain;
287 TString nameInputTail;
288
289 switch (inputGain) {
290 case 0:
291 nameInputGain = "Noise";
292 break;
293
294 case 1:
295 nameInputGain = "Pedestal";
296 break;
297
298 default:
299 AliError("Undefined input to tail cancellation filter");
300 return;
301 }
302
303 switch (inputTail) {
304 case 0:
305 nameInputTail = "Noise";
306 break;
307
308 case 1:
309 nameInputTail = "Pedestal";
310 break;
311
312 case 2:
313 nameInputTail = "Gain";
314 break;
315
316 default:
317 AliError("Undefined input to tail cancellation filter");
318 return;
319 }
320
b0a41e80 321 TH1F *h = new TH1F("noise", "Gaussian Noise;sample;ADC count",
322 nsamples, 0, nsamples);
ce4786b9 323 TH1F *hfp = new TH1F("ped", "Noise #rightarrow Pedestal filter;sample;ADC count", nsamples, 0, nsamples);
324 TH1F *hfg = new TH1F("gain",
325 (nameInputGain + "#rightarrow Gain;sample;ADC count").Data(),
326 nsamples, 0, nsamples);
327 TH1F *hft = new TH1F("tail",
328 (nameInputTail + "#rightarrow Tail;sample;ADC count").Data(),
329 nsamples, 0, nsamples);
b0a41e80 330 h->SetStats(kFALSE);
331 hfp->SetStats(kFALSE);
332 hfg->SetStats(kFALSE);
333 hft->SetStats(kFALSE);
334
335 Int_t value; // ADC count with noise (10 bit)
336 Int_t valuep; // pedestal filter output (12 bit)
337 Int_t valueg; // gain filter output (12 bit)
338 Int_t valuet; // tail filter value (12 bit)
339
340 for (Int_t i = 0; i < nsamples; i++) {
341 value = (Int_t) gRandom->Gaus(mean, sigma); // generate noise with gaussian distribution
342 h->SetBinContent(i, value);
343
344 valuep = FilterPedestalNextSample(1, 0, ((Int_t) value) << 2);
345
346 if (inputGain == 0)
347 valueg = FilterGainNextSample(1, ((Int_t) value) << 2);
348 else
349 valueg = FilterGainNextSample(1, valuep);
350
351 if (inputTail == 0)
352 valuet = FilterTailNextSample(1, ((Int_t) value) << 2);
353 else if (inputTail == 1)
354 valuet = FilterTailNextSample(1, valuep);
355 else
356 valuet = FilterTailNextSample(1, valueg);
357
358 hfp->SetBinContent(i, valuep >> 2);
359 hfg->SetBinContent(i, valueg >> 2);
360 hft->SetBinContent(i, valuet >> 2);
361 }
362
363 TCanvas *c = new TCanvas;
364 c->Divide(2,2);
365 c->cd(1);
366 h->Draw();
367 c->cd(2);
368 hfp->Draw();
369 c->cd(3);
370 hfg->Draw();
371 c->cd(4);
372 hft->Draw();
dfd03fc3 373}
374
ce4786b9 375Bool_t AliTRDmcmSim::CheckInitialized() const
ecf39416 376{
0c349049 377 //
378 // Check whether object is initialized
379 //
380
ce4786b9 381 if( ! fInitialized )
382 AliError(Form ("AliTRDmcmSim is not initialized but function other than Init() is called."));
383
ecf39416 384 return fInitialized;
385}
386
ab9f7002 387void AliTRDmcmSim::Print(Option_t* const option) const
b0a41e80 388{
389 // Prints the data stored and/or calculated for this MCM.
390 // The output is controlled by option which can be a sequence of any of
391 // the following characters:
392 // R - prints raw ADC data
393 // F - prints filtered data
394 // H - prints detected hits
395 // T - prints found tracklets
ce4786b9 396 // The later stages are only meaningful after the corresponding calculations
b0a41e80 397 // have been performed.
398
ce4786b9 399 if ( !CheckInitialized() )
400 return;
401
b0a41e80 402 printf("MCM %i on ROB %i in detector %i\n", fMcmPos, fRobPos, fDetector);
403
404 TString opt = option;
ce4786b9 405 if (opt.Contains("R") || opt.Contains("F")) {
406 std::cout << *this;
1d93b218 407 }
408
b0a41e80 409 if (opt.Contains("H")) {
410 printf("Found %i hits:\n", fNHits);
411 for (Int_t iHit = 0; iHit < fNHits; iHit++) {
412 printf("Hit %3i in timebin %2i, ADC %2i has charge %3i and position %3i\n",
ab9f7002 413 iHit, fHits[iHit].fTimebin, fHits[iHit].fChannel, fHits[iHit].fQtot, fHits[iHit].fYpos);
b0a41e80 414 }
1d93b218 415 }
1d93b218 416
b0a41e80 417 if (opt.Contains("T")) {
418 printf("Tracklets:\n");
419 for (Int_t iTrkl = 0; iTrkl < fTrackletArray->GetEntriesFast(); iTrkl++) {
420 printf("tracklet %i: 0x%08x\n", iTrkl, ((AliTRDtrackletMCM*) (*fTrackletArray)[iTrkl])->GetTrackletWord());
421 }
1d93b218 422 }
b0a41e80 423}
1d93b218 424
ab9f7002 425void AliTRDmcmSim::Draw(Option_t* const option)
b0a41e80 426{
427 // Plots the data stored in a 2-dim. timebin vs. ADC channel plot.
428 // The option selects what data is plotted and can be a sequence of
429 // the following characters:
430 // R - plot raw data (default)
431 // F - plot filtered data (meaningless if R is specified)
432 // In addition to the ADC values:
433 // H - plot hits
434 // T - plot tracklets
435
ce4786b9 436 if( !CheckInitialized() )
437 return;
438
b0a41e80 439 TString opt = option;
440
441 TH2F *hist = new TH2F("mcmdata", Form("Data of MCM %i on ROB %i in detector %i", \
442 fMcmPos, fRobPos, fDetector), \
ce4786b9 443 fgkNADC, -0.5, fgkNADC-.5, fNTimeBin, -.5, fNTimeBin-.5);
b0a41e80 444 hist->GetXaxis()->SetTitle("ADC Channel");
445 hist->GetYaxis()->SetTitle("Timebin");
446 hist->SetStats(kFALSE);
447
448 if (opt.Contains("R")) {
449 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 450 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 451 hist->SetBinContent(iAdc+1, iTimeBin+1, fADCR[iAdc][iTimeBin] >> fgkAddDigits);
452 }
1d93b218 453 }
b0a41e80 454 }
455 else {
456 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 457 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 458 hist->SetBinContent(iAdc+1, iTimeBin+1, fADCF[iAdc][iTimeBin] >> fgkAddDigits);
459 }
1d93b218 460 }
1d93b218 461 }
b0a41e80 462 hist->Draw("colz");
1d93b218 463
b0a41e80 464 if (opt.Contains("H")) {
465 TGraph *grHits = new TGraph();
466 for (Int_t iHit = 0; iHit < fNHits; iHit++) {
467 grHits->SetPoint(iHit,
ab9f7002 468 fHits[iHit].fChannel + 1 + fHits[iHit].fYpos/256.,
469 fHits[iHit].fTimebin);
b0a41e80 470 }
471 grHits->Draw("*");
472 }
1d93b218 473
b0a41e80 474 if (opt.Contains("T")) {
475 TLine *trklLines = new TLine[4];
64e3d742 476 for (Int_t iTrkl = 0; iTrkl < fTrackletArray->GetEntries(); iTrkl++) {
b0a41e80 477 AliTRDtrackletMCM *trkl = (AliTRDtrackletMCM*) (*fTrackletArray)[iTrkl];
ce4786b9 478 Float_t padWidth = 0.635 + 0.03 * (fDetector % 6);
479 Float_t offset = padWidth/256. * ((((((fRobPos & 0x1) << 2) + (fMcmPos & 0x3)) * 18) << 8) - ((18*4*2 - 18*2 - 3) << 7)); // revert adding offset in FitTracklet
5ac2e3b1 480 Int_t ndrift = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrNdrift, fDetector, fRobPos, fMcmPos) >> 5;
ce4786b9 481 Float_t slope = trkl->GetdY() * 140e-4 / ndrift;
482
483 Int_t t0 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFS);
484 Int_t t1 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFE);
485
486 trklLines[iTrkl].SetX1((offset - (trkl->GetY() - slope * t0)) / padWidth); // ??? sign?
487 trklLines[iTrkl].SetY1(t0);
488 trklLines[iTrkl].SetX2((offset - (trkl->GetY() - slope * t1)) / padWidth); // ??? sign?
489 trklLines[iTrkl].SetY2(t1);
b0a41e80 490 trklLines[iTrkl].SetLineColor(2);
491 trklLines[iTrkl].SetLineWidth(2);
492 printf("Tracklet %i: y = %f, dy = %f, offset = %f\n", iTrkl, trkl->GetY(), (trkl->GetdY() * 140e-4), offset);
493 trklLines[iTrkl].Draw();
494 }
495 }
1d93b218 496}
497
ce4786b9 498void AliTRDmcmSim::SetData( Int_t adc, Int_t* const data )
dfd03fc3 499{
0c349049 500 //
dfd03fc3 501 // Store ADC data into array of raw data
0c349049 502 //
dfd03fc3 503
ecf39416 504 if( !CheckInitialized() ) return;
dfd03fc3 505
ce4786b9 506 if( adc < 0 || adc >= fgkNADC ) {
507 AliError(Form ("Error: ADC %i is out of range (0 .. %d).", adc, fgkNADC-1));
dfd03fc3 508 return;
509 }
510
4ff7ed2b 511 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
ce4786b9 512 fADCR[adc][it] = (Int_t) (data[it]) << fgkAddDigits;
513 fADCF[adc][it] = (Int_t) (data[it]) << fgkAddDigits;
dfd03fc3 514 }
515}
516
ce4786b9 517void AliTRDmcmSim::SetData( Int_t adc, Int_t it, Int_t data )
dfd03fc3 518{
0c349049 519 //
dfd03fc3 520 // Store ADC data into array of raw data
0c349049 521 //
dfd03fc3 522
ecf39416 523 if( !CheckInitialized() ) return;
dfd03fc3 524
ce4786b9 525 if( adc < 0 || adc >= fgkNADC ) {
526 AliError(Form ("Error: ADC %i is out of range (0 .. %d).", adc, fgkNADC-1));
dfd03fc3 527 return;
528 }
529
ce4786b9 530 fADCR[adc][it] = data << fgkAddDigits;
531 fADCF[adc][it] = data << fgkAddDigits;
b0a41e80 532}
533
6b094867 534void AliTRDmcmSim::SetData(AliTRDarrayADC* const adcArray, AliTRDdigitsManager * const digitsManager)
b0a41e80 535{
ab9f7002 536 // Set the ADC data from an AliTRDarrayADC
537
ce4786b9 538 if( !CheckInitialized() )
b0a41e80 539 return;
b0a41e80 540
40bd6ee4 541 fDigitsManager = digitsManager;
ce4786b9 542 if (fDigitsManager) {
543 for (Int_t iDict = 0; iDict < 3; iDict++) {
544 AliTRDarrayDictionary *newDict = (AliTRDarrayDictionary*) fDigitsManager->GetDictionary(fDetector, iDict);
545 if (fDict[iDict] != 0x0 && newDict != 0x0) {
546
547 if (fDict[iDict] == newDict)
548 continue;
40bd6ee4 549
ce4786b9 550 fDict[iDict] = newDict;
551
552 if (fDict[iDict]->GetDim() == 0) {
553 AliError(Form("Dictionary %i of det. %i has dim. 0", fDetector, iDict));
554 continue;
555 }
556 fDict[iDict]->Expand();
557 }
558 else {
559 fDict[iDict] = newDict;
560 if (fDict[iDict])
561 fDict[iDict]->Expand();
562 }
563 }
5896bc23 564 }
4ff7ed2b 565
ce4786b9 566 if (fNTimeBin != adcArray->GetNtime())
567 SetNTimebins(adcArray->GetNtime());
568
569 Int_t offset = (fMcmPos % 4 + 1) * 21 + (fRobPos % 2) * 84 - 1;
b0a41e80 570
571 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 572 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
573 Int_t value = adcArray->GetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin);
574 if (value < 0 || (offset - iAdc < 1) || (offset - iAdc > 165)) {
575 fADCR[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP) + (fgAddBaseline << fgkAddDigits);
