Changes to use the mean vertexer DA
[u/mrichter/AliRoot.git] / TRD / AliTRDmcmSim.cxx
CommitLineData
dfd03fc3 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
5eba8ada 16/* $Id$ */
17
dfd03fc3 18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD MCM (Multi Chip Module) simulator //
ce4786b9 21// which simulates the TRAP processing after the AD-conversion. //
22// The relevant parameters (i.e. configuration settings of the TRAP) //
23// are taken from AliTRDtrapConfig. //
dfd03fc3 24// //
25///////////////////////////////////////////////////////////////////////////////
26
ce4786b9 27#include <iostream>
28#include <iomanip>
ecf39416 29
ce4786b9 30#include "TCanvas.h"
31#include "TH1F.h"
32#include "TH2F.h"
33#include "TGraph.h"
34#include "TLine.h"
35#include "TRandom.h"
36#include "TClonesArray.h"
ce51199c 37#include "TMath.h"
0c349049 38
dfd03fc3 39#include "AliLog.h"
b0a41e80 40#include "AliRunLoader.h"
41#include "AliLoader.h"
0c349049 42
dfd03fc3 43#include "AliTRDfeeParam.h"
b0a41e80 44#include "AliTRDtrapConfig.h"
4cc89512 45#include "AliTRDdigitsManager.h"
b65e5048 46#include "AliTRDarrayADC.h"
40bd6ee4 47#include "AliTRDarrayDictionary.h"
52c19022 48#include "AliTRDtrackletMCM.h"
b0a41e80 49#include "AliTRDmcmSim.h"
1d93b218 50
dfd03fc3 51ClassImp(AliTRDmcmSim)
52
40bd6ee4 53Bool_t AliTRDmcmSim::fgApplyCut = kTRUE;
ce4786b9 54Int_t AliTRDmcmSim::fgAddBaseline = 0;
55
56const Int_t AliTRDmcmSim::fgkFormatIndex = std::ios_base::xalloc();
57
58const Int_t AliTRDmcmSim::fgkNADC = AliTRDfeeParam::GetNadcMcm();
59const UShort_t AliTRDmcmSim::fgkFPshifts[4] = {11, 14, 17, 21};
60
61
62AliTRDmcmSim::AliTRDmcmSim() :
63 TObject(),
64 fInitialized(kFALSE),
65 fDetector(-1),
66 fRobPos(-1),
67 fMcmPos(-1),
68 fRow (-1),
69 fNTimeBin(-1),
70 fADCR(NULL),
71 fADCF(NULL),
72 fMCMT(NULL),
73 fTrackletArray(NULL),
74 fZSMap(NULL),
6b094867 75 fTrklBranchName("mcmtrklbranch"),
ce4786b9 76 fFeeParam(NULL),
77 fTrapConfig(NULL),
78 fDigitsManager(NULL),
79 fPedAcc(NULL),
80 fGainCounterA(NULL),
81 fGainCounterB(NULL),
82 fTailAmplLong(NULL),
83 fTailAmplShort(NULL),
84 fNHits(0),
85 fFitReg(NULL)
dfd03fc3 86{
87 //
b0a41e80 88 // AliTRDmcmSim default constructor
dfd03fc3 89 // By default, nothing is initialized.
90 // It is necessary to issue Init before use.
91}
92
dfd03fc3 93AliTRDmcmSim::~AliTRDmcmSim()
94{
95 //
96 // AliTRDmcmSim destructor
97 //
0c349049 98
b0a41e80 99 if(fInitialized) {
ce4786b9 100 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
101 delete [] fADCR[iAdc];
102 delete [] fADCF[iAdc];
dfd03fc3 103 }
16e077d0 104 delete [] fADCR;
105 delete [] fADCF;
ce4786b9 106 delete [] fZSMap;
1d93b218 107 delete [] fMCMT;
b0a41e80 108
109 delete [] fPedAcc;
110 delete [] fGainCounterA;
111 delete [] fGainCounterB;
112 delete [] fTailAmplLong;
113 delete [] fTailAmplShort;
114 delete [] fFitReg;
115
116 fTrackletArray->Delete();
117 delete fTrackletArray;
1d93b218 118 }
dfd03fc3 119}
120
b0a41e80 121void AliTRDmcmSim::Init( Int_t det, Int_t robPos, Int_t mcmPos, Bool_t /* newEvent */ )
dfd03fc3 122{
0c349049 123 //
ce4786b9 124 // Initialize the class with new MCM position information
125 // memory is allocated in the first initialization
0c349049 126 //
96e6312d 127
b0a41e80 128 if (!fInitialized) {
129 fFeeParam = AliTRDfeeParam::Instance();
130 fTrapConfig = AliTRDtrapConfig::Instance();
b0a41e80 131 }
132
133 fDetector = det;
0c349049 134 fRobPos = robPos;
135 fMcmPos = mcmPos;
ce4786b9 136 fNTimeBin = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kC13CPUA);
dfd03fc3 137 fRow = fFeeParam->GetPadRowFromMCM( fRobPos, fMcmPos );
23200400 138
b0a41e80 139 if (!fInitialized) {
ce4786b9 140 fADCR = new Int_t *[fgkNADC];
141 fADCF = new Int_t *[fgkNADC];
142 fZSMap = new Int_t [fgkNADC];
143 fGainCounterA = new UInt_t[fgkNADC];
144 fGainCounterB = new UInt_t[fgkNADC];
145 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
146 fADCR[iAdc] = new Int_t[fNTimeBin];
147 fADCF[iAdc] = new Int_t[fNTimeBin];
dfd03fc3 148 }
b0a41e80 149
150 // filter registers
ce4786b9 151 fPedAcc = new UInt_t[fgkNADC]; // accumulator for pedestal filter
152 fTailAmplLong = new UShort_t[fgkNADC];
153 fTailAmplShort = new UShort_t[fgkNADC];
b0a41e80 154
155 // tracklet calculation
ce4786b9 156 fFitReg = new FitReg_t[fgkNADC];
157 fTrackletArray = new TClonesArray("AliTRDtrackletMCM", fgkMaxTracklets);
b0a41e80 158
ce4786b9 159 fMCMT = new UInt_t[fgkMaxTracklets];
dfd03fc3 160 }
161
b0a41e80 162 fInitialized = kTRUE;
163
164 Reset();
165}
166
167void AliTRDmcmSim::Reset()
168{
169 // Resets the data values and internal filter registers
170 // by re-initialising them
171
ce4786b9 172 if( !CheckInitialized() )
173 return;
5896bc23 174
ce4786b9 175 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
176 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
177 fADCR[iAdc][it] = 0;
178 fADCF[iAdc][it] = 0;
dfd03fc3 179 }
ce4786b9 180 fZSMap[iAdc] = -1; // Default unread, low active bit mask
181 fGainCounterA[iAdc] = 0;
182 fGainCounterB[iAdc] = 0;
dfd03fc3 183 }
ecf39416 184
ce4786b9 185 for(Int_t i = 0; i < fgkMaxTracklets; i++) {
1d93b218 186 fMCMT[i] = 0;
187 }
ce4786b9 188
189 for (Int_t iDict = 0; iDict < 3; iDict++)
190 fDict[iDict] = 0x0;
b0a41e80 191
192 FilterPedestalInit();
193 FilterGainInit();
ce4786b9 194 FilterTailInit();
b0a41e80 195}
1d93b218 196
4ff7ed2b 197void AliTRDmcmSim::SetNTimebins(Int_t ntimebins)
198{
ce4786b9 199 // Reallocate memory if a change in the number of timebins
200 // is needed (should not be the case for real data)
201
202 if( !CheckInitialized() )
203 return;
204
4ff7ed2b 205 fNTimeBin = ntimebins;
ce4786b9 206 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
207 delete fADCR[iAdc];
208 delete fADCF[iAdc];
209 fADCR[iAdc] = new Int_t[fNTimeBin];
210 fADCF[iAdc] = new Int_t[fNTimeBin];
4ff7ed2b 211 }
212}
213
ab9f7002 214Bool_t AliTRDmcmSim::LoadMCM(AliRunLoader* const runloader, Int_t det, Int_t rob, Int_t mcm)
b0a41e80 215{
ce4786b9 216 // loads the ADC data as obtained from the digitsManager for the specified MCM.
217 // This method is meant for rare execution, e.g. in the visualization. When called
218 // frequently use SetData(...) instead.
b0a41e80 219
64e3d742 220 Init(det, rob, mcm);
b0a41e80 221
222 if (!runloader) {
223 AliError("No Runloader given");
224 return kFALSE;
225 }
226
227 AliLoader *trdLoader = runloader->GetLoader("TRDLoader");
228 if (!trdLoader) {
229 AliError("Could not get TRDLoader");
230 return kFALSE;
231 }
232
5eba8ada 233 Bool_t retval = kTRUE;
b0a41e80 234 trdLoader->LoadDigits();
40bd6ee4 235 fDigitsManager = 0x0;
b0a41e80 236 AliTRDdigitsManager *digMgr = new AliTRDdigitsManager();
237 digMgr->SetSDigits(0);
238 digMgr->CreateArrays();
239 digMgr->ReadDigits(trdLoader->TreeD());
240 AliTRDarrayADC *digits = (AliTRDarrayADC*) digMgr->GetDigits(det);
5eba8ada 241 if (digits->HasData()) {
242 digits->Expand();
243
5896bc23 244 if (fNTimeBin != digits->GetNtime()) {
ce4786b9 245 AliWarning(Form("Changing no. of timebins from %i to %i", fNTimeBin, digits->GetNtime()));
4ff7ed2b 246 SetNTimebins(digits->GetNtime());
5896bc23 247 }
4ff7ed2b 248
ce4786b9 249 SetData(digits);
b0a41e80 250 }
5eba8ada 251 else
252 retval = kFALSE;
4ff7ed2b 253
b0a41e80 254 delete digMgr;
4ff7ed2b 255
256 return retval;
b0a41e80 257}
258
259void AliTRDmcmSim::NoiseTest(Int_t nsamples, Int_t mean, Int_t sigma, Int_t inputGain, Int_t inputTail)
260{
261 // This function can be used to test the filters.
262 // It feeds nsamples of ADC values with a gaussian distribution specified by mean and sigma.
263 // The filter chain implemented here consists of:
264 // Pedestal -> Gain -> Tail
265 // With inputGain and inputTail the input to the gain and tail filter, respectively,
266 // can be chosen where
267 // 0: noise input
268 // 1: pedestal output
269 // 2: gain output
270 // The input has to be chosen from a stage before.
271 // The filter behaviour is controlled by the TRAP parameters from AliTRDtrapConfig in the
272 // same way as in normal simulation.
273 // The functions produces four histograms with the values at the different stages.
274
ce4786b9 275 if( !CheckInitialized() )
276 return;
277
278 TString nameInputGain;
279 TString nameInputTail;
280
281 switch (inputGain) {
282 case 0:
283 nameInputGain = "Noise";
284 break;
285
286 case 1:
287 nameInputGain = "Pedestal";
288 break;
289
290 default:
291 AliError("Undefined input to tail cancellation filter");
292 return;
293 }
294
295 switch (inputTail) {
296 case 0:
297 nameInputTail = "Noise";
298 break;
299
300 case 1:
301 nameInputTail = "Pedestal";
302 break;
303
304 case 2:
305 nameInputTail = "Gain";
306 break;
307
308 default:
309 AliError("Undefined input to tail cancellation filter");
310 return;
311 }
312
b0a41e80 313 TH1F *h = new TH1F("noise", "Gaussian Noise;sample;ADC count",
314 nsamples, 0, nsamples);
ce4786b9 315 TH1F *hfp = new TH1F("ped", "Noise #rightarrow Pedestal filter;sample;ADC count", nsamples, 0, nsamples);
316 TH1F *hfg = new TH1F("gain",
317 (nameInputGain + "#rightarrow Gain;sample;ADC count").Data(),
318 nsamples, 0, nsamples);
319 TH1F *hft = new TH1F("tail",
320 (nameInputTail + "#rightarrow Tail;sample;ADC count").Data(),
321 nsamples, 0, nsamples);
b0a41e80 322 h->SetStats(kFALSE);
323 hfp->SetStats(kFALSE);
324 hfg->SetStats(kFALSE);
325 hft->SetStats(kFALSE);
326
327 Int_t value; // ADC count with noise (10 bit)
328 Int_t valuep; // pedestal filter output (12 bit)
329 Int_t valueg; // gain filter output (12 bit)
330 Int_t valuet; // tail filter value (12 bit)
331
332 for (Int_t i = 0; i < nsamples; i++) {
333 value = (Int_t) gRandom->Gaus(mean, sigma); // generate noise with gaussian distribution
334 h->SetBinContent(i, value);
335
336 valuep = FilterPedestalNextSample(1, 0, ((Int_t) value) << 2);
337
338 if (inputGain == 0)
339 valueg = FilterGainNextSample(1, ((Int_t) value) << 2);
340 else
341 valueg = FilterGainNextSample(1, valuep);
342
343 if (inputTail == 0)
344 valuet = FilterTailNextSample(1, ((Int_t) value) << 2);
345 else if (inputTail == 1)
346 valuet = FilterTailNextSample(1, valuep);
347 else
348 valuet = FilterTailNextSample(1, valueg);
349
350 hfp->SetBinContent(i, valuep >> 2);
351 hfg->SetBinContent(i, valueg >> 2);
352 hft->SetBinContent(i, valuet >> 2);
353 }
354
355 TCanvas *c = new TCanvas;
356 c->Divide(2,2);
357 c->cd(1);
358 h->Draw();
359 c->cd(2);
360 hfp->Draw();
361 c->cd(3);
362 hfg->Draw();
363 c->cd(4);
364 hft->Draw();
dfd03fc3 365}
366
ce4786b9 367Bool_t AliTRDmcmSim::CheckInitialized() const
ecf39416 368{
0c349049 369 //
370 // Check whether object is initialized
371 //
372
ce4786b9 373 if( ! fInitialized )
374 AliError(Form ("AliTRDmcmSim is not initialized but function other than Init() is called."));
375
ecf39416 376 return fInitialized;
377}
378
ab9f7002 379void AliTRDmcmSim::Print(Option_t* const option) const
b0a41e80 380{
381 // Prints the data stored and/or calculated for this MCM.
382 // The output is controlled by option which can be a sequence of any of
383 // the following characters:
384 // R - prints raw ADC data
385 // F - prints filtered data
386 // H - prints detected hits
387 // T - prints found tracklets
ce4786b9 388 // The later stages are only meaningful after the corresponding calculations
b0a41e80 389 // have been performed.
390
ce4786b9 391 if ( !CheckInitialized() )
392 return;
393
b0a41e80 394 printf("MCM %i on ROB %i in detector %i\n", fMcmPos, fRobPos, fDetector);
395
396 TString opt = option;
ce4786b9 397 if (opt.Contains("R") || opt.Contains("F")) {
398 std::cout << *this;
1d93b218 399 }
400
b0a41e80 401 if (opt.Contains("H")) {
402 printf("Found %i hits:\n", fNHits);
403 for (Int_t iHit = 0; iHit < fNHits; iHit++) {
404 printf("Hit %3i in timebin %2i, ADC %2i has charge %3i and position %3i\n",
ab9f7002 405 iHit, fHits[iHit].fTimebin, fHits[iHit].fChannel, fHits[iHit].fQtot, fHits[iHit].fYpos);
b0a41e80 406 }
1d93b218 407 }
1d93b218 408
b0a41e80 409 if (opt.Contains("T")) {
410 printf("Tracklets:\n");
411 for (Int_t iTrkl = 0; iTrkl < fTrackletArray->GetEntriesFast(); iTrkl++) {
412 printf("tracklet %i: 0x%08x\n", iTrkl, ((AliTRDtrackletMCM*) (*fTrackletArray)[iTrkl])->GetTrackletWord());
413 }
1d93b218 414 }
b0a41e80 415}
1d93b218 416
ab9f7002 417void AliTRDmcmSim::Draw(Option_t* const option)
b0a41e80 418{
419 // Plots the data stored in a 2-dim. timebin vs. ADC channel plot.