4ff7ed2b 576 fADCF[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP) + (fgAddBaseline << fgkAddDigits);
b0a41e80 577 }
578 else {
ce4786b9 579 fZSMap[iAdc] = 0;
580 fADCR[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
581 fADCF[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
b0a41e80 582 }
583 }
584 }
dfd03fc3 585}
586
6b094867 587void AliTRDmcmSim::SetDataByPad(AliTRDarrayADC* const adcArray, AliTRDdigitsManager * const digitsManager)
ce51199c 588{
589 // Set the ADC data from an AliTRDarrayADC
590 // (by pad, to be used during initial reading in simulation)
591
592 if( !CheckInitialized() )
593 return;
594
595 fDigitsManager = digitsManager;
596 if (fDigitsManager) {
597 for (Int_t iDict = 0; iDict < 3; iDict++) {
598 AliTRDarrayDictionary *newDict = (AliTRDarrayDictionary*) fDigitsManager->GetDictionary(fDetector, iDict);
599 if (fDict[iDict] != 0x0 && newDict != 0x0) {
600
601 if (fDict[iDict] == newDict)
602 continue;
603
604 fDict[iDict] = newDict;
605
606 if (fDict[iDict]->GetDim() == 0) {
607 AliError(Form("Dictionary %i of det. %i has dim. 0", fDetector, iDict));
608 continue;
609 }
610 fDict[iDict]->Expand();
611 }
612 else {
613 fDict[iDict] = newDict;
614 if (fDict[iDict])
615 fDict[iDict]->Expand();
616 }
617 }
618 }
619
620 if (fNTimeBin != adcArray->GetNtime())
621 SetNTimebins(adcArray->GetNtime());
622
623 Int_t offset = (fMcmPos % 4 + 1) * 18 + (fRobPos % 2) * 72 + 1;
624
625 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
626 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
627 Int_t value = -1;
628 Int_t pad = offset - iAdc;
629 if (pad > -1 && pad < 144)
630 value = adcArray->GetData(GetRow(), offset - iAdc, iTimeBin);
631 // Int_t value = adcArray->GetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin);
632 if (value < 0 || (offset - iAdc < 1) || (offset - iAdc > 165)) {
633 fADCR[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP) + (fgAddBaseline << fgkAddDigits);
634 fADCF[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP) + (fgAddBaseline << fgkAddDigits);
635 }
636 else {
637 fZSMap[iAdc] = 0;
638 fADCR[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
639 fADCF[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
640 }
641 }
642 }
643}
644
ce4786b9 645void AliTRDmcmSim::SetDataPedestal( Int_t adc )
dfd03fc3 646{
0c349049 647 //
dfd03fc3 648 // Store ADC data into array of raw data
0c349049 649 //
dfd03fc3 650
ce4786b9 651 if( !CheckInitialized() )
652 return;
dfd03fc3 653
ce4786b9 654 if( adc < 0 || adc >= fgkNADC ) {
dfd03fc3 655 return;
656 }
657
658 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
ce4786b9 659 fADCR[adc][it] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP) + (fgAddBaseline << fgkAddDigits);
660 fADCF[adc][it] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP) + (fgAddBaseline << fgkAddDigits);
dfd03fc3 661 }
662}
663
ce4786b9 664Bool_t AliTRDmcmSim::GetHit(Int_t index, Int_t &channel, Int_t &timebin, Int_t &qtot, Int_t &ypos, Float_t &y, Int_t &label) const
665{
666 // retrieve the MC hit information (not available in TRAP hardware)
667
668 if (index < 0 || index >= fNHits)
669 return kFALSE;
670
671 channel = fHits[index].fChannel;
672 timebin = fHits[index].fTimebin;
673 qtot = fHits[index].fQtot;
674 ypos = fHits[index].fYpos;
675 y = (Float_t) ((((((fRobPos & 0x1) << 2) + (fMcmPos & 0x3)) * 18) << 8) - ((18*4*2 - 18*2 - 1) << 7) -
676 (channel << 8) - ypos)
677 * (0.635 + 0.03 * (fDetector % 6))
678 / 256.0;
25b41f6f 679 label = fHits[index].fLabel[0];
ce4786b9 680
681 return kTRUE;
682}
683
684Int_t AliTRDmcmSim::GetCol( Int_t adc )
dfd03fc3 685{
0c349049 686 //
dfd03fc3 687 // Return column id of the pad for the given ADC channel
0c349049 688 //
689
f793c83d 690 if( !CheckInitialized() )
691 return -1;
dfd03fc3 692
ce4786b9 693 Int_t col = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adc);
a6d08b7f 694 if (col < 0 || col >= fFeeParam->GetNcol())
695 return -1;
696 else
697 return col;
dfd03fc3 698}
699
ce4786b9 700Int_t AliTRDmcmSim::ProduceRawStream( UInt_t *buf, Int_t bufSize, UInt_t iEv) const
dfd03fc3 701{
0c349049 702 //
dfd03fc3 703 // Produce raw data stream from this MCM and put in buf
0c349049 704 // Returns number of words filled, or negative value
705 // with -1 * number of overflowed words
706 //
dfd03fc3 707
ce4786b9 708 if( !CheckInitialized() )
709 return 0;
710
dfd03fc3 711 UInt_t x;
7d619a80 712 UInt_t mcmHeader = 0;
713 UInt_t adcMask = 0;
dfd03fc3 714 Int_t nw = 0; // Number of written words
715 Int_t of = 0; // Number of overflowed words
716 Int_t rawVer = fFeeParam->GetRAWversion();
717 Int_t **adc;
b0a41e80 718 Int_t nActiveADC = 0; // number of activated ADC bits in a word
dfd03fc3 719
ce4786b9 720 if( !CheckInitialized() )
721 return 0;
ecf39416 722
ce4786b9 723 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBSF) != 0) // store unfiltered data
dfd03fc3 724 adc = fADCR;
ce4786b9 725 else
dfd03fc3 726 adc = fADCF;
ce4786b9 727
b0a41e80 728 // Produce ADC mask : nncc cccm mmmm mmmm mmmm mmmm mmmm 1100
729 // n : unused , c : ADC count, m : selected ADCs
7d619a80 730 if( rawVer >= 3 &&
731 (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kC15CPUA) & (1 << 13))) { // check for zs flag in TRAP configuration
ce4786b9 732 for( Int_t iAdc = 0 ; iAdc < fgkNADC ; iAdc++ ) {
733 if( ~fZSMap[iAdc] != 0 ) { // 0 means not suppressed
7d619a80 734 adcMask |= (1 << (iAdc+4) ); // last 4 digit reserved for 1100=0xc
735 nActiveADC++; // number of 1 in mmm....m
dfd03fc3 736 }
737 }
b0a41e80 738
7d619a80 739 if ((nActiveADC == 0) &&
740 (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kC15CPUA) & (1 << 8))) // check for DEH flag in TRAP configuration
741 return 0;
742
743 // assemble adc mask word
744 adcMask |= (1 << 30) | ( ( 0x3FFFFFFC ) & (~(nActiveADC) << 25) ) | 0xC; // nn = 01, ccccc are inverted, 0xc=1100
745 }
746
747 // MCM header
748 mcmHeader = (1<<31) | (fRobPos << 28) | (fMcmPos << 24) | ((iEv % 0x100000) << 4) | 0xC;
749 if (nw < bufSize)
750 buf[nw++] = mcmHeader;
751 else
752 of++;
753
754 // ADC mask
755 if( adcMask != 0 ) {
756 if (nw < bufSize)
757 buf[nw++] = adcMask;
758 else
dfd03fc3 759 of++;
dfd03fc3 760 }
761
762 // Produce ADC data. 3 timebins are packed into one 32 bits word
763 // In this version, different ADC channel will NOT share the same word
764
765 UInt_t aa=0, a1=0, a2=0, a3=0;
766
767 for (Int_t iAdc = 0; iAdc < 21; iAdc++ ) {
ce4786b9 768 if( rawVer>= 3 && ~fZSMap[iAdc] == 0 ) continue; // Zero Suppression, 0 means not suppressed
dfd03fc3 769 aa = !(iAdc & 1) + 2;
770 for (Int_t iT = 0; iT < fNTimeBin; iT+=3 ) {
b0a41e80 771 a1 = ((iT ) < fNTimeBin ) ? adc[iAdc][iT ] >> fgkAddDigits : 0;
772 a2 = ((iT + 1) < fNTimeBin ) ? adc[iAdc][iT+1] >> fgkAddDigits : 0;
773 a3 = ((iT + 2) < fNTimeBin ) ? adc[iAdc][iT+2] >> fgkAddDigits : 0;
ecf39416 774 x = (a3 << 22) | (a2 << 12) | (a1 << 2) | aa;
ce4786b9 775 if (nw < bufSize) {
b0a41e80 776 buf[nw++] = x;
ecf39416 777 }
778 else {
b0a41e80 779 of++;
ecf39416 780 }
dfd03fc3 781 }
782 }
783
784 if( of != 0 ) return -of; else return nw;
785}
786
ce4786b9 787Int_t AliTRDmcmSim::ProduceTrackletStream( UInt_t *buf, Int_t bufSize )
987ba9a3 788{
789 //
b0a41e80 790 // Produce tracklet data stream from this MCM and put in buf
987ba9a3 791 // Returns number of words filled, or negative value
792 // with -1 * number of overflowed words
793 //
794
ce4786b9 795 if( !CheckInitialized() )
796 return 0;
797
987ba9a3 798 Int_t nw = 0; // Number of written words
799 Int_t of = 0; // Number of overflowed words
b0a41e80 800
b0a41e80 801 // Produce tracklet data. A maximum of four 32 Bit words will be written per MCM
802 // fMCMT is filled continuously until no more tracklet words available
987ba9a3 803
f793c83d 804 for (Int_t iTracklet = 0; iTracklet < fTrackletArray->GetEntriesFast(); iTracklet++) {
ce4786b9 805 if (nw < bufSize)
f793c83d 806 buf[nw++] = ((AliTRDtrackletMCM*) (*fTrackletArray)[iTracklet])->GetTrackletWord();
807 else
808 of++;
987ba9a3 809 }
b0a41e80 810
811 if( of != 0 ) return -of; else return nw;
812}
987ba9a3 813
b0a41e80 814void AliTRDmcmSim::Filter()
815{
816 //
817 // Filter the raw ADC values. The active filter stages and their
818 // parameters are taken from AliTRDtrapConfig.
819 // The raw data is stored separate from the filtered data. Thus,
820 // it is possible to run the filters on a set of raw values
821 // sequentially for parameter tuning.
822 //
987ba9a3 823
ce4786b9 824 if( !CheckInitialized() )
b0a41e80 825 return;
987ba9a3 826
b0a41e80 827 // Apply filters sequentially. Bypass is handled by filters
828 // since counters and internal registers may be updated even
829 // if the filter is bypassed.
830 // The first filter takes the data from fADCR and
831 // outputs to fADCF.
832
833 // Non-linearity filter not implemented.
834 FilterPedestal();
835 FilterGain();
836 FilterTail();
837 // Crosstalk filter not implemented.
838}
987ba9a3 839
ce4786b9 840void AliTRDmcmSim::FilterPedestalInit(Int_t baseline)
b0a41e80 841{
842 // Initializes the pedestal filter assuming that the input has
843 // been constant for a long time (compared to the time constant).
987ba9a3 844
b0a41e80 845 UShort_t fptc = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPTC); // 0..3, 0 - fastest, 3 - slowest
987ba9a3 846
ce4786b9 847 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++)
848 fPedAcc[iAdc] = (baseline << 2) * (1 << fgkFPshifts[fptc]);
987ba9a3 849}
850
b0a41e80 851UShort_t AliTRDmcmSim::FilterPedestalNextSample(Int_t adc, Int_t timebin, UShort_t value)
1d93b218 852{
b0a41e80 853 // Returns the output of the pedestal filter given the input value.
854 // The output depends on the internal registers and, thus, the
855 // history of the filter.