420 // The option selects what data is plotted and can be a sequence of
421 // the following characters:
422 // R - plot raw data (default)
423 // F - plot filtered data (meaningless if R is specified)
424 // In addition to the ADC values:
425 // H - plot hits
426 // T - plot tracklets
427
ce4786b9 428 if( !CheckInitialized() )
429 return;
430
b0a41e80 431 TString opt = option;
432
433 TH2F *hist = new TH2F("mcmdata", Form("Data of MCM %i on ROB %i in detector %i", \
434 fMcmPos, fRobPos, fDetector), \
ce4786b9 435 fgkNADC, -0.5, fgkNADC-.5, fNTimeBin, -.5, fNTimeBin-.5);
b0a41e80 436 hist->GetXaxis()->SetTitle("ADC Channel");
437 hist->GetYaxis()->SetTitle("Timebin");
438 hist->SetStats(kFALSE);
439
440 if (opt.Contains("R")) {
441 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 442 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 443 hist->SetBinContent(iAdc+1, iTimeBin+1, fADCR[iAdc][iTimeBin] >> fgkAddDigits);
444 }
1d93b218 445 }
b0a41e80 446 }
447 else {
448 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 449 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 450 hist->SetBinContent(iAdc+1, iTimeBin+1, fADCF[iAdc][iTimeBin] >> fgkAddDigits);
451 }
1d93b218 452 }
1d93b218 453 }
b0a41e80 454 hist->Draw("colz");
1d93b218 455
b0a41e80 456 if (opt.Contains("H")) {
457 TGraph *grHits = new TGraph();
458 for (Int_t iHit = 0; iHit < fNHits; iHit++) {
459 grHits->SetPoint(iHit,
ab9f7002 460 fHits[iHit].fChannel + 1 + fHits[iHit].fYpos/256.,
461 fHits[iHit].fTimebin);
b0a41e80 462 }
463 grHits->Draw("*");
464 }
1d93b218 465
b0a41e80 466 if (opt.Contains("T")) {
467 TLine *trklLines = new TLine[4];
64e3d742 468 for (Int_t iTrkl = 0; iTrkl < fTrackletArray->GetEntries(); iTrkl++) {
b0a41e80 469 AliTRDtrackletMCM *trkl = (AliTRDtrackletMCM*) (*fTrackletArray)[iTrkl];
ce4786b9 470 Float_t padWidth = 0.635 + 0.03 * (fDetector % 6);
471 Float_t offset = padWidth/256. * ((((((fRobPos & 0x1) << 2) + (fMcmPos & 0x3)) * 18) << 8) - ((18*4*2 - 18*2 - 3) << 7)); // revert adding offset in FitTracklet
8ea391e3 472 Int_t ndrift = fTrapConfig->GetDmemUnsigned(0xc025, fDetector, fRobPos, fMcmPos) >> 5;
ce4786b9 473 Float_t slope = trkl->GetdY() * 140e-4 / ndrift;
474
475 Int_t t0 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFS);
476 Int_t t1 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFE);
477
478 trklLines[iTrkl].SetX1((offset - (trkl->GetY() - slope * t0)) / padWidth); // ??? sign?
479 trklLines[iTrkl].SetY1(t0);
480 trklLines[iTrkl].SetX2((offset - (trkl->GetY() - slope * t1)) / padWidth); // ??? sign?
481 trklLines[iTrkl].SetY2(t1);
b0a41e80 482 trklLines[iTrkl].SetLineColor(2);
483 trklLines[iTrkl].SetLineWidth(2);
484 printf("Tracklet %i: y = %f, dy = %f, offset = %f\n", iTrkl, trkl->GetY(), (trkl->GetdY() * 140e-4), offset);
485 trklLines[iTrkl].Draw();
486 }
487 }
1d93b218 488}
489
ce4786b9 490void AliTRDmcmSim::SetData( Int_t adc, Int_t* const data )
dfd03fc3 491{
0c349049 492 //
dfd03fc3 493 // Store ADC data into array of raw data
0c349049 494 //
dfd03fc3 495
ecf39416 496 if( !CheckInitialized() ) return;
dfd03fc3 497
ce4786b9 498 if( adc < 0 || adc >= fgkNADC ) {
499 AliError(Form ("Error: ADC %i is out of range (0 .. %d).", adc, fgkNADC-1));
dfd03fc3 500 return;
501 }
502
4ff7ed2b 503 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
ce4786b9 504 fADCR[adc][it] = (Int_t) (data[it]) << fgkAddDigits;
505 fADCF[adc][it] = (Int_t) (data[it]) << fgkAddDigits;
dfd03fc3 506 }
507}
508
ce4786b9 509void AliTRDmcmSim::SetData( Int_t adc, Int_t it, Int_t data )
dfd03fc3 510{
0c349049 511 //
dfd03fc3 512 // Store ADC data into array of raw data
0c349049 513 //
dfd03fc3 514
ecf39416 515 if( !CheckInitialized() ) return;
dfd03fc3 516
ce4786b9 517 if( adc < 0 || adc >= fgkNADC ) {
518 AliError(Form ("Error: ADC %i is out of range (0 .. %d).", adc, fgkNADC-1));
dfd03fc3 519 return;
520 }
521
ce4786b9 522 fADCR[adc][it] = data << fgkAddDigits;
523 fADCF[adc][it] = data << fgkAddDigits;
b0a41e80 524}
525
6b094867 526void AliTRDmcmSim::SetData(AliTRDarrayADC* const adcArray, AliTRDdigitsManager * const digitsManager)
b0a41e80 527{
ab9f7002 528 // Set the ADC data from an AliTRDarrayADC
529
ce4786b9 530 if( !CheckInitialized() )
b0a41e80 531 return;
b0a41e80 532
40bd6ee4 533 fDigitsManager = digitsManager;
ce4786b9 534 if (fDigitsManager) {
535 for (Int_t iDict = 0; iDict < 3; iDict++) {
536 AliTRDarrayDictionary *newDict = (AliTRDarrayDictionary*) fDigitsManager->GetDictionary(fDetector, iDict);
537 if (fDict[iDict] != 0x0 && newDict != 0x0) {
538
539 if (fDict[iDict] == newDict)
540 continue;
40bd6ee4 541
ce4786b9 542 fDict[iDict] = newDict;
543
544 if (fDict[iDict]->GetDim() == 0) {
545 AliError(Form("Dictionary %i of det. %i has dim. 0", fDetector, iDict));
546 continue;
547 }
548 fDict[iDict]->Expand();
549 }
550 else {
551 fDict[iDict] = newDict;
552 if (fDict[iDict])
553 fDict[iDict]->Expand();
554 }
555 }
5896bc23 556 }
4ff7ed2b 557
ce4786b9 558 if (fNTimeBin != adcArray->GetNtime())
559 SetNTimebins(adcArray->GetNtime());
560
561 Int_t offset = (fMcmPos % 4 + 1) * 21 + (fRobPos % 2) * 84 - 1;
b0a41e80 562
563 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 564 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
565 Int_t value = adcArray->GetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin);
566 if (value < 0 || (offset - iAdc < 1) || (offset - iAdc > 165)) {
567 fADCR[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP) + (fgAddBaseline << fgkAddDigits);
4ff7ed2b 568 fADCF[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP) + (fgAddBaseline << fgkAddDigits);
b0a41e80 569 }
570 else {
ce4786b9 571 fZSMap[iAdc] = 0;
572 fADCR[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
573 fADCF[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
b0a41e80 574 }
575 }
576 }
dfd03fc3 577}
578
6b094867 579void AliTRDmcmSim::SetDataByPad(AliTRDarrayADC* const adcArray, AliTRDdigitsManager * const digitsManager)
ce51199c 580{
581 // Set the ADC data from an AliTRDarrayADC
582 // (by pad, to be used during initial reading in simulation)
583
584 if( !CheckInitialized() )
585 return;
586
587 fDigitsManager = digitsManager;
588 if (fDigitsManager) {
589 for (Int_t iDict = 0; iDict < 3; iDict++) {
590 AliTRDarrayDictionary *newDict = (AliTRDarrayDictionary*) fDigitsManager->GetDictionary(fDetector, iDict);
591 if (fDict[iDict] != 0x0 && newDict != 0x0) {
592
593 if (fDict[iDict] == newDict)
594 continue;
595
596 fDict[iDict] = newDict;
597
598 if (fDict[iDict]->GetDim() == 0) {
599 AliError(Form("Dictionary %i of det. %i has dim. 0", fDetector, iDict));
600 continue;
601 }
602 fDict[iDict]->Expand();
603 }
604 else {
605 fDict[iDict] = newDict;
606 if (fDict[iDict])
607 fDict[iDict]->Expand();
608 }
609 }
610 }
611
612 if (fNTimeBin != adcArray->GetNtime())
613 SetNTimebins(adcArray->GetNtime());
614
615 Int_t offset = (fMcmPos % 4 + 1) * 18 + (fRobPos % 2) * 72 + 1;
616
617 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
618 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
619 Int_t value = -1;
620 Int_t pad = offset - iAdc;
621 if (pad > -1 && pad < 144)
622 value = adcArray->GetData(GetRow(), offset - iAdc, iTimeBin);
623 // Int_t value = adcArray->GetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin);
624 if (value < 0 || (offset - iAdc < 1) || (offset - iAdc > 165)) {
625 fADCR[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP) + (fgAddBaseline << fgkAddDigits);
626 fADCF[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP) + (fgAddBaseline << fgkAddDigits);
627 }
628 else {
629 fZSMap[iAdc] = 0;
630 fADCR[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
631 fADCF[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
632 }
633 }
634 }
635}
636
ce4786b9 637void AliTRDmcmSim::SetDataPedestal( Int_t adc )
dfd03fc3 638{
0c349049 639 //
dfd03fc3 640 // Store ADC data into array of raw data
0c349049 641 //
dfd03fc3 642
ce4786b9 643 if( !CheckInitialized() )
644 return;
dfd03fc3 645
ce4786b9 646 if( adc < 0 || adc >= fgkNADC ) {
dfd03fc3 647 return;
648 }
649
650 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
ce4786b9 651 fADCR[adc][it] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP) + (fgAddBaseline << fgkAddDigits);
652 fADCF[adc][it] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP) + (fgAddBaseline << fgkAddDigits);
dfd03fc3 653 }
654}
655
ce4786b9 656Bool_t AliTRDmcmSim::GetHit(Int_t index, Int_t &channel, Int_t &timebin, Int_t &qtot, Int_t &ypos, Float_t &y, Int_t &label) const
657{
658 // retrieve the MC hit information (not available in TRAP hardware)
659
660 if (index < 0 || index >= fNHits)
661 return kFALSE;
662
663 channel = fHits[index].fChannel;
664 timebin = fHits[index].fTimebin;
665 qtot = fHits[index].fQtot;
666 ypos = fHits[index].fYpos;
667 y = (Float_t) ((((((fRobPos & 0x1) << 2) + (fMcmPos & 0x3)) * 18) << 8) - ((18*4*2 - 18*2 - 1) << 7) -
668 (channel << 8) - ypos)
669 * (0.635 + 0.03 * (fDetector % 6))
670 / 256.0;
671 label = fHits[index].fLabel;
672
673 return kTRUE;
674}
675
676Int_t AliTRDmcmSim::GetCol( Int_t adc )
dfd03fc3 677{
0c349049 678 //
dfd03fc3 679 // Return column id of the pad for the given ADC channel
0c349049 680 //
681
f793c83d 682 if( !CheckInitialized() )
683 return -1;
dfd03fc3 684
ce4786b9 685 Int_t col = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adc);
a6d08b7f 686 if (col < 0 || col >= fFeeParam->GetNcol())
687 return -1;
688 else
689 return col;
dfd03fc3 690}
691
ce4786b9 692Int_t AliTRDmcmSim::ProduceRawStream( UInt_t *buf, Int_t bufSize, UInt_t iEv) const
987ba9a3 693{
694 //
695 // Produce raw data stream from this MCM and put in buf
696 // Returns number of words filled, or negative value
697 // with -1 * number of overflowed words
698 //
699
ce4786b9 700 if( !CheckInitialized() )
701 return 0;
702
987ba9a3 703 UInt_t x;
7d619a80 704 UInt_t mcmHeader = 0;
705 UInt_t adcMask = 0;
987ba9a3 706 Int_t nw = 0; // Number of written words
707 Int_t of = 0; // Number of overflowed words
708 Int_t rawVer = fFeeParam->GetRAWversion();
709 Int_t **adc;
710 Int_t nActiveADC = 0; // number of activated ADC bits in a word
711
ce4786b9 712 if( !CheckInitialized() )
713 return 0;
987ba9a3 714
ce4786b9 715 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBSF) != 0) // store unfiltered data
987ba9a3 716 adc = fADCR;
ce4786b9 717 else
987ba9a3 718 adc = fADCF;
ce4786b9 719
987ba9a3 720 // Produce ADC mask : nncc cccm mmmm mmmm mmmm mmmm mmmm 1100
721 // n : unused , c : ADC count, m : selected ADCs
7d619a80 722 if( rawVer >= 3 &&
723 (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kC15CPUA) & (1 << 13))) { // check for zs flag in TRAP configuration
ce4786b9 724 for( Int_t iAdc = 0 ; iAdc < fgkNADC ; iAdc++ ) {
725 if( ~fZSMap[iAdc] != 0 ) { // 0 means not suppressed
7d619a80 726 adcMask |= (1 << (iAdc+4) ); // last 4 digit reserved for 1100=0xc
727 nActiveADC++; // number of 1 in mmm....m
987ba9a3 728 }
729 }
987ba9a3 730
7d619a80 731 if ((nActiveADC == 0) &&
732 (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kC15CPUA) & (1 << 8))) // check for DEH flag in TRAP configuration
733 return 0;
734
735 // assemble adc mask word
736 adcMask |= (1 << 30) | ( ( 0x3FFFFFFC ) & (~(nActiveADC) << 25) ) | 0xC; // nn = 01, ccccc are inverted, 0xc=1100
737 }
738
739 // MCM header
740 mcmHeader = (1<<31) | (fRobPos << 28) | (fMcmPos << 24) | ((iEv % 0x100000) << 4) | 0xC;
741 if (nw < bufSize)
742 buf[nw++] = mcmHeader;
743 else
744 of++;
745
746 // ADC mask
747 if( adcMask != 0 ) {
748 if (nw < bufSize)
749 buf[nw++] = adcMask;
750 else
987ba9a3 751 of++;
987ba9a3 752 }
753
754 // Produce ADC data. 3 timebins are packed into one 32 bits word
755 // In this version, different ADC channel will NOT share the same word
756
757 UInt_t aa=0, a1=0, a2=0, a3=0;
758
759 for (Int_t iAdc = 0; iAdc < 21; iAdc++ ) {
ce4786b9 760 if( rawVer>= 3 && ~fZSMap[iAdc] == 0 ) continue; // Zero Suppression, 0 means not suppressed
b0a41e80 761 aa = !(iAdc & 1) + 2;
987ba9a3 762 for (Int_t iT = 0; iT < fNTimeBin; iT+=3 ) {
b0a41e80 763 a1 = ((iT ) < fNTimeBin ) ? adc[iAdc][iT ] >> fgkAddDigits : 0;
764 a2 = ((iT + 1) < fNTimeBin ) ? adc[iAdc][iT+1] >> fgkAddDigits : 0;
765 a3 = ((iT + 2) < fNTimeBin ) ? adc[iAdc][iT+2] >> fgkAddDigits : 0;
987ba9a3 766 x = (a3 << 22) | (a2 << 12) | (a1 << 2) | aa;
ce4786b9 767 if (nw < bufSize) {
b0a41e80 768 buf[nw++] = x;
987ba9a3 769 }
770 else {
b0a41e80 771 of++;
987ba9a3 772 }
773 }
774 }
775
776 if( of != 0 ) return -of; else return nw;
777}
778
ce4786b9 779Int_t AliTRDmcmSim::ProduceTrackletStream( UInt_t *buf, Int_t bufSize )