1d93b218 856
b0a41e80 857 UShort_t fpnp = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP); // 0..511 -> 0..127.75, pedestal at the output
858 UShort_t fptc = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPTC); // 0..3, 0 - fastest, 3 - slowest
ce4786b9 859 UShort_t fpby = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPBY); // 0..1 bypass, active low
1d93b218 860
b0a41e80 861 UShort_t accumulatorShifted;
862 Int_t correction;
863 UShort_t inpAdd;
864
865 inpAdd = value + fpnp;
1d93b218 866
ce4786b9 867 accumulatorShifted = (fPedAcc[adc] >> fgkFPshifts[fptc]) & 0x3FF; // 10 bits
b0a41e80 868 if (timebin == 0) // the accumulator is disabled in the drift time
869 {
870 correction = (value & 0x3FF) - accumulatorShifted;
871 fPedAcc[adc] = (fPedAcc[adc] + correction) & 0x7FFFFFFF; // 31 bits
1d93b218 872 }
873
ce4786b9 874 if (fpby == 0)
875 return value;
876
b0a41e80 877 if (inpAdd <= accumulatorShifted)
878 return 0;
879 else
880 {
881 inpAdd = inpAdd - accumulatorShifted;
882 if (inpAdd > 0xFFF)
883 return 0xFFF;
884 else
885 return inpAdd;
886 }
1d93b218 887}
888
b0a41e80 889void AliTRDmcmSim::FilterPedestal()
dfd03fc3 890{
0c349049 891 //
b0a41e80 892 // Apply pedestal filter
0c349049 893 //
b0a41e80 894 // As the first filter in the chain it reads data from fADCR
895 // and outputs to fADCF.
896 // It has only an effect if previous samples have been fed to
897 // find the pedestal. Currently, the simulation assumes that
898 // the input has been stable for a sufficiently long time.
dfd03fc3 899
b0a41e80 900 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 901 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 902 fADCF[iAdc][iTimeBin] = FilterPedestalNextSample(iAdc, iTimeBin, fADCR[iAdc][iTimeBin]);
dfd03fc3 903 }
904 }
b0a41e80 905}
906
907void AliTRDmcmSim::FilterGainInit()
908{
909 // Initializes the gain filter. In this case, only threshold
910 // counters are reset.
dfd03fc3 911
ce4786b9 912 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 913 // these are counters which in hardware continue
914 // until maximum or reset
915 fGainCounterA[iAdc] = 0;
916 fGainCounterB[iAdc] = 0;
917 }
dfd03fc3 918}
919
b0a41e80 920UShort_t AliTRDmcmSim::FilterGainNextSample(Int_t adc, UShort_t value)
dfd03fc3 921{
b0a41e80 922 // Apply the gain filter to the given value.
923 // BEGIN_LATEX O_{i}(t) = #gamma_{i} * I_{i}(t) + a_{i} END_LATEX
924 // The output depends on the internal registers and, thus, the
925 // history of the filter.
23200400 926
b0a41e80 927 UShort_t fgby = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFGBY); // bypass, active low
928 UShort_t fgf = fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGF0 + adc)); // 0x700 + (0 & 0x1ff);
929 UShort_t fga = fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGA0 + adc)); // 40;
930 UShort_t fgta = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFGTA); // 20;
931 UShort_t fgtb = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFGTB); // 2060;
dfd03fc3 932
ce4786b9 933 UInt_t corr; // corrected value
dfd03fc3 934
b0a41e80 935 value &= 0xFFF;
ce4786b9 936 corr = (value * fgf) >> 11;
937 corr = corr > 0xfff ? 0xfff : corr;
938 corr = AddUintClipping(corr, fga, 12);
b0a41e80 939
940 // Update threshold counters
941 // not really useful as they are cleared with every new event
ce4786b9 942 if (!((fGainCounterA[adc] == 0x3FFFFFF) || (fGainCounterB[adc] == 0x3FFFFFF)))
943 // stop when full
b0a41e80 944 {
ce4786b9 945 if (corr >= fgtb)
b0a41e80 946 fGainCounterB[adc]++;
ce4786b9 947 else if (corr >= fgta)
b0a41e80 948 fGainCounterA[adc]++;
dfd03fc3 949 }
b0a41e80 950
ce4786b9 951 if (fgby == 1)
952 return corr;
953 else
954 return value;
dfd03fc3 955}
956
dfd03fc3 957void AliTRDmcmSim::FilterGain()
958{
b0a41e80 959 // Read data from fADCF and apply gain filter.
0c349049 960
ce4786b9 961 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 962 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
963 fADCF[iAdc][iTimeBin] = FilterGainNextSample(iAdc, fADCF[iAdc][iTimeBin]);
964 }
965 }
dfd03fc3 966}
967
b0a41e80 968void AliTRDmcmSim::FilterTailInit(Int_t baseline)
dfd03fc3 969{
b0a41e80 970 // Initializes the tail filter assuming that the input has
971 // been at the baseline value (configured by FTFP) for a
972 // sufficiently long time.
973
974 // exponents and weight calculated from configuration
975 UShort_t alphaLong = 0x3ff & fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTAL); // the weight of the long component
976 UShort_t lambdaLong = (1 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLL) & 0x1FF); // the multiplier
977 UShort_t lambdaShort = (0 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLS) & 0x1FF); // the multiplier
978
979 Float_t lambdaL = lambdaLong * 1.0 / (1 << 11);
980 Float_t lambdaS = lambdaShort * 1.0 / (1 << 11);
981 Float_t alphaL = alphaLong * 1.0 / (1 << 11);
982 Float_t qup, qdn;
983 qup = (1 - lambdaL) * (1 - lambdaS);
984 qdn = 1 - lambdaS * alphaL - lambdaL * (1 - alphaL);
985 Float_t kdc = qup/qdn;
986
987 Float_t kt, ql, qs;
988 UShort_t aout;
ce4786b9 989
990 if (baseline < 0)
991 baseline = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP);
b0a41e80 992
b0a41e80 993 ql = lambdaL * (1 - lambdaS) * alphaL;
994 qs = lambdaS * (1 - lambdaL) * (1 - alphaL);
995
ce4786b9 996 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
997 Int_t value = baseline & 0xFFF;
998 Int_t corr = (value * fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGF0 + iAdc))) >> 11;
999 corr = corr > 0xfff ? 0xfff : corr;
1000 corr = AddUintClipping(corr, fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGA0 + iAdc)), 12);
1001
1002 kt = kdc * baseline;
1003 aout = baseline - (UShort_t) kt;
1004
b0a41e80 1005 fTailAmplLong[iAdc] = (UShort_t) (aout * ql / (ql + qs));
1006 fTailAmplShort[iAdc] = (UShort_t) (aout * qs / (ql + qs));
1007 }
1008}
dfd03fc3 1009
b0a41e80 1010UShort_t AliTRDmcmSim::FilterTailNextSample(Int_t adc, UShort_t value)
1011{
1012 // Returns the output of the tail filter for the given input value.
1013 // The output depends on the internal registers and, thus, the
1014 // history of the filter.
1015
1016 // exponents and weight calculated from configuration
ce4786b9 1017 UShort_t alphaLong = 0x3ff & fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTAL); // the weight of the long component
1018 UShort_t lambdaLong = (1 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLL) & 0x1FF); // the multiplier of the long component
1019 UShort_t lambdaShort = (0 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLS) & 0x1FF); // the multiplier of the short component
b0a41e80 1020
ce4786b9 1021 // intermediate signals
1022 UInt_t aDiff;
1023 UInt_t alInpv;
b0a41e80 1024 UShort_t aQ;
ce4786b9 1025 UInt_t tmp;
b0a41e80 1026
ab9f7002 1027 UShort_t inpVolt = value & 0xFFF; // 12 bits
b0a41e80 1028
ce4786b9 1029 // add the present generator outputs
1030 aQ = AddUintClipping(fTailAmplLong[adc], fTailAmplShort[adc], 12);
1031
1032 // calculate the difference between the input and the generated signal
1033 if (inpVolt > aQ)
1034 aDiff = inpVolt - aQ;
1035 else
1036 aDiff = 0;
1037
1038 // the inputs to the two generators, weighted
1039 alInpv = (aDiff * alphaLong) >> 11;
1040
1041 // the new values of the registers, used next time
1042 // long component
1043 tmp = AddUintClipping(fTailAmplLong[adc], alInpv, 12);
1044 tmp = (tmp * lambdaLong) >> 11;
1045 fTailAmplLong[adc] = tmp & 0xFFF;
1046 // short component
1047 tmp = AddUintClipping(fTailAmplShort[adc], aDiff - alInpv, 12);
1048 tmp = (tmp * lambdaShort) >> 11;
1049 fTailAmplShort[adc] = tmp & 0xFFF;
1050
1051 // the output of the filter
b0a41e80 1052 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTBY) == 0) // bypass mode, active low
1053 return value;
1054 else
b0a41e80 1055 return aDiff;
b0a41e80 1056}
dfd03fc3 1057
b0a41e80 1058void AliTRDmcmSim::FilterTail()
1059{
ce4786b9 1060 // Apply tail cancellation filter to all data.
dfd03fc3 1061
b0a41e80 1062 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1063 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 1064 fADCF[iAdc][iTimeBin] = FilterTailNextSample(iAdc, fADCF[iAdc][iTimeBin]);
dfd03fc3 1065 }
dfd03fc3 1066 }
dfd03fc3 1067}
1068
dfd03fc3 1069void AliTRDmcmSim::ZSMapping()
1070{
0c349049 1071 //
dfd03fc3 1072 // Zero Suppression Mapping implemented in TRAP chip
ce4786b9 1073 // only implemented for up to 30 timebins
dfd03fc3 1074 //
1075 // See detail TRAP manual "Data Indication" section:
1076 // http://www.kip.uni-heidelberg.de/ti/TRD/doc/trap/TRAP-UserManual.pdf
0c349049 1077 //
dfd03fc3 1078
ce4786b9 1079 if( !CheckInitialized() )
1080 return;
1081
1082 Int_t eBIS = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIS);
1083 Int_t eBIT = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIT);
1084 Int_t eBIL = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIL);
1085 Int_t eBIN = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIN);
ecf39416 1086
b0a41e80 1087 Int_t **adc = fADCF;
dfd03fc3 1088
ce4786b9 1089 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++)
1090 fZSMap[iAdc] = -1;
b0a41e80 1091
1092 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
ce4786b9 1093 Int_t iAdc; // current ADC channel
1094 Int_t ap;
1095 Int_t ac;
1096 Int_t an;
1097 Int_t mask;
1098 Int_t supp; // suppression of the current channel (low active)
1099
1100 // ----- first channel -----
1101 iAdc = 0;
1102
1103 ap = 0; // previous
1104 ac = adc[iAdc ][it]; // current
1105 an = adc[iAdc+1][it]; // next
1106
1107 mask = ( ac >= ap && ac >= an ) ? 0 : 0x1; // peak center detection
1108 mask += ( ap + ac + an > eBIT ) ? 0 : 0x2; // cluster
1109 mask += ( ac > eBIS ) ? 0 : 0x4; // absolute large peak
1110
1111 supp = (eBIL >> mask) & 1;
1112
1113 fZSMap[iAdc] &= ~((1-supp) << it);
1114 if( eBIN == 0 ) { // neighbour sensitivity
1115 fZSMap[iAdc+1] &= ~((1-supp) << it);
dfd03fc3 1116 }
ce4786b9 1117
1118 // ----- last channel -----
1119 iAdc = fgkNADC - 1;
1120
1121 ap = adc[iAdc-1][it]; // previous
1122 ac = adc[iAdc ][it]; // current
1123 an = 0; // next
1124
1125 mask = ( ac >= ap && ac >= an ) ? 0 : 0x1; // peak center detection
1126 mask += ( ap + ac + an > eBIT ) ? 0 : 0x2; // cluster
1127 mask += ( ac > eBIS ) ? 0 : 0x4; // absolute large peak
1128
1129 supp = (eBIL >> mask) & 1;
1130
1131 fZSMap[iAdc] &= ~((1-supp) << it);
1132 if( eBIN == 0 ) { // neighbour sensitivity
1133 fZSMap[iAdc-1] &= ~((1-supp) << it);
ecf39416 1134 }
ce4786b9 1135
1136 // ----- middle channels -----
1137 for( iAdc = 1 ; iAdc < fgkNADC-1; iAdc++ ) {
1138 ap = adc[iAdc-1][it]; // previous
1139 ac = adc[iAdc ][it]; // current
1140 an = adc[iAdc+1][it]; // next
1141
1142 mask = ( ac >= ap && ac >= an ) ? 0 : 0x1; // peak center detection
1143 mask += ( ap + ac + an > eBIT ) ? 0 : 0x2; // cluster
1144 mask += ( ac > eBIS ) ? 0 : 0x4; // absolute large peak
1145
1146 supp = (eBIL >> mask) & 1;
1147
1148 fZSMap[iAdc] &= ~((1-supp) << it);
1149 if( eBIN == 0 ) { // neighbour sensitivity
1150 fZSMap[iAdc-1] &= ~((1-supp) << it);
1151 fZSMap[iAdc+1] &= ~((1-supp) << it);
ecf39416 1152 }
dfd03fc3 1153 }
ce4786b9 1154
dfd03fc3 1155 }
1156}
1157
25b41f6f 1158void AliTRDmcmSim::AddHitToFitreg(Int_t adc, UShort_t timebin, UShort_t qtot, Short_t ypos, Int_t label[])
dfd03fc3 1159{
b0a41e80 1160 // Add the given hit to the fit register which is lateron used for
1161 // the tracklet calculation.