1d93b218 780{
781 //
782 // Produce tracklet data stream from this MCM and put in buf
783 // Returns number of words filled, or negative value
784 // with -1 * number of overflowed words
785 //
786
ce4786b9 787 if( !CheckInitialized() )
788 return 0;
789
1d93b218 790 Int_t nw = 0; // Number of written words
791 Int_t of = 0; // Number of overflowed words
792
1d93b218 793 // Produce tracklet data. A maximum of four 32 Bit words will be written per MCM
794 // fMCMT is filled continuously until no more tracklet words available
795
f793c83d 796 for (Int_t iTracklet = 0; iTracklet < fTrackletArray->GetEntriesFast(); iTracklet++) {
ce4786b9 797 if (nw < bufSize)
f793c83d 798 buf[nw++] = ((AliTRDtrackletMCM*) (*fTrackletArray)[iTracklet])->GetTrackletWord();
799 else
800 of++;
1d93b218 801 }
802
803 if( of != 0 ) return -of; else return nw;
804}
805
dfd03fc3 806void AliTRDmcmSim::Filter()
807{
0c349049 808 //
b0a41e80 809 // Filter the raw ADC values. The active filter stages and their
810 // parameters are taken from AliTRDtrapConfig.
811 // The raw data is stored separate from the filtered data. Thus,
812 // it is possible to run the filters on a set of raw values
813 // sequentially for parameter tuning.
0c349049 814 //
dfd03fc3 815
ce4786b9 816 if( !CheckInitialized() )
b0a41e80 817 return;
dfd03fc3 818
b0a41e80 819 // Apply filters sequentially. Bypass is handled by filters
820 // since counters and internal registers may be updated even
821 // if the filter is bypassed.
822 // The first filter takes the data from fADCR and
823 // outputs to fADCF.
824
825 // Non-linearity filter not implemented.
826 FilterPedestal();
827 FilterGain();
828 FilterTail();
829 // Crosstalk filter not implemented.
dfd03fc3 830}
831
ce4786b9 832void AliTRDmcmSim::FilterPedestalInit(Int_t baseline)
b0a41e80 833{
834 // Initializes the pedestal filter assuming that the input has
835 // been constant for a long time (compared to the time constant).
836
b0a41e80 837 UShort_t fptc = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPTC); // 0..3, 0 - fastest, 3 - slowest
b0a41e80 838
ce4786b9 839 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++)
840 fPedAcc[iAdc] = (baseline << 2) * (1 << fgkFPshifts[fptc]);
b0a41e80 841}
842
843UShort_t AliTRDmcmSim::FilterPedestalNextSample(Int_t adc, Int_t timebin, UShort_t value)
dfd03fc3 844{
b0a41e80 845 // Returns the output of the pedestal filter given the input value.
846 // The output depends on the internal registers and, thus, the
847 // history of the filter.
848
849 UShort_t fpnp = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP); // 0..511 -> 0..127.75, pedestal at the output
850 UShort_t fptc = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPTC); // 0..3, 0 - fastest, 3 - slowest
ce4786b9 851 UShort_t fpby = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPBY); // 0..1 bypass, active low
b0a41e80 852
853 UShort_t accumulatorShifted;
854 Int_t correction;
855 UShort_t inpAdd;
856
857 inpAdd = value + fpnp;
858
ce4786b9 859 accumulatorShifted = (fPedAcc[adc] >> fgkFPshifts[fptc]) & 0x3FF; // 10 bits
b0a41e80 860 if (timebin == 0) // the accumulator is disabled in the drift time
861 {
862 correction = (value & 0x3FF) - accumulatorShifted;
863 fPedAcc[adc] = (fPedAcc[adc] + correction) & 0x7FFFFFFF; // 31 bits
864 }
865
ce4786b9 866 if (fpby == 0)
867 return value;
868
b0a41e80 869 if (inpAdd <= accumulatorShifted)
870 return 0;
871 else
872 {
873 inpAdd = inpAdd - accumulatorShifted;
874 if (inpAdd > 0xFFF)
875 return 0xFFF;
876 else
877 return inpAdd;
878 }
879}
23200400 880
b0a41e80 881void AliTRDmcmSim::FilterPedestal()
882{
0c349049 883 //
dfd03fc3 884 // Apply pedestal filter
0c349049 885 //
b0a41e80 886 // As the first filter in the chain it reads data from fADCR
887 // and outputs to fADCF.
888 // It has only an effect if previous samples have been fed to
889 // find the pedestal. Currently, the simulation assumes that
890 // the input has been stable for a sufficiently long time.
dfd03fc3 891
b0a41e80 892 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 893 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 894 fADCF[iAdc][iTimeBin] = FilterPedestalNextSample(iAdc, iTimeBin, fADCR[iAdc][iTimeBin]);
dfd03fc3 895 }
896 }
897}
898
b0a41e80 899void AliTRDmcmSim::FilterGainInit()
dfd03fc3 900{
b0a41e80 901 // Initializes the gain filter. In this case, only threshold
902 // counters are reset.
0c349049 903
ce4786b9 904 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 905 // these are counters which in hardware continue
906 // until maximum or reset
907 fGainCounterA[iAdc] = 0;
908 fGainCounterB[iAdc] = 0;
909 }
dfd03fc3 910}
911
b0a41e80 912UShort_t AliTRDmcmSim::FilterGainNextSample(Int_t adc, UShort_t value)
dfd03fc3 913{
b0a41e80 914 // Apply the gain filter to the given value.
915 // BEGIN_LATEX O_{i}(t) = #gamma_{i} * I_{i}(t) + a_{i} END_LATEX
916 // The output depends on the internal registers and, thus, the
917 // history of the filter.
dfd03fc3 918
b0a41e80 919 UShort_t fgby = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFGBY); // bypass, active low
920 UShort_t fgf = fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGF0 + adc)); // 0x700 + (0 & 0x1ff);
921 UShort_t fga = fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGA0 + adc)); // 40;
922 UShort_t fgta = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFGTA); // 20;
923 UShort_t fgtb = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFGTB); // 2060;
dfd03fc3 924
ce4786b9 925 UInt_t corr; // corrected value
dfd03fc3 926
b0a41e80 927 value &= 0xFFF;
ce4786b9 928 corr = (value * fgf) >> 11;
929 corr = corr > 0xfff ? 0xfff : corr;
930 corr = AddUintClipping(corr, fga, 12);
b0a41e80 931
932 // Update threshold counters
933 // not really useful as they are cleared with every new event
ce4786b9 934 if (!((fGainCounterA[adc] == 0x3FFFFFF) || (fGainCounterB[adc] == 0x3FFFFFF)))
935 // stop when full
b0a41e80 936 {
ce4786b9 937 if (corr >= fgtb)
b0a41e80 938 fGainCounterB[adc]++;
ce4786b9 939 else if (corr >= fgta)
b0a41e80 940 fGainCounterA[adc]++;
941 }
942
ce4786b9 943 if (fgby == 1)
944 return corr;
945 else
946 return value;
b0a41e80 947}
948
949void AliTRDmcmSim::FilterGain()
950{
951 // Read data from fADCF and apply gain filter.
952
ce4786b9 953 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 954 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
955 fADCF[iAdc][iTimeBin] = FilterGainNextSample(iAdc, fADCF[iAdc][iTimeBin]);
1d93b218 956 }
b0a41e80 957 }
958}
1d93b218 959
b0a41e80 960void AliTRDmcmSim::FilterTailInit(Int_t baseline)
961{
962 // Initializes the tail filter assuming that the input has
963 // been at the baseline value (configured by FTFP) for a
964 // sufficiently long time.
965
966 // exponents and weight calculated from configuration
967 UShort_t alphaLong = 0x3ff & fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTAL); // the weight of the long component
968 UShort_t lambdaLong = (1 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLL) & 0x1FF); // the multiplier
969 UShort_t lambdaShort = (0 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLS) & 0x1FF); // the multiplier
970
971 Float_t lambdaL = lambdaLong * 1.0 / (1 << 11);
972 Float_t lambdaS = lambdaShort * 1.0 / (1 << 11);
973 Float_t alphaL = alphaLong * 1.0 / (1 << 11);
974 Float_t qup, qdn;
975 qup = (1 - lambdaL) * (1 - lambdaS);
976 qdn = 1 - lambdaS * alphaL - lambdaL * (1 - alphaL);
977 Float_t kdc = qup/qdn;
978
979 Float_t kt, ql, qs;
980 UShort_t aout;
ce4786b9 981
982 if (baseline < 0)
983 baseline = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP);
b0a41e80 984
b0a41e80 985 ql = lambdaL * (1 - lambdaS) * alphaL;
986 qs = lambdaS * (1 - lambdaL) * (1 - alphaL);
987
ce4786b9 988 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
989 Int_t value = baseline & 0xFFF;
990 Int_t corr = (value * fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGF0 + iAdc))) >> 11;
991 corr = corr > 0xfff ? 0xfff : corr;
992 corr = AddUintClipping(corr, fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGA0 + iAdc)), 12);
993
994 kt = kdc * baseline;
995 aout = baseline - (UShort_t) kt;
996
b0a41e80 997 fTailAmplLong[iAdc] = (UShort_t) (aout * ql / (ql + qs));
998 fTailAmplShort[iAdc] = (UShort_t) (aout * qs / (ql + qs));
999 }
1000}
1001
1002UShort_t AliTRDmcmSim::FilterTailNextSample(Int_t adc, UShort_t value)
1003{
1004 // Returns the output of the tail filter for the given input value.
1005 // The output depends on the internal registers and, thus, the
1006 // history of the filter.
1007
1008 // exponents and weight calculated from configuration
ce4786b9 1009 UShort_t alphaLong = 0x3ff & fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTAL); // the weight of the long component
1010 UShort_t lambdaLong = (1 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLL) & 0x1FF); // the multiplier of the long component
1011 UShort_t lambdaShort = (0 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLS) & 0x1FF); // the multiplier of the short component
b0a41e80 1012
ce4786b9 1013 // intermediate signals
1014 UInt_t aDiff;
1015 UInt_t alInpv;
b0a41e80 1016 UShort_t aQ;
ce4786b9 1017 UInt_t tmp;
b0a41e80 1018
ab9f7002 1019 UShort_t inpVolt = value & 0xFFF; // 12 bits
b0a41e80 1020
ce4786b9 1021 // add the present generator outputs
1022 aQ = AddUintClipping(fTailAmplLong[adc], fTailAmplShort[adc], 12);
1023
1024 // calculate the difference between the input and the generated signal
1025 if (inpVolt > aQ)
1026 aDiff = inpVolt - aQ;
1027 else
1028 aDiff = 0;
1029
1030 // the inputs to the two generators, weighted
1031 alInpv = (aDiff * alphaLong) >> 11;
1032
1033 // the new values of the registers, used next time
1034 // long component
1035 tmp = AddUintClipping(fTailAmplLong[adc], alInpv, 12);
1036 tmp = (tmp * lambdaLong) >> 11;
1037 fTailAmplLong[adc] = tmp & 0xFFF;
1038 // short component
1039 tmp = AddUintClipping(fTailAmplShort[adc], aDiff - alInpv, 12);
1040 tmp = (tmp * lambdaShort) >> 11;
1041 fTailAmplShort[adc] = tmp & 0xFFF;
1042
1043 // the output of the filter
b0a41e80 1044 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTBY) == 0) // bypass mode, active low
1045 return value;
1046 else
b0a41e80 1047 return aDiff;
b0a41e80 1048}
dfd03fc3 1049
b0a41e80 1050void AliTRDmcmSim::FilterTail()
1051{
ce4786b9 1052 // Apply tail cancellation filter to all data.
fabf2e09 1053
b0a41e80 1054 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1055 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 1056 fADCF[iAdc][iTimeBin] = FilterTailNextSample(iAdc, fADCF[iAdc][iTimeBin]);
1057 }
1058 }
dfd03fc3 1059}
1060
dfd03fc3 1061void AliTRDmcmSim::ZSMapping()
1062{
0c349049 1063 //
dfd03fc3 1064 // Zero Suppression Mapping implemented in TRAP chip
ce4786b9 1065 // only implemented for up to 30 timebins
dfd03fc3 1066 //
1067 // See detail TRAP manual "Data Indication" section:
1068 // http://www.kip.uni-heidelberg.de/ti/TRD/doc/trap/TRAP-UserManual.pdf
0c349049 1069 //
dfd03fc3 1070
ce4786b9 1071 if( !CheckInitialized() )
1072 return;
1073
1074 Int_t eBIS = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIS);
1075 Int_t eBIT = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIT);
1076 Int_t eBIL = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIL);
1077 Int_t eBIN = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIN);
ecf39416 1078
b0a41e80 1079 Int_t **adc = fADCF;
dfd03fc3 1080
ce4786b9 1081 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++)
1082 fZSMap[iAdc] = -1;
b0a41e80 1083
1084 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
ce4786b9 1085 Int_t iAdc; // current ADC channel
1086 Int_t ap;
1087 Int_t ac;
1088 Int_t an;
1089 Int_t mask;
1090 Int_t supp; // suppression of the current channel (low active)
1091
1092 // ----- first channel -----
1093 iAdc = 0;
1094
1095 ap = 0; // previous
1096 ac = adc[iAdc ][it]; // current
1097 an = adc[iAdc+1][it]; // next
1098
1099 mask = ( ac >= ap && ac >= an ) ? 0 : 0x1; // peak center detection
1100 mask += ( ap + ac + an > eBIT ) ? 0 : 0x2; // cluster
1101 mask += ( ac > eBIS ) ? 0 : 0x4; // absolute large peak
1102
1103 supp = (eBIL >> mask) & 1;
1104
1105 fZSMap[iAdc] &= ~((1-supp) << it);
1106 if( eBIN == 0 ) { // neighbour sensitivity
1107 fZSMap[iAdc+1] &= ~((1-supp) << it);
dfd03fc3 1108 }
ce4786b9 1109
1110 // ----- last channel -----
1111 iAdc = fgkNADC - 1;
1112
1113 ap = adc[iAdc-1][it]; // previous
1114 ac = adc[iAdc ][it]; // current
1115 an = 0; // next
1116
1117 mask = ( ac >= ap && ac >= an ) ? 0 : 0x1; // peak center detection
1118 mask += ( ap + ac + an > eBIT ) ? 0 : 0x2; // cluster
1119 mask += ( ac > eBIS ) ? 0 : 0x4; // absolute large peak
1120
1121 supp = (eBIL >> mask) & 1;
1122
1123 fZSMap[iAdc] &= ~((1-supp) << it);
1124 if( eBIN == 0 ) { // neighbour sensitivity
1125 fZSMap[iAdc-1] &= ~((1-supp) << it);
ecf39416 1126 }
ce4786b9 1127
1128 // ----- middle channels -----
1129 for( iAdc = 1 ; iAdc < fgkNADC-1; iAdc++ ) {
1130 ap = adc[iAdc-1][it]; // previous
1131 ac = adc[iAdc ][it]; // current
1132 an = adc[iAdc+1][it]; // next
1133
1134 mask = ( ac >= ap && ac >= an ) ? 0 : 0x1; // peak center detection
1135 mask += ( ap + ac + an > eBIT ) ? 0 : 0x2; // cluster
1136 mask += ( ac > eBIS ) ? 0 : 0x4; // absolute large peak
1137
1138 supp = (eBIL >> mask) & 1;
1139
1140 fZSMap[iAdc] &= ~((1-supp) << it);
1141 if( eBIN == 0 ) { // neighbour sensitivity
1142 fZSMap[iAdc-1] &= ~((1-supp) << it);
1143 fZSMap[iAdc+1] &= ~((1-supp) << it);
ecf39416 1144 }
dfd03fc3 1145 }
ce4786b9 1146
dfd03fc3 1147 }
1148}
1149
b0a41e80 1150void AliTRDmcmSim::AddHitToFitreg(Int_t adc, UShort_t timebin, UShort_t qtot, Short_t ypos, Int_t label)
dfd03fc3 1151{
b0a41e80 1152 // Add the given hit to the fit register which is lateron used for
1153 // the tracklet calculation.