1162 // In addition to the fit sums in the fit register MC information
1163 // is stored.
1164
1165 if ((timebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0)) &&
1166 (timebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE0)))
ab9f7002 1167 fFitReg[adc].fQ0 += qtot;
b0a41e80 1168
1169 if ((timebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS1)) &&
1170 (timebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1)))
ab9f7002 1171 fFitReg[adc].fQ1 += qtot;
b0a41e80 1172
1173 if ((timebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFS) ) &&
1174 (timebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFE)))
1175 {
ab9f7002 1176 fFitReg[adc].fSumX += timebin;
1177 fFitReg[adc].fSumX2 += timebin*timebin;
1178 fFitReg[adc].fNhits++;
1179 fFitReg[adc].fSumY += ypos;
1180 fFitReg[adc].fSumY2 += ypos*ypos;
1181 fFitReg[adc].fSumXY += timebin*ypos;
b0a41e80 1182 }
1183
1184 // register hits (MC info)
ab9f7002 1185 fHits[fNHits].fChannel = adc;
1186 fHits[fNHits].fQtot = qtot;
1187 fHits[fNHits].fYpos = ypos;
1188 fHits[fNHits].fTimebin = timebin;
25b41f6f 1189 fHits[fNHits].fLabel[0] = label[0];
1190 fHits[fNHits].fLabel[1] = label[1];
1191 fHits[fNHits].fLabel[2] = label[2];
b0a41e80 1192 fNHits++;
1193}
dfd03fc3 1194
b0a41e80 1195void AliTRDmcmSim::CalcFitreg()
1196{
1197 // Preprocessing.
1198 // Detect the hits and fill the fit registers.
1199 // Requires 12-bit data from fADCF which means Filter()
1200 // has to be called before even if all filters are bypassed.
1201
b0a41e80 1202 //??? to be clarified:
64e3d742 1203 UInt_t adcMask = 0xffffffff;
b0a41e80 1204
ab9f7002 1205 UShort_t timebin, adcch, adcLeft, adcCentral, adcRight, hitQual, timebin1, timebin2, qtotTemp;
b0a41e80 1206 Short_t ypos, fromLeft, fromRight, found;
5ac2e3b1 1207 UShort_t qTotal[19+1]; // the last is dummy
ab9f7002 1208 UShort_t marked[6], qMarked[6], worse1, worse2;
b0a41e80 1209
1210 timebin1 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFS);
1211 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0)
1212 < timebin1)
1213 timebin1 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0);
1214 timebin2 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFE);
1215 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1)
1216 > timebin2)
1217 timebin2 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1);
1218
1219 // reset the fit registers
1220 fNHits = 0;
ce4786b9 1221 for (adcch = 0; adcch < fgkNADC-2; adcch++) // due to border channels
b0a41e80 1222 {
ab9f7002 1223 fFitReg[adcch].fNhits = 0;
1224 fFitReg[adcch].fQ0 = 0;
1225 fFitReg[adcch].fQ1 = 0;
1226 fFitReg[adcch].fSumX = 0;
1227 fFitReg[adcch].fSumY = 0;
1228 fFitReg[adcch].fSumX2 = 0;
1229 fFitReg[adcch].fSumY2 = 0;
1230 fFitReg[adcch].fSumXY = 0;
b0a41e80 1231 }
1232
1233 for (timebin = timebin1; timebin < timebin2; timebin++)
1234 {
ab9f7002 1235 // first find the hit candidates and store the total cluster charge in qTotal array
b0a41e80 1236 // in case of not hit store 0 there.
ce4786b9 1237 for (adcch = 0; adcch < fgkNADC-2; adcch++) {
ab9f7002 1238 if ( ( (adcMask >> adcch) & 7) == 7) //??? all 3 channels are present in case of ZS
b0a41e80 1239 {
ab9f7002 1240 adcLeft = fADCF[adcch ][timebin];
1241 adcCentral = fADCF[adcch+1][timebin];
1242 adcRight = fADCF[adcch+2][timebin];
b0a41e80 1243 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPVBY) == 1)
ab9f7002 1244 hitQual = ( (adcLeft * adcRight) <
1245 (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPVT) * adcCentral) );
b0a41e80 1246 else
ab9f7002 1247 hitQual = 1;
b0a41e80 1248 // The accumulated charge is with the pedestal!!!
ab9f7002 1249 qtotTemp = adcLeft + adcCentral + adcRight;
1250 if ( (hitQual) &&
1251 (qtotTemp >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPHT)) &&
1252 (adcLeft <= adcCentral) &&
1253 (adcCentral > adcRight) )
1254 qTotal[adcch] = qtotTemp;
b0a41e80 1255 else
ab9f7002 1256 qTotal[adcch] = 0;
b0a41e80 1257 }
1258 else
ab9f7002 1259 qTotal[adcch] = 0; //jkl
ce4786b9 1260 if (qTotal[adcch] != 0)
1261 AliDebug(10,Form("ch %2d qTotal %5d",adcch, qTotal[adcch]));
b0a41e80 1262 }
dfd03fc3 1263
b0a41e80 1264 fromLeft = -1;
1265 adcch = 0;
1266 found = 0;
1267 marked[4] = 19; // invalid channel
1268 marked[5] = 19; // invalid channel
ab9f7002 1269 qTotal[19] = 0;
b0a41e80 1270 while ((adcch < 16) && (found < 3))
1271 {
ab9f7002 1272 if (qTotal[adcch] > 0)
b0a41e80 1273 {
1274 fromLeft = adcch;
1275 marked[2*found+1]=adcch;
1276 found++;
1277 }
1278 adcch++;
1279 }
dfd03fc3 1280
b0a41e80 1281 fromRight = -1;
1282 adcch = 18;
1283 found = 0;
1284 while ((adcch > 2) && (found < 3))
1285 {
ab9f7002 1286 if (qTotal[adcch] > 0)
b0a41e80 1287 {
1288 marked[2*found]=adcch;
1289 found++;
1290 fromRight = adcch;
1291 }
1292 adcch--;
1293 }
dfd03fc3 1294
4ff7ed2b 1295 AliDebug(10,Form("Fromleft=%d, Fromright=%d",fromLeft, fromRight));
b0a41e80 1296 // here mask the hit candidates in the middle, if any
1297 if ((fromLeft >= 0) && (fromRight >= 0) && (fromLeft < fromRight))
1298 for (adcch = fromLeft+1; adcch < fromRight; adcch++)
ab9f7002 1299 qTotal[adcch] = 0;
dfd03fc3 1300
b0a41e80 1301 found = 0;
1302 for (adcch = 0; adcch < 19; adcch++)
ab9f7002 1303 if (qTotal[adcch] > 0) found++;
b0a41e80 1304 // NOT READY
1305
1306 if (found > 4) // sorting like in the TRAP in case of 5 or 6 candidates!
1307 {
1308 if (marked[4] == marked[5]) marked[5] = 19;
1309 for (found=0; found<6; found++)
1310 {
ab9f7002 1311 qMarked[found] = qTotal[marked[found]] >> 4;
4ff7ed2b 1312 AliDebug(10,Form("ch_%d qTotal %d qTotals %d",marked[found],qTotal[marked[found]],qMarked[found]));
b0a41e80 1313 }
dfd03fc3 1314
b0a41e80 1315 Sort6To2Worst(marked[0], marked[3], marked[4], marked[1], marked[2], marked[5],
ab9f7002 1316 qMarked[0],
1317 qMarked[3],
1318 qMarked[4],
1319 qMarked[1],
1320 qMarked[2],
1321 qMarked[5],
b0a41e80 1322 &worse1, &worse2);
1323 // Now mask the two channels with the smallest charge
1324 if (worse1 < 19)
1325 {
ab9f7002 1326 qTotal[worse1] = 0;
4ff7ed2b 1327 AliDebug(10,Form("Kill ch %d\n",worse1));
b0a41e80 1328 }
1329 if (worse2 < 19)
1330 {
ab9f7002 1331 qTotal[worse2] = 0;
4ff7ed2b 1332 AliDebug(10,Form("Kill ch %d\n",worse2));
b0a41e80 1333 }
1334 }
1335
1336 for (adcch = 0; adcch < 19; adcch++) {
ab9f7002 1337 if (qTotal[adcch] > 0) // the channel is marked for processing
b0a41e80 1338 {
ab9f7002 1339 adcLeft = fADCF[adcch ][timebin];
1340 adcCentral = fADCF[adcch+1][timebin];
1341 adcRight = fADCF[adcch+2][timebin];
b0a41e80 1342 // hit detected, in TRAP we have 4 units and a hit-selection, here we proceed all channels!
1343 // subtract the pedestal TPFP, clipping instead of wrapping
1344
ab9f7002 1345 Int_t regTPFP = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP);
4ff7ed2b 1346 AliDebug(10, Form("Hit found, time=%d, adcch=%d/%d/%d, adc values=%d/%d/%d, regTPFP=%d, TPHT=%d\n",
1347 timebin, adcch, adcch+1, adcch+2, adcLeft, adcCentral, adcRight, regTPFP,
1348 fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPHT)));
b0a41e80 1349
ab9f7002 1350 if (adcLeft < regTPFP) adcLeft = 0; else adcLeft -= regTPFP;
1351 if (adcCentral < regTPFP) adcCentral = 0; else adcCentral -= regTPFP;
1352 if (adcRight < regTPFP) adcRight = 0; else adcRight -= regTPFP;
f793c83d 1353
b0a41e80 1354 // Calculate the center of gravity
f793c83d 1355 // checking for adcCentral != 0 (in case of "bad" configuration)
1356 if (adcCentral == 0)
1357 continue;
ab9f7002 1358 ypos = 128*(adcLeft - adcRight) / adcCentral;
b0a41e80 1359 if (ypos < 0) ypos = -ypos;
ce4786b9 1360 // make the correction using the position LUT
25b41f6f 1361 ypos = ypos + fTrapConfig->GetTrapReg((AliTRDtrapConfig::TrapReg_t) (AliTRDtrapConfig::kTPL00 + (ypos & 0x7F)),
1362 fDetector, fRobPos, fMcmPos);
ab9f7002 1363 if (adcLeft > adcRight) ypos = -ypos;
40bd6ee4 1364
25b41f6f 1365 // label calculation (up to 3)
1366 Int_t mcLabel[] = {-1, -1, -1};
40bd6ee4 1367 if (fDigitsManager) {
25b41f6f 1368 const Int_t maxLabels = 9;
1369 Int_t label[maxLabels] = { 0 }; // up to 9 different labels possible
1370 Int_t count[maxLabels] = { 0 };
40bd6ee4 1371 Int_t nLabels = 0;
1372 Int_t padcol[3];
1373 padcol[0] = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adcch);
1374 padcol[1] = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adcch+1);
1375 padcol[2] = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adcch+2);
1376 Int_t padrow = fFeeParam->GetPadRowFromMCM(fRobPos, fMcmPos);
1377 for (Int_t iDict = 0; iDict < 3; iDict++) {
ce4786b9 1378 if (!fDict[iDict])
40bd6ee4 1379 continue;
40bd6ee4 1380 for (Int_t iPad = 0; iPad < 3; iPad++) {
1381 if (padcol[iPad] < 0)
1382 continue;
25b41f6f 1383 Int_t currLabel = fDict[iDict]->GetData(padrow, padcol[iPad], timebin);
4ff7ed2b 1384 AliDebug(10, Form("Read label: %4i for det: %3i, row: %i, col: %i, tb: %i\n", currLabel, fDetector, padrow, padcol[iPad], timebin));
40bd6ee4 1385 for (Int_t iLabel = 0; iLabel < nLabels; iLabel++) {
1386 if (currLabel == label[iLabel]) {
1387 count[iLabel]++;
ce51199c 1388 currLabel = -1;
40bd6ee4 1389 break;
1390 }
1391 }
ce51199c 1392 if (currLabel >= 0) {
25b41f6f 1393 label[nLabels] = currLabel;
1394 count[nLabels] = 1;
1395 nLabels++;
40bd6ee4 1396 }
1397 }
1398 }
637666cd 1399 Int_t index[2*maxLabels];
25b41f6f 1400 TMath::Sort(maxLabels, count, index);
1401 for (Int_t i = 0; i < 3; i++) {
1402 if (count[index[i]] <= 0)
1403 break;
1404 mcLabel[i] = label[index[i]];
1405 }
40bd6ee4 1406 }
1407
1408 // add the hit to the fitregister
1409 AddHitToFitreg(adcch, timebin, qTotal[adcch], ypos, mcLabel);
b0a41e80 1410 }
dfd03fc3 1411 }
1412 }
ce4786b9 1413
1414 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
1415 if (fFitReg[iAdc].fNhits != 0) {
1416 AliDebug(2, Form("fitreg[%i]: nHits = %i, sumX = %i, sumY = %i, sumX2 = %i, sumY2 = %i, sumXY = %i", iAdc,
1417 fFitReg[iAdc].fNhits,
1418 fFitReg[iAdc].fSumX,
1419 fFitReg[iAdc].fSumY,
1420 fFitReg[iAdc].fSumX2,
1421 fFitReg[iAdc].fSumY2,
1422 fFitReg[iAdc].fSumXY
1423 ));
1424 }
1425 }
dfd03fc3 1426}
1427
b0a41e80 1428void AliTRDmcmSim::TrackletSelection()
dfd03fc3 1429{
b0a41e80 1430 // Select up to 4 tracklet candidates from the fit registers
1431 // and assign them to the CPUs.