1154 // In addition to the fit sums in the fit register MC information
1155 // is stored.
1156
1157 if ((timebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0)) &&
1158 (timebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE0)))
ab9f7002 1159 fFitReg[adc].fQ0 += qtot;
b0a41e80 1160
1161 if ((timebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS1)) &&
1162 (timebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1)))
ab9f7002 1163 fFitReg[adc].fQ1 += qtot;
b0a41e80 1164
1165 if ((timebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFS) ) &&
1166 (timebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFE)))
1167 {
ab9f7002 1168 fFitReg[adc].fSumX += timebin;
1169 fFitReg[adc].fSumX2 += timebin*timebin;
1170 fFitReg[adc].fNhits++;
1171 fFitReg[adc].fSumY += ypos;
1172 fFitReg[adc].fSumY2 += ypos*ypos;
1173 fFitReg[adc].fSumXY += timebin*ypos;
b0a41e80 1174 }
1175
1176 // register hits (MC info)
ab9f7002 1177 fHits[fNHits].fChannel = adc;
1178 fHits[fNHits].fQtot = qtot;
1179 fHits[fNHits].fYpos = ypos;
1180 fHits[fNHits].fTimebin = timebin;
1181 fHits[fNHits].fLabel = label;
b0a41e80 1182 fNHits++;
dfd03fc3 1183}
1184
b0a41e80 1185void AliTRDmcmSim::CalcFitreg()
dfd03fc3 1186{
b0a41e80 1187 // Preprocessing.
1188 // Detect the hits and fill the fit registers.
1189 // Requires 12-bit data from fADCF which means Filter()
1190 // has to be called before even if all filters are bypassed.
1191
b0a41e80 1192 //??? to be clarified:
64e3d742 1193 UInt_t adcMask = 0xffffffff;
b0a41e80 1194
ab9f7002 1195 UShort_t timebin, adcch, adcLeft, adcCentral, adcRight, hitQual, timebin1, timebin2, qtotTemp;
b0a41e80 1196 Short_t ypos, fromLeft, fromRight, found;
ab9f7002 1197 UShort_t qTotal[19]; // the last is dummy
1198 UShort_t marked[6], qMarked[6], worse1, worse2;
b0a41e80 1199
1200 timebin1 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFS);
1201 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0)
1202 < timebin1)
1203 timebin1 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0);
1204 timebin2 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFE);
1205 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1)
1206 > timebin2)
1207 timebin2 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1);
1208
1209 // reset the fit registers
1210 fNHits = 0;
ce4786b9 1211 for (adcch = 0; adcch < fgkNADC-2; adcch++) // due to border channels
b0a41e80 1212 {
ab9f7002 1213 fFitReg[adcch].fNhits = 0;
1214 fFitReg[adcch].fQ0 = 0;
1215 fFitReg[adcch].fQ1 = 0;
1216 fFitReg[adcch].fSumX = 0;
1217 fFitReg[adcch].fSumY = 0;
1218 fFitReg[adcch].fSumX2 = 0;
1219 fFitReg[adcch].fSumY2 = 0;
1220 fFitReg[adcch].fSumXY = 0;
b0a41e80 1221 }
1222
1223 for (timebin = timebin1; timebin < timebin2; timebin++)
1224 {
ab9f7002 1225 // first find the hit candidates and store the total cluster charge in qTotal array
b0a41e80 1226 // in case of not hit store 0 there.
ce4786b9 1227 for (adcch = 0; adcch < fgkNADC-2; adcch++) {
ab9f7002 1228 if ( ( (adcMask >> adcch) & 7) == 7) //??? all 3 channels are present in case of ZS
b0a41e80 1229 {
ab9f7002 1230 adcLeft = fADCF[adcch ][timebin];
1231 adcCentral = fADCF[adcch+1][timebin];
1232 adcRight = fADCF[adcch+2][timebin];
b0a41e80 1233 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPVBY) == 1)
ab9f7002 1234 hitQual = ( (adcLeft * adcRight) <
1235 (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPVT) * adcCentral) );
b0a41e80 1236 else
ab9f7002 1237 hitQual = 1;
b0a41e80 1238 // The accumulated charge is with the pedestal!!!
ab9f7002 1239 qtotTemp = adcLeft + adcCentral + adcRight;
1240 if ( (hitQual) &&
1241 (qtotTemp >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPHT)) &&
1242 (adcLeft <= adcCentral) &&
1243 (adcCentral > adcRight) )
1244 qTotal[adcch] = qtotTemp;
b0a41e80 1245 else
ab9f7002 1246 qTotal[adcch] = 0;
1d93b218 1247 }
b0a41e80 1248 else
ab9f7002 1249 qTotal[adcch] = 0; //jkl
ce4786b9 1250 if (qTotal[adcch] != 0)
1251 AliDebug(10,Form("ch %2d qTotal %5d",adcch, qTotal[adcch]));
1d93b218 1252 }
b0a41e80 1253
1254 fromLeft = -1;
1255 adcch = 0;
1256 found = 0;
1257 marked[4] = 19; // invalid channel
1258 marked[5] = 19; // invalid channel
ab9f7002 1259 qTotal[19] = 0;
b0a41e80 1260 while ((adcch < 16) && (found < 3))
1261 {
ab9f7002 1262 if (qTotal[adcch] > 0)
b0a41e80 1263 {
1264 fromLeft = adcch;
1265 marked[2*found+1]=adcch;
1266 found++;
1d93b218 1267 }
b0a41e80 1268 adcch++;
1d93b218 1269 }
1d93b218 1270
b0a41e80 1271 fromRight = -1;
1272 adcch = 18;
1273 found = 0;
1274 while ((adcch > 2) && (found < 3))
1275 {
ab9f7002 1276 if (qTotal[adcch] > 0)
b0a41e80 1277 {
1278 marked[2*found]=adcch;
1279 found++;
1280 fromRight = adcch;
1281 }
1282 adcch--;
1d93b218 1283 }
1d93b218 1284
4ff7ed2b 1285 AliDebug(10,Form("Fromleft=%d, Fromright=%d",fromLeft, fromRight));
b0a41e80 1286 // here mask the hit candidates in the middle, if any
1287 if ((fromLeft >= 0) && (fromRight >= 0) && (fromLeft < fromRight))
1288 for (adcch = fromLeft+1; adcch < fromRight; adcch++)
ab9f7002 1289 qTotal[adcch] = 0;
1d93b218 1290
b0a41e80 1291 found = 0;
1292 for (adcch = 0; adcch < 19; adcch++)
ab9f7002 1293 if (qTotal[adcch] > 0) found++;
b0a41e80 1294 // NOT READY
1d93b218 1295
b0a41e80 1296 if (found > 4) // sorting like in the TRAP in case of 5 or 6 candidates!