1432
ab9f7002 1433 UShort_t adcIdx, i, j, ntracks, tmp;
1434 UShort_t trackletCand[18][2]; // store the adcch[0] and number of hits[1] for all tracklet candidates
b0a41e80 1435
1436 ntracks = 0;
ab9f7002 1437 for (adcIdx = 0; adcIdx < 18; adcIdx++) // ADCs
1438 if ( (fFitReg[adcIdx].fNhits
b0a41e80 1439 >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPCL)) &&
ab9f7002 1440 (fFitReg[adcIdx].fNhits+fFitReg[adcIdx+1].fNhits
b0a41e80 1441 >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPCT)))
1442 {
ab9f7002 1443 trackletCand[ntracks][0] = adcIdx;
1444 trackletCand[ntracks][1] = fFitReg[adcIdx].fNhits+fFitReg[adcIdx+1].fNhits;
4ff7ed2b 1445 AliDebug(10,Form("%d %2d %4d\n", ntracks, trackletCand[ntracks][0], trackletCand[ntracks][1]));
b0a41e80 1446 ntracks++;
1447 };
1448
4ff7ed2b 1449 for (i=0; i<ntracks;i++)
1450 AliDebug(10,Form("%d %d %d\n",i,trackletCand[i][0], trackletCand[i][1]));
b0a41e80 1451
1452 if (ntracks > 4)
1453 {
1454 // primitive sorting according to the number of hits
1455 for (j = 0; j < (ntracks-1); j++)
1456 {
1457 for (i = j+1; i < ntracks; i++)
1458 {
ab9f7002 1459 if ( (trackletCand[j][1] < trackletCand[i][1]) ||
1460 ( (trackletCand[j][1] == trackletCand[i][1]) && (trackletCand[j][0] < trackletCand[i][0]) ) )
b0a41e80 1461 {
1462 // swap j & i
ab9f7002 1463 tmp = trackletCand[j][1];
1464 trackletCand[j][1] = trackletCand[i][1];
1465 trackletCand[i][1] = tmp;
1466 tmp = trackletCand[j][0];
1467 trackletCand[j][0] = trackletCand[i][0];
1468 trackletCand[i][0] = tmp;
b0a41e80 1469 }
1470 }
1471 }
1472 ntracks = 4; // cut the rest, 4 is the max
dfd03fc3 1473 }
b0a41e80 1474 // else is not necessary to sort
dfd03fc3 1475
b0a41e80 1476 // now sort, so that the first tracklet going to CPU0 corresponds to the highest adc channel - as in the TRAP
1477 for (j = 0; j < (ntracks-1); j++)
1478 {
1479 for (i = j+1; i < ntracks; i++)
1480 {
ab9f7002 1481 if (trackletCand[j][0] < trackletCand[i][0])
b0a41e80 1482 {
1483 // swap j & i
ab9f7002 1484 tmp = trackletCand[j][1];
1485 trackletCand[j][1] = trackletCand[i][1];
1486 trackletCand[i][1] = tmp;
1487 tmp = trackletCand[j][0];
1488 trackletCand[j][0] = trackletCand[i][0];
1489 trackletCand[i][0] = tmp;
b0a41e80 1490 }
dfd03fc3 1491 }
b0a41e80 1492 }
1493 for (i = 0; i < ntracks; i++) // CPUs with tracklets.
ab9f7002 1494 fFitPtr[i] = trackletCand[i][0]; // pointer to the left channel with tracklet for CPU[i]
b0a41e80 1495 for (i = ntracks; i < 4; i++) // CPUs without tracklets
1496 fFitPtr[i] = 31; // pointer to the left channel with tracklet for CPU[i] = 31 (invalid)
4ff7ed2b 1497 AliDebug(10,Form("found %i tracklet candidates\n", ntracks));
1498 for (i = 0; i < 4; i++)
1499 AliDebug(10,Form("fitPtr[%i]: %i\n", i, fFitPtr[i]));
b0a41e80 1500}
dfd03fc3 1501
b0a41e80 1502void AliTRDmcmSim::FitTracklet()
1503{
1504 // Perform the actual tracklet fit based on the fit sums
1505 // which have been filled in the fit registers.
1506
1507 // parameters in fitred.asm (fit program)
1508 Int_t decPlaces = 5;
1509 Int_t rndAdd = 0;
1510 if (decPlaces > 1)
1511 rndAdd = (1 << (decPlaces-1)) + 1;
1512 else if (decPlaces == 1)
1513 rndAdd = 1;
4ff7ed2b 1514 Int_t ndriftDp = 5; // decimal places for drift time
1515 Long64_t shift = ((Long64_t) 1 << 32);
1516
4ff7ed2b 1517 // calculated in fitred.asm
1518 Int_t padrow = ((fRobPos >> 1) << 2) | (fMcmPos >> 2);
1519 Int_t yoffs = (((((fRobPos & 0x1) << 2) + (fMcmPos & 0x3)) * 18) << 8) -
1520 ((18*4*2 - 18*2 - 1) << 7);
1521 yoffs = yoffs << decPlaces; // holds position of ADC channel 1
1522 Int_t layer = fDetector % 6;
1523 UInt_t scaleY = (UInt_t) ((0.635 + 0.03 * layer)/(256.0 * 160.0e-4) * shift);
1524 UInt_t scaleD = (UInt_t) ((0.635 + 0.03 * layer)/(256.0 * 140.0e-4) * shift);
4ff7ed2b 1525
8ea391e3 1526 Int_t deflCorr = (Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCorr, fDetector, fRobPos, fMcmPos);
1527 Int_t ndrift = (Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrNdrift, fDetector, fRobPos, fMcmPos);
b0a41e80 1528
1529 // local variables for calculation
1530 Long64_t mult, temp, denom; //???
8ea391e3 1531 UInt_t q0, q1, pid; // charges in the two windows and total charge
b0a41e80 1532 UShort_t nHits; // number of hits
1533 Int_t slope, offset; // slope and offset of the tracklet
1534 Int_t sumX, sumY, sumXY, sumX2; // fit sums from fit registers
ce51199c 1535 Int_t sumY2; // not used in the current TRAP program, now used for error calculation (simulation only)
1536 Float_t fitError, fitSlope, fitOffset;
b0a41e80 1537 FitReg_t *fit0, *fit1; // pointers to relevant fit registers
1538
1539// const uint32_t OneDivN[32] = { // 2**31/N : exactly like in the TRAP, the simple division here gives the same result!
1540// 0x00000000, 0x80000000, 0x40000000, 0x2AAAAAA0, 0x20000000, 0x19999990, 0x15555550, 0x12492490,
1541// 0x10000000, 0x0E38E380, 0x0CCCCCC0, 0x0BA2E8B0, 0x0AAAAAA0, 0x09D89D80, 0x09249240, 0x08888880,
1542// 0x08000000, 0x07878780, 0x071C71C0, 0x06BCA1A0, 0x06666660, 0x06186180, 0x05D17450, 0x0590B210,
1543// 0x05555550, 0x051EB850, 0x04EC4EC0, 0x04BDA120, 0x04924920, 0x0469EE50, 0x04444440, 0x04210840};
1544
1545 for (Int_t cpu = 0; cpu < 4; cpu++) {
1546 if (fFitPtr[cpu] == 31)
1547 {
1548 fMCMT[cpu] = 0x10001000; //??? AliTRDfeeParam::GetTrackletEndmarker();
dfd03fc3 1549 }
b0a41e80 1550 else
1551 {
1552 fit0 = &fFitReg[fFitPtr[cpu] ];
1553 fit1 = &fFitReg[fFitPtr[cpu]+1]; // next channel
1554
1555 mult = 1;
1556 mult = mult << (32 + decPlaces);
1557 mult = -mult;
1558
1559 // Merging
ab9f7002 1560 nHits = fit0->fNhits + fit1->fNhits; // number of hits
1561 sumX = fit0->fSumX + fit1->fSumX;
1562 sumX2 = fit0->fSumX2 + fit1->fSumX2;
54d34aac 1563 denom = ((Long64_t) nHits)*((Long64_t) sumX2) - ((Long64_t) sumX)*((Long64_t) sumX);
b0a41e80 1564
1565 mult = mult / denom; // exactly like in the TRAP program
ab9f7002 1566 q0 = fit0->fQ0 + fit1->fQ0;
1567 q1 = fit0->fQ1 + fit1->fQ1;
1568 sumY = fit0->fSumY + fit1->fSumY + 256*fit1->fNhits;
1569 sumXY = fit0->fSumXY + fit1->fSumXY + 256*fit1->fSumX;
ce51199c 1570 sumY2 = fit0->fSumY2 + fit1->fSumY2 + 512*fit1->fSumY + 256*256*fit1->fNhits;
b0a41e80 1571
1572 slope = nHits*sumXY - sumX * sumY;
1573 offset = sumX2*sumY - sumX * sumXY;
1574 temp = mult * slope;
1575 slope = temp >> 32; // take the upper 32 bits
4ff7ed2b 1576 slope = -slope;
b0a41e80 1577 temp = mult * offset;
1578 offset = temp >> 32; // take the upper 32 bits
1579
4ff7ed2b 1580 offset = offset + yoffs;
ce4786b9 1581 AliDebug(10, Form("slope = %i, slope * ndrift = %i, deflCorr: %i",
1582 slope, slope * ndrift, deflCorr));
1583 slope = ((slope * ndrift) >> ndriftDp) + deflCorr;
b0a41e80 1584 offset = offset - (fFitPtr[cpu] << (8 + decPlaces));
1585
4ff7ed2b 1586 temp = slope;
1587 temp = temp * scaleD;
1588 slope = (temp >> 32);
4ff7ed2b 1589 temp = offset;
1590 temp = temp * scaleY;
1591 offset = (temp >> 32);
1592
1593 // rounding, like in the TRAP
1594 slope = (slope + rndAdd) >> decPlaces;
4ff7ed2b 1595 offset = (offset + rndAdd) >> decPlaces;
1596
ce4786b9 1597 AliDebug(5, Form("Det: %3i, ROB: %i, MCM: %2i: deflection: %i, min: %i, max: %i",
1598 fDetector, fRobPos, fMcmPos, slope,
8ea391e3 1599 (Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCutStart + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos),
1600 (Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCutStart + 1 + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos)));
ce4786b9 1601
ce51199c 1602 AliDebug(5, Form("Fit sums: x = %i, X = %i, y = %i, Y = %i, Z = %i",
1603 sumX, sumX2, sumY, sumY2, sumXY));
1604
1605 fitSlope = (Float_t) (nHits * sumXY - sumX * sumY) / (nHits * sumX2 - sumX*sumX);
1606
1607 fitOffset = (Float_t) (sumX2 * sumY - sumX * sumXY) / (nHits * sumX2 - sumX*sumX);
1608
1609 Float_t sx = (Float_t) sumX;
1610 Float_t sx2 = (Float_t) sumX2;
1611 Float_t sy = (Float_t) sumY;
1612 Float_t sy2 = (Float_t) sumY2;
1613 Float_t sxy = (Float_t) sumXY;
1614 fitError = sy2 - (sx2 * sy*sy - 2 * sx * sxy * sy + nHits * sxy*sxy) / (nHits * sx2 - sx*sx);
1615 //fitError = (Float_t) sumY2 - (Float_t) (sumY*sumY) / nHits - fitSlope * ((Float_t) (sumXY - sumX*sumY) / nHits);
1616
40bd6ee4 1617 Bool_t rejected = kFALSE;
ce4786b9 1618 // deflection range table from DMEM
8ea391e3 1619 if ((slope < ((Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCutStart + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos))) ||
1620 (slope > ((Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCutStart + 1 + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos))))
40bd6ee4 1621 rejected = kTRUE;
4ff7ed2b 1622
1623 if (rejected && GetApplyCut())
b0a41e80 1624 {
1625 fMCMT[cpu] = 0x10001000; //??? AliTRDfeeParam::GetTrackletEndmarker();
1626 }
1627 else
1628 {
4ff7ed2b 1629 if (slope > 63 || slope < -64) { // wrapping in TRAP!
40bd6ee4 1630 AliError(Form("Overflow in slope: %i, tracklet discarded!", slope));
1631 fMCMT[cpu] = 0x10001000;
1632 continue;
1633 }
b0a41e80 1634
4ff7ed2b 1635 slope = slope & 0x7F; // 7 bit
1636
40bd6ee4 1637 if (offset > 0xfff || offset < -0xfff)
b0a41e80 1638 AliWarning("Overflow in offset");
1639 offset = offset & 0x1FFF; // 13 bit
1640
8ea391e3 1641 pid = GetPID(q0 >> fgkAddDigits, q1 >> fgkAddDigits); // divided by 4 because in simulation there are two additional decimal places
4ff7ed2b 1642
8ea391e3 1643 if (pid > 0xff)
1644 AliWarning("Overflow in PID");
1645 pid = pid & 0xFF; // 8 bit, exactly like in the TRAP program
4ff7ed2b 1646
b0a41e80 1647 // assemble and store the tracklet word
8ea391e3 1648 fMCMT[cpu] = (pid << 24) | (padrow << 20) | (slope << 13) | offset;
40bd6ee4 1649
1650 // calculate MC label
25b41f6f 1651 Int_t mcLabel[] = { -1, -1, -1};
4ff7ed2b 1652 Int_t nHits0 = 0;
1653 Int_t nHits1 = 0;
40bd6ee4 1654 if (fDigitsManager) {
25b41f6f 1655 const Int_t maxLabels = 30;
1656 Int_t label[maxLabels] = {0}; // up to 30 different labels possible
1657 Int_t count[maxLabels] = {0};
40bd6ee4 1658 Int_t nLabels = 0;
1659 for (Int_t iHit = 0; iHit < fNHits; iHit++) {
1660 if ((fHits[iHit].fChannel - fFitPtr[cpu] < 0) ||
1661 (fHits[iHit].fChannel - fFitPtr[cpu] > 1))
1662 continue;
4ff7ed2b 1663
1664 // counting contributing hits
1665 if (fHits[iHit].fTimebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0) &&
1666 fHits[iHit].fTimebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE0))
1667 nHits0++;
1668 if (fHits[iHit].fTimebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS1) &&
1669 fHits[iHit].fTimebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1))
1670 nHits1++;
1671
25b41f6f 1672 for (Int_t i = 0; i < 3; i++) {
1673 Int_t currLabel = fHits[iHit].fLabel[i];
1674 for (Int_t iLabel = 0; iLabel < nLabels; iLabel++) {
1675 if (currLabel == label[iLabel]) {
1676 count[iLabel]++;
1677 currLabel = -1;
1678 break;
1679 }
1680 }
1681 if (currLabel >= 0 && nLabels < maxLabels) {
1682 label[nLabels] = currLabel;
1683 count[nLabels]++;
1684 nLabels++;
1685 }
1686 }
1687 }
637666cd 1688 Int_t index[2*maxLabels];
25b41f6f 1689 TMath::Sort(maxLabels, count, index);
1690 for (Int_t i = 0; i < 3; i++) {
1691 if (count[index[i]] <= 0)
1692 break;
1693 mcLabel[i] = label[index[i]];
1694 }
40bd6ee4 1695 }
f793c83d 1696 new ((*fTrackletArray)[fTrackletArray->GetEntriesFast()]) AliTRDtrackletMCM((UInt_t) fMCMT[cpu], fDetector*2 + fRobPos%2, fRobPos, fMcmPos);
40bd6ee4 1697 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetLabel(mcLabel);
4ff7ed2b 1698
1699
1700 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetNHits(fit0->fNhits + fit1->fNhits);
1701 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetNHits0(nHits0);
1702 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetNHits1(nHits1);
48e5462a 1703 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetQ0(q0);
1704 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetQ1(q1);
ce51199c 1705 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetSlope(fitSlope);
1706 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetOffset(fitOffset);
1707 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetError(TMath::Sqrt(TMath::Abs(fitError)/nHits));
1708
1709// // cluster information
1710// Float_t *res = new Float_t[nHits];
1711// Float_t *qtot = new Float_t[nHits];
1712// Int_t nCls = 0;
1713// for (Int_t iHit = 0; iHit < fNHits; iHit++) {
1714// // check if hit contributes
1715// if (fHits[iHit].fChannel == fFitPtr[cpu]) {
1716// res[nCls] = fHits[iHit].fYpos - (fitSlope * fHits[iHit].fTimebin + fitOffset);
1717// qtot[nCls] = fHits[iHit].fQtot;
1718// nCls++;
1719// }
1720// else if (fHits[iHit].fChannel == fFitPtr[cpu] + 1) {
1721// res[nCls] = fHits[iHit].fYpos + 256 - (fitSlope * fHits[iHit].fTimebin + fitOffset);
1722// qtot[nCls] = fHits[iHit].fQtot;
1723// nCls++;
1724// }
1725// }
1726// ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetClusters(res, qtot, nCls);
1727// delete [] res;
1728// delete [] qtot;
1729
1730 if (fitError < 0)
1731 AliError(Form("Strange fit error: %f from Sx: %i, Sy: %i, Sxy: %i, Sx2: %i, Sy2: %i, nHits: %i",
1732 fitError, sumX, sumY, sumXY, sumX2, sumY2, nHits));
1733 AliDebug(3, Form("fit slope: %f, offset: %f, error: %f",
1734 fitSlope, fitOffset, TMath::Sqrt(TMath::Abs(fitError)/nHits)));
b0a41e80 1735 }
dfd03fc3 1736 }
dfd03fc3 1737 }
1738}
1739
b0a41e80 1740void AliTRDmcmSim::Tracklet()
dfd03fc3 1741{
ab9f7002 1742 // Run the tracklet calculation by calling sequentially:
1743 // CalcFitreg(); TrackletSelection(); FitTracklet()
1744 // and store the tracklets
1745
b0a41e80 1746 if (!fInitialized) {
ab9f7002 1747 AliError("Called uninitialized! Nothing done!");
b0a41e80 1748 return;
dfd03fc3 1749 }
1750
b0a41e80 1751 fTrackletArray->Delete();
dfd03fc3 1752
b0a41e80 1753 CalcFitreg();
40bd6ee4 1754 if (fNHits == 0)
1755 return;
b0a41e80 1756 TrackletSelection();
1757 FitTracklet();
c8b1590d 1758}
1759
1760Bool_t AliTRDmcmSim::StoreTracklets()
1761{
36dc3337 1762 // store the found tracklets via the loader
1763
40bd6ee4 1764 if (fTrackletArray->GetEntriesFast() == 0)
c8b1590d 1765 return kTRUE;
dfd03fc3 1766
b0a41e80 1767 AliRunLoader *rl = AliRunLoader::Instance();
1768 AliDataLoader *dl = 0x0;
1769 if (rl)
1770 dl = rl->GetLoader("TRDLoader")->GetDataLoader("tracklets");
1771 if (!dl) {
1772 AliError("Could not get the tracklets data loader!");
c8b1590d 1773 return kFALSE;
dfd03fc3 1774 }
b0a41e80 1775
c8b1590d 1776 TTree *trackletTree = dl->Tree();
1777 if (!trackletTree) {
1778 dl->MakeTree();
1779 trackletTree = dl->Tree();
1780 }
1781
1782 AliTRDtrackletMCM *trkl = 0x0;
6b094867 1783 TBranch *trkbranch = trackletTree->GetBranch(fTrklBranchName.Data());
c8b1590d 1784 if (!trkbranch)
6b094867 1785 trkbranch = trackletTree->Branch(fTrklBranchName.Data(), "AliTRDtrackletMCM", &trkl, 32000);
c8b1590d 1786
1787 for (Int_t iTracklet = 0; iTracklet < fTrackletArray->GetEntriesFast(); iTracklet++) {
1788 trkl = ((AliTRDtrackletMCM*) (*fTrackletArray)[iTracklet]);
1789 trkbranch->SetAddress(&trkl);
c8b1590d 1790 trkbranch->Fill();
b0a41e80 1791 }
c8b1590d 1792
1793 return kTRUE;
dfd03fc3 1794}
1795
b0a41e80 1796void AliTRDmcmSim::WriteData(AliTRDarrayADC *digits)
dfd03fc3 1797{
b0a41e80 1798 // write back the processed data configured by EBSF
1799 // EBSF = 1: unfiltered data; EBSF = 0: filtered data
1800 // zero-suppressed valued are written as -1 to digits
dfd03fc3 1801
ce4786b9 1802 if( !CheckInitialized() )
b0a41e80 1803 return;
dfd03fc3 1804
ce4786b9 1805 Int_t offset = (fMcmPos % 4 + 1) * 21 + (fRobPos % 2) * 84 - 1;
dfd03fc3 1806
b0a41e80 1807 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBSF) != 0) // store unfiltered data
1808 {
ce4786b9 1809 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
1810 if (~fZSMap[iAdc] == 0) {
b0a41e80 1811 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1812 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, -1);
b0a41e80 1813 }
1814 }
ce51199c 1815 else if (iAdc < 2 || iAdc == 20) {
1816 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
1817 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, (fADCR[iAdc][iTimeBin] >> fgkAddDigits) - fgAddBaseline);
1818 }
1819 }
b0a41e80 1820 }
1821 }
1822 else {
ce4786b9 1823 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
1824 if (~fZSMap[iAdc] != 0) {
b0a41e80 1825 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1826 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, (fADCF[iAdc][iTimeBin] >> fgkAddDigits) - fgAddBaseline);
b0a41e80 1827 }
1828 }
1829 else {
1830 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1831 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, -1);
b0a41e80 1832 }
1833 }
1834 }
dfd03fc3 1835 }
b0a41e80 1836}
dfd03fc3 1837
8ea391e3 1838
1839// ******************************
1840// PID section
1841//
1842// Memory area for the LUT: 0xC100 to 0xC3FF
1843//
1844// The addresses for the parameters (the order is optimized for maximum calculation speed in the MCMs):
1845// 0xC028: cor1
1846// 0xC029: nBins(sF)
1847// 0xC02A: cor0
1848// 0xC02B: TableLength
1849// Defined in AliTRDtrapConfig.h
1850//
1851// The algorithm implemented in the TRAP program of the MCMs (Venelin Angelov)
1852// 1) set the read pointer to the beginning of the Parameters in DMEM
1853// 2) shift right the FitReg with the Q0 + (Q1 << 16) to get Q1
1854// 3) read cor1 with rpointer++
1855// 4) start cor1*Q1
1856// 5) read nBins with rpointer++
1857// 6) start nBins*cor1*Q1
1858// 7) read cor0 with rpointer++
1859// 8) swap hi-low parts in FitReg, now is Q1 + (Q0 << 16)
1860// 9) shift right to get Q0
1861// 10) start cor0*Q0
1862// 11) read TableLength
1863// 12) compare cor0*Q0 with nBins
1864// 13) if >=, clip cor0*Q0 to nBins-1
1865// 14) add cor0*Q0 to nBins*cor1*Q1
1866// 15) compare the result with TableLength
1867// 16) if >=, clip to TableLength-1
1868// 17) read from the LUT 8 bits
1869
1870
1871Int_t AliTRDmcmSim::GetPID(Int_t q0, Int_t q1)
1872{
6b094867 1873 // return PID calculated from charges accumulated in two time windows
1874
8ea391e3 1875 ULong64_t addrQ0;
1876 ULong64_t addr;
1877
1878 UInt_t nBinsQ0 = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTnbins); // number of bins in q0 / 4 !!
1879 UInt_t pidTotalSize = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTLength);
5ac2e3b1 1880 if(nBinsQ0==0 || pidTotalSize==0) // make sure we don't run into trouble if one of the values is not configured
1881 return 0;
8ea391e3 1882
1883 ULong_t corrQ0 = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTcor0, fDetector, fRobPos, fMcmPos);
1884 ULong_t corrQ1 = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTcor1, fDetector, fRobPos, fMcmPos);
5ac2e3b1 1885 if(corrQ0==0 || corrQ1==0) // make sure we don't run into trouble if one of the values is not configured
1886 return 0;
8ea391e3 1887
1888 addrQ0 = corrQ0;
1889 addrQ0 = (((addrQ0*q0)>>16)>>16); // because addrQ0 = (q0 * corrQ0) >> 32; does not work for unknown reasons
8ea391e3 1890
1891 if(addrQ0 >= nBinsQ0) { // check for overflow
e3bd81f7 1892 AliDebug(5,Form("Overflow in q0: %llu/4 is bigger then %u", addrQ0, nBinsQ0));
8ea391e3 1893 addrQ0 = nBinsQ0 -1;
1894 }
1895
1896 addr = corrQ1;
1897 addr = (((addr*q1)>>16)>>16);
1898 addr = addrQ0 + nBinsQ0*addr; // because addr = addrQ0 + nBinsQ0* (((corrQ1*q1)>>32); does not work
8ea391e3 1899
1900 if(addr >= pidTotalSize) {
e3bd81f7 1901 AliDebug(5,Form("Overflow in q1. Address %llu/4 is bigger then %u", addr, pidTotalSize));
8ea391e3 1902 addr = pidTotalSize -1;
1903 }
1904
1905 // For a LUT with 11 input and 8 output bits, the first memory address is set to LUT[0] | (LUT[1] << 8) | (LUT[2] << 16) | (LUT[3] << 24)
1906 // and so on
1907 UInt_t result = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTStart+(addr/4));
1908 return (result>>((addr%4)*8)) & 0xFF;
1909}
1910
1911
1912
b0a41e80 1913// help functions, to be cleaned up
1914
ab9f7002 1915UInt_t AliTRDmcmSim::AddUintClipping(UInt_t a, UInt_t b, UInt_t nbits) const
b0a41e80 1916{
1917 //
1918 // This function adds a and b (unsigned) and clips to
1919 // the specified number of bits.
1920 //
1921
1922 UInt_t sum = a + b;
1923 if (nbits < 32)
1924 {
1925 UInt_t maxv = (1 << nbits) - 1;;
1926 if (sum > maxv)
1927 sum = maxv;
1928 }
1929 else
1930 {
1931 if ((sum < a) || (sum < b))
1932 sum = 0xFFFFFFFF;
1933 }
1934 return sum;
dfd03fc3 1935}
1936
982869bc 1937void AliTRDmcmSim::Sort2(UShort_t idx1i, UShort_t idx2i, \
1938 UShort_t val1i, UShort_t val2i, \
6b094867 1939 UShort_t * const idx1o, UShort_t * const idx2o, \
1940 UShort_t * const val1o, UShort_t * const val2o) const
dfd03fc3 1941{
ab9f7002 1942 // sorting for tracklet selection
dfd03fc3 1943
b0a41e80 1944 if (val1i > val2i)
1945 {
1946 *idx1o = idx1i;
1947 *idx2o = idx2i;
1948 *val1o = val1i;
1949 *val2o = val2i;
1950 }
1951 else
1952 {
1953 *idx1o = idx2i;
1954 *idx2o = idx1i;
1955 *val1o = val2i;
1956 *val2o = val1i;
1957 }
1958}
1959
982869bc 1960void AliTRDmcmSim::Sort3(UShort_t idx1i, UShort_t idx2i, UShort_t idx3i, \
1961 UShort_t val1i, UShort_t val2i, UShort_t val3i, \
6b094867 1962 UShort_t * const idx1o, UShort_t * const idx2o, UShort_t * const idx3o, \
1963 UShort_t * const val1o, UShort_t * const val2o, UShort_t * const val3o)
b0a41e80 1964{
ab9f7002 1965 // sorting for tracklet selection
1966
4ff7ed2b 1967 Int_t sel;
dfd03fc3 1968
dfd03fc3 1969
b0a41e80 1970 if (val1i > val2i) sel=4; else sel=0;
1971 if (val2i > val3i) sel=sel + 2;
1972 if (val3i > val1i) sel=sel + 1;
b0a41e80 1973 switch(sel)
1974 {
1975 case 6 : // 1 > 2 > 3 => 1 2 3
1976 case 0 : // 1 = 2 = 3 => 1 2 3 : in this case doesn't matter, but so is in hardware!
1977 *idx1o = idx1i;
1978 *idx2o = idx2i;
1979 *idx3o = idx3i;
1980 *val1o = val1i;
1981 *val2o = val2i;
1982 *val3o = val3i;
1983 break;
1984
1985 case 4 : // 1 > 2, 2 <= 3, 3 <= 1 => 1 3 2
1986 *idx1o = idx1i;
1987 *idx2o = idx3i;
1988 *idx3o = idx2i;
1989 *val1o = val1i;
1990 *val2o = val3i;
1991 *val3o = val2i;
1992 break;
1993
1994 case 2 : // 1 <= 2, 2 > 3, 3 <= 1 => 2 1 3
1995 *idx1o = idx2i;
1996 *idx2o = idx1i;
1997 *idx3o = idx3i;
1998 *val1o = val2i;
1999 *val2o = val1i;
2000 *val3o = val3i;
2001 break;
2002
2003 case 3 : // 1 <= 2, 2 > 3, 3 > 1 => 2 3 1
2004 *idx1o = idx2i;
2005 *idx2o = idx3i;
2006 *idx3o = idx1i;
2007 *val1o = val2i;
2008 *val2o = val3i;
2009 *val3o = val1i;
2010 break;
2011
2012 case 1 : // 1 <= 2, 2 <= 3, 3 > 1 => 3 2 1
2013 *idx1o = idx3i;
2014 *idx2o = idx2i;
2015 *idx3o = idx1i;
2016 *val1o = val3i;
2017 *val2o = val2i;
2018 *val3o = val1i;
2019 break;
2020
2021 case 5 : // 1 > 2, 2 <= 3, 3 > 1 => 3 1 2
2022 *idx1o = idx3i;
2023 *idx2o = idx1i;
2024 *idx3o = idx2i;
2025 *val1o = val3i;
2026 *val2o = val1i;
2027 *val3o = val2i;
2028 break;
2029
2030 default: // the rest should NEVER happen!
40bd6ee4 2031 AliError("ERROR in Sort3!!!\n");
b0a41e80 2032 break;
2033 }
b0a41e80 2034}
dfd03fc3 2035
982869bc 2036void AliTRDmcmSim::Sort6To4(UShort_t idx1i, UShort_t idx2i, UShort_t idx3i, UShort_t idx4i, UShort_t idx5i, UShort_t idx6i, \
2037 UShort_t val1i, UShort_t val2i, UShort_t val3i, UShort_t val4i, UShort_t val5i, UShort_t val6i, \
6b094867 2038 UShort_t * const idx1o, UShort_t * const idx2o, UShort_t * const idx3o, UShort_t * const idx4o, \
2039 UShort_t * const val1o, UShort_t * const val2o, UShort_t * const val3o, UShort_t * const val4o)
b0a41e80 2040{
ab9f7002 2041 // sorting for tracklet selection
dfd03fc3 2042
982869bc 2043 UShort_t idx21s, idx22s, idx23s, dummy;
2044 UShort_t val21s, val22s, val23s;
2045 UShort_t idx23as, idx23bs;
2046 UShort_t val23as, val23bs;
dfd03fc3 2047
b0a41e80 2048 Sort3(idx1i, idx2i, idx3i, val1i, val2i, val3i,
2049 idx1o, &idx21s, &idx23as,
2050 val1o, &val21s, &val23as);
dfd03fc3 2051
b0a41e80 2052 Sort3(idx4i, idx5i, idx6i, val4i, val5i, val6i,
2053 idx2o, &idx22s, &idx23bs,
2054 val2o, &val22s, &val23bs);
2055
2056 Sort2(idx23as, idx23bs, val23as, val23bs, &idx23s, &dummy, &val23s, &dummy);
2057
2058 Sort3(idx21s, idx22s, idx23s, val21s, val22s, val23s,
2059 idx3o, idx4o, &dummy,
2060 val3o, val4o, &dummy);
dfd03fc3 2061
dfd03fc3 2062}
2063
982869bc 2064void AliTRDmcmSim::Sort6To2Worst(UShort_t idx1i, UShort_t idx2i, UShort_t idx3i, UShort_t idx4i, UShort_t idx5i, UShort_t idx6i, \
2065 UShort_t val1i, UShort_t val2i, UShort_t val3i, UShort_t val4i, UShort_t val5i, UShort_t val6i, \
6b094867 2066 UShort_t * const idx5o, UShort_t * const idx6o)
b0a41e80 2067{
ab9f7002 2068 // sorting for tracklet selection
1d93b218 2069
982869bc 2070 UShort_t idx21s, idx22s, idx23s, dummy1, dummy2, dummy3, dummy4, dummy5;
2071 UShort_t val21s, val22s, val23s;
2072 UShort_t idx23as, idx23bs;
2073 UShort_t val23as, val23bs;
1d93b218 2074
b0a41e80 2075 Sort3(idx1i, idx2i, idx3i, val1i, val2i, val3i,
2076 &dummy1, &idx21s, &idx23as,
2077 &dummy2, &val21s, &val23as);
1d93b218 2078
b0a41e80 2079 Sort3(idx4i, idx5i, idx6i, val4i, val5i, val6i,
2080 &dummy1, &idx22s, &idx23bs,
2081 &dummy2, &val22s, &val23bs);
1d93b218 2082
b0a41e80 2083 Sort2(idx23as, idx23bs, val23as, val23bs, &idx23s, idx5o, &val23s, &dummy1);
b65e5048 2084
b0a41e80 2085 Sort3(idx21s, idx22s, idx23s, val21s, val22s, val23s,
2086 &dummy1, &dummy2, idx6o,
2087 &dummy3, &dummy4, &dummy5);
0d64b05f 2088}
f793c83d 2089
2090
ce4786b9 2091// ----- I/O implementation -----
2092
59f78ad5 2093ostream& AliTRDmcmSim::Text(ostream& os)
ce4786b9 2094{
2095 // manipulator to activate output in text format (default)
2096
2097 os.iword(fgkFormatIndex) = 0;
2098 return os;
2099}
2100
59f78ad5 2101ostream& AliTRDmcmSim::Cfdat(ostream& os)
ce4786b9 2102{
2103 // manipulator to activate output in CFDAT format
2104 // to send to the FEE via SCSN
2105
2106 os.iword(fgkFormatIndex) = 1;
2107 return os;
2108}
2109
59f78ad5 2110ostream& AliTRDmcmSim::Raw(ostream& os)
ce4786b9 2111{
2112 // manipulator to activate output as raw data dump
2113
2114 os.iword(fgkFormatIndex) = 2;
2115 return os;
2116}
2117
2118ostream& operator<<(ostream& os, const AliTRDmcmSim& mcm)
2119{
2120 // output implementation
2121
2122 // no output for non-initialized MCM
2123 if (!mcm.CheckInitialized())
2124 return os;
2125
2126 // ----- human-readable output -----
2127 if (os.iword(AliTRDmcmSim::fgkFormatIndex) == 0) {
2128
2129 os << "MCM " << mcm.fMcmPos << " on ROB " << mcm.fRobPos <<
2130 " in detector " << mcm.fDetector << std::endl;
2131
2132 os << "----- Unfiltered ADC data (10 bit) -----" << std::endl;
2133 os << "ch ";
2134 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++)
2135 os << std::setw(5) << iChannel;
2136 os << std::endl;
2137 for (Int_t iTimeBin = 0; iTimeBin < mcm.fNTimeBin; iTimeBin++) {
2138 os << "tb " << std::setw(2) << iTimeBin << ":";
2139 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++) {
2140 os << std::setw(5) << (mcm.fADCR[iChannel][iTimeBin] >> mcm.fgkAddDigits);
2141 }
2142 os << std::endl;
2143 }
2144
2145 os << "----- Filtered ADC data (10+2 bit) -----" << std::endl;
2146 os << "ch ";
2147 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++)
2148 os << std::setw(4) << iChannel
2149 << ((~mcm.fZSMap[iChannel] != 0) ? "!" : " ");
2150 os << std::endl;
2151 for (Int_t iTimeBin = 0; iTimeBin < mcm.fNTimeBin; iTimeBin++) {
2152 os << "tb " << std::setw(2) << iTimeBin << ":";
2153 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++) {
2154 os << std::setw(4) << (mcm.fADCF[iChannel][iTimeBin])
2155 << (((mcm.fZSMap[iChannel] & (1 << iTimeBin)) == 0) ? "!" : " ");
2156 }
2157 os << std::endl;
2158 }
2159 }
2160
2161 // ----- CFDAT output -----
2162 else if(os.iword(AliTRDmcmSim::fgkFormatIndex) == 1) {
2163 Int_t dest = 127;
2164 Int_t addrOffset = 0x2000;
2165 Int_t addrStep = 0x80;
2166
2167 for (Int_t iTimeBin = 0; iTimeBin < mcm.fNTimeBin; iTimeBin++) {
2168 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++) {
2169 os << std::setw(5) << 10
2170 << std::setw(5) << addrOffset + iChannel * addrStep + iTimeBin
2171 << std::setw(5) << (mcm.fADCF[iChannel][iTimeBin])
2172 << std::setw(5) << dest << std::endl;
2173 }
2174 os << std::endl;
2175 }
2176 }
2177
2178 // ----- raw data ouptut -----
2179 else if (os.iword(AliTRDmcmSim::fgkFormatIndex) == 2) {
2180 Int_t bufSize = 300;
2181 UInt_t *buf = new UInt_t[bufSize];
2182
2183 Int_t bufLength = mcm.ProduceRawStream(&buf[0], bufSize);
2184
2185 for (Int_t i = 0; i < bufLength; i++)
2186 std::cout << "0x" << std::hex << buf[i] << std::endl;
2187
2188 delete [] buf;
2189 }
2190
2191 else {
2192 os << "unknown format set" << std::endl;
2193 }
2194
2195 return os;
2196}
8ea391e3 2197
2198
2199void AliTRDmcmSim::PrintFitRegXml(ostream& os) const
2200{
6b094867 2201 // print fit registres in XML format
2202
8ea391e3 2203 bool tracklet=false;
2204
2205 for (Int_t cpu = 0; cpu < 4; cpu++) {
2206 if(fFitPtr[cpu] != 31)
2207 tracklet=true;
2208 }
2209
2210 if(tracklet==true) {
2211 os << "<nginject>" << std::endl;
2212 os << "<ack roc=\""<< fDetector << "\" cmndid=\"0\">" << std::endl;
2213 os << "<dmem-readout>" << std::endl;
2214 os << "<d det=\"" << fDetector << "\">" << std::endl;
2215 os << " <ro-board rob=\"" << fRobPos << "\">" << std::endl;
2216 os << " <m mcm=\"" << fMcmPos << "\">" << std::endl;
2217
2218 for(int cpu=0; cpu<4; cpu++) {
2219 os << " <c cpu=\"" << cpu << "\">" << std::endl;
2220 if(fFitPtr[cpu] != 31) {
2221 for(int adcch=fFitPtr[cpu]; adcch<fFitPtr[cpu]+2; adcch++) {
5ac2e3b1 2222 os << " <ch chnr=\"" << adcch << "\">"<< std::endl;
8ea391e3 2223 os << " <hits>" << fFitReg[adcch].fNhits << "</hits>"<< std::endl;
2224 os << " <q0>" << fFitReg[adcch].fQ0/4 << "</q0>"<< std::endl; // divided by 4 because in simulation we have 2 additional decimal places
2225 os << " <q1>" << fFitReg[adcch].fQ1/4 << "</q1>"<< std::endl; // in the output
2226 os << " <sumx>" << fFitReg[adcch].fSumX << "</sumx>"<< std::endl;
2227 os << " <sumxsq>" << fFitReg[adcch].fSumX2 << "</sumxsq>"<< std::endl;
2228 os << " <sumy>" << fFitReg[adcch].fSumY << "</sumy>"<< std::endl;
2229 os << " <sumysq>" << fFitReg[adcch].fSumY2 << "</sumysq>"<< std::endl;
2230 os << " <sumxy>" << fFitReg[adcch].fSumXY << "</sumxy>"<< std::endl;
2231 os << " </ch>" << std::endl;
2232 }
2233 }
2234 os << " </c>" << std::endl;
2235 }
2236 os << " </m>" << std::endl;
2237 os << " </ro-board>" << std::endl;
2238 os << "</d>" << std::endl;
2239 os << "</dmem-readout>" << std::endl;
2240 os << "</ack>" << std::endl;
2241 os << "</nginject>" << std::endl;
2242 }
2243}
2244
2245
2246void AliTRDmcmSim::PrintTrackletsXml(ostream& os) const
2247{
6b094867 2248 // print tracklets in XML format
2249
8ea391e3 2250 os << "<nginject>" << std::endl;
2251 os << "<ack roc=\""<< fDetector << "\" cmndid=\"0\">" << std::endl;
2252 os << "<dmem-readout>" << std::endl;
2253 os << "<d det=\"" << fDetector << "\">" << std::endl;
2254 os << " <ro-board rob=\"" << fRobPos << "\">" << std::endl;
2255 os << " <m mcm=\"" << fMcmPos << "\">" << std::endl;
2256
2257 Int_t pid, padrow, slope, offset;
2258 for(Int_t cpu=0; cpu<4; cpu++) {
2259 if(fMCMT[cpu] == 0x10001000) {
2260 pid=-1;
2261 padrow=-1;
2262 slope=-1;
2263 offset=-1;
2264 }
2265 else {
2266 pid = (fMCMT[cpu] & 0xFF000000) >> 24;
2267 padrow = (fMCMT[cpu] & 0xF00000 ) >> 20;
2268 slope = (fMCMT[cpu] & 0xFE000 ) >> 13;
2269 offset = (fMCMT[cpu] & 0x1FFF ) ;
2270
2271 }
2272 os << " <trk> <pid>" << pid << "</pid>" << " <padrow>" << padrow << "</padrow>"
5ac2e3b1 2273 << " <slope>" << slope << "</slope>" << " <offset>" << offset << "</offset>" << "</trk>" << std::endl;
8ea391e3 2274 }
2275
2276 os << " </m>" << std::endl;
2277 os << " </ro-board>" << std::endl;
2278 os << "</d>" << std::endl;
2279 os << "</dmem-readout>" << std::endl;
2280 os << "</ack>" << std::endl;
2281 os << "</nginject>" << std::endl;
2282}
2283
2284
2285void AliTRDmcmSim::PrintAdcDatHuman(ostream& os) const
2286{
6b094867 2287 // print ADC data in human-readable format
2288
8ea391e3 2289 os << "MCM " << fMcmPos << " on ROB " << fRobPos <<
2290 " in detector " << fDetector << std::endl;
2291
2292 os << "----- Unfiltered ADC data (10 bit) -----" << std::endl;
2293 os << "ch ";
2294 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++)
2295 os << std::setw(5) << iChannel;
2296 os << std::endl;
2297 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
2298 os << "tb " << std::setw(2) << iTimeBin << ":";
2299 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++) {
2300 os << std::setw(5) << (fADCR[iChannel][iTimeBin] >> fgkAddDigits);
2301 }
2302 os << std::endl;
2303 }
2304
2305 os << "----- Filtered ADC data (10+2 bit) -----" << std::endl;
2306 os << "ch ";
2307 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++)
2308 os << std::setw(4) << iChannel
2309 << ((~fZSMap[iChannel] != 0) ? "!" : " ");
2310 os << std::endl;
2311 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
2312 os << "tb " << std::setw(2) << iTimeBin << ":";
2313 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++) {
2314 os << std::setw(4) << (fADCF[iChannel][iTimeBin])
2315 << (((fZSMap[iChannel] & (1 << iTimeBin)) == 0) ? "!" : " ");
2316 }
2317 os << std::endl;
2318 }
2319}
2320
2321
2322void AliTRDmcmSim::PrintAdcDatXml(ostream& os) const
2323{
6b094867 2324 // print ADC data in XML format
2325
8ea391e3 2326 os << "<nginject>" << std::endl;
2327 os << "<ack roc=\""<< fDetector << "\" cmndid=\"0\">" << std::endl;
2328 os << "<dmem-readout>" << std::endl;
2329 os << "<d det=\"" << fDetector << "\">" << std::endl;
2330 os << " <ro-board rob=\"" << fRobPos << "\">" << std::endl;
2331 os << " <m mcm=\"" << fMcmPos << "\">" << std::endl;
2332
2333 for(Int_t iChannel = 0; iChannel < fgkNADC; iChannel++) {
2334 os << " <ch chnr=\"" << iChannel << "\">" << std::endl;
2335 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
2336 os << "<tb>" << fADCF[iChannel][iTimeBin]/4 << "</tb>";
2337 }
2338 os << " </ch>" << std::endl;
2339 }
2340
2341 os << " </m>" << std::endl;
2342 os << " </ro-board>" << std::endl;
2343 os << "</d>" << std::endl;
2344 os << "</dmem-readout>" << std::endl;
2345 os << "</ack>" << std::endl;
2346 os << "</nginject>" << std::endl;
2347}
2348
2349
2350
2351void AliTRDmcmSim::PrintAdcDatDatx(ostream& os, Bool_t broadcast) const
2352{
6b094867 2353 // print ADC data in datx format (to send to FEE)
2354
8ea391e3 2355 fTrapConfig->PrintDatx(os, 2602, 1, 0, 127); // command to enable the ADC clock - necessary to write ADC values to MCM
2356 os << std::endl;
2357
2358 Int_t addrOffset = 0x2000;
2359 Int_t addrStep = 0x80;
2360 Int_t addrOffsetEBSIA = 0x20;
2361
2362 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
2363 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++) {
2364 if(broadcast==kFALSE)
2365 fTrapConfig->PrintDatx(os, addrOffset+iChannel*addrStep+addrOffsetEBSIA+iTimeBin, (fADCF[iChannel][iTimeBin]/4), GetRobPos(), GetMcmPos());
2366 else
2367 fTrapConfig->PrintDatx(os, addrOffset+iChannel*addrStep+addrOffsetEBSIA+iTimeBin, (fADCF[iChannel][iTimeBin]/4), 0, 127);
2368 }
2369 os << std::endl;
2370 }
2371}
2372
2373
2374void AliTRDmcmSim::PrintPidLutHuman()
2375{
6b094867 2376 // print PID LUT in human readable format
2377
8ea391e3 2378 UInt_t result;
2379
2380 UInt_t addrEnd = AliTRDtrapConfig::fgkDmemAddrLUTStart + fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTLength)/4; // /4 because each addr contains 4 values
2381 UInt_t nBinsQ0 = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTnbins);
2382
2383 std::cout << "nBinsQ0: " << nBinsQ0 << std::endl;
5ac2e3b1 2384 std::cout << "LUT table length: " << fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTLength) << std::endl;
8ea391e3 2385
2386 for(UInt_t addr=AliTRDtrapConfig::fgkDmemAddrLUTStart; addr< addrEnd; addr++) {
2387 result = fTrapConfig->GetDmemUnsigned(addr);
5ac2e3b1 2388 std::cout << addr << " # x: " << ((addr-AliTRDtrapConfig::fgkDmemAddrLUTStart)%((nBinsQ0)/4))*4 << ", y: " <<(addr-AliTRDtrapConfig::fgkDmemAddrLUTStart)/(nBinsQ0/4)
2389 << " # " <<((result>>0)&0xFF)
2390 << " | " << ((result>>8)&0xFF)
2391 << " | " << ((result>>16)&0xFF)
2392 << " | " << ((result>>24)&0xFF) << std::endl;
8ea391e3 2393 }
2394}