1297 {
1298 if (marked[4] == marked[5]) marked[5] = 19;
1299 for (found=0; found<6; found++)
1300 {
ab9f7002 1301 qMarked[found] = qTotal[marked[found]] >> 4;
4ff7ed2b 1302 AliDebug(10,Form("ch_%d qTotal %d qTotals %d",marked[found],qTotal[marked[found]],qMarked[found]));
1d93b218 1303 }
b0a41e80 1304
1305 Sort6To2Worst(marked[0], marked[3], marked[4], marked[1], marked[2], marked[5],
ab9f7002 1306 qMarked[0],
1307 qMarked[3],
1308 qMarked[4],
1309 qMarked[1],
1310 qMarked[2],
1311 qMarked[5],
b0a41e80 1312 &worse1, &worse2);
1313 // Now mask the two channels with the smallest charge
1314 if (worse1 < 19)
1315 {
ab9f7002 1316 qTotal[worse1] = 0;
4ff7ed2b 1317 AliDebug(10,Form("Kill ch %d\n",worse1));
1d93b218 1318 }
b0a41e80 1319 if (worse2 < 19)
1320 {
ab9f7002 1321 qTotal[worse2] = 0;
4ff7ed2b 1322 AliDebug(10,Form("Kill ch %d\n",worse2));
1d93b218 1323 }
1d93b218 1324 }
1d93b218 1325
b0a41e80 1326 for (adcch = 0; adcch < 19; adcch++) {
ab9f7002 1327 if (qTotal[adcch] > 0) // the channel is marked for processing
b0a41e80 1328 {
ab9f7002 1329 adcLeft = fADCF[adcch ][timebin];
1330 adcCentral = fADCF[adcch+1][timebin];
1331 adcRight = fADCF[adcch+2][timebin];
b0a41e80 1332 // hit detected, in TRAP we have 4 units and a hit-selection, here we proceed all channels!
1333 // subtract the pedestal TPFP, clipping instead of wrapping
1334
ab9f7002 1335 Int_t regTPFP = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP);
4ff7ed2b 1336 AliDebug(10, Form("Hit found, time=%d, adcch=%d/%d/%d, adc values=%d/%d/%d, regTPFP=%d, TPHT=%d\n",
1337 timebin, adcch, adcch+1, adcch+2, adcLeft, adcCentral, adcRight, regTPFP,
1338 fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPHT)));
b0a41e80 1339
ab9f7002 1340 if (adcLeft < regTPFP) adcLeft = 0; else adcLeft -= regTPFP;
1341 if (adcCentral < regTPFP) adcCentral = 0; else adcCentral -= regTPFP;
1342 if (adcRight < regTPFP) adcRight = 0; else adcRight -= regTPFP;
f793c83d 1343
b0a41e80 1344 // Calculate the center of gravity
f793c83d 1345 // checking for adcCentral != 0 (in case of "bad" configuration)
1346 if (adcCentral == 0)
1347 continue;
ab9f7002 1348 ypos = 128*(adcLeft - adcRight) / adcCentral;
b0a41e80 1349 if (ypos < 0) ypos = -ypos;
ce4786b9 1350 // make the correction using the position LUT
1351 ypos = ypos + fTrapConfig->GetTrapReg((AliTRDtrapConfig::TrapReg_t) (AliTRDtrapConfig::kTPL00 + (ypos & 0x7F)));
ab9f7002 1352 if (adcLeft > adcRight) ypos = -ypos;
40bd6ee4 1353
1354 // label calculation
1355 Int_t mcLabel = -1;
1356 if (fDigitsManager) {
1357 Int_t label[9] = { 0 }; // up to 9 different labels possible
1358 Int_t count[9] = { 0 };
1359 Int_t maxIdx = -1;
1360 Int_t maxCount = 0;
1361 Int_t nLabels = 0;
1362 Int_t padcol[3];
1363 padcol[0] = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adcch);
1364 padcol[1] = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adcch+1);
1365 padcol[2] = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adcch+2);
1366 Int_t padrow = fFeeParam->GetPadRowFromMCM(fRobPos, fMcmPos);
1367 for (Int_t iDict = 0; iDict < 3; iDict++) {
ce4786b9 1368 if (!fDict[iDict])
40bd6ee4 1369 continue;
40bd6ee4 1370 for (Int_t iPad = 0; iPad < 3; iPad++) {
1371 if (padcol[iPad] < 0)
1372 continue;
ce4786b9 1373 Int_t currLabel = fDict[iDict]->GetData(padrow, padcol[iPad], timebin); //fDigitsManager->GetTrack(iDict, padrow, padcol, timebin, fDetector);
4ff7ed2b 1374 AliDebug(10, Form("Read label: %4i for det: %3i, row: %i, col: %i, tb: %i\n", currLabel, fDetector, padrow, padcol[iPad], timebin));
40bd6ee4 1375 for (Int_t iLabel = 0; iLabel < nLabels; iLabel++) {
1376 if (currLabel == label[iLabel]) {
1377 count[iLabel]++;
1378 if (count[iLabel] > maxCount) {
1379 maxCount = count[iLabel];
1380 maxIdx = iLabel;
1381 }
ce51199c 1382 currLabel = -1;
40bd6ee4 1383 break;
1384 }
1385 }
ce51199c 1386 if (currLabel >= 0) {
40bd6ee4 1387 label[nLabels++] = currLabel;
1388 }
1389 }
1390 }
1391 if (maxIdx >= 0)
1392 mcLabel = label[maxIdx];
1393 }
1394
1395 // add the hit to the fitregister
1396 AddHitToFitreg(adcch, timebin, qTotal[adcch], ypos, mcLabel);
1d93b218 1397 }
1d93b218 1398 }
1d93b218 1399 }
ce4786b9 1400
1401 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
1402 if (fFitReg[iAdc].fNhits != 0) {
1403 AliDebug(2, Form("fitreg[%i]: nHits = %i, sumX = %i, sumY = %i, sumX2 = %i, sumY2 = %i, sumXY = %i", iAdc,
1404 fFitReg[iAdc].fNhits,
1405 fFitReg[iAdc].fSumX,
1406 fFitReg[iAdc].fSumY,
1407 fFitReg[iAdc].fSumX2,
1408 fFitReg[iAdc].fSumY2,
1409 fFitReg[iAdc].fSumXY
1410 ));
1411 }
1412 }
b0a41e80 1413}
1d93b218 1414
b0a41e80 1415void AliTRDmcmSim::TrackletSelection()
1416{
1417 // Select up to 4 tracklet candidates from the fit registers
1418 // and assign them to the CPUs.
1419
ab9f7002 1420 UShort_t adcIdx, i, j, ntracks, tmp;
1421 UShort_t trackletCand[18][2]; // store the adcch[0] and number of hits[1] for all tracklet candidates
b0a41e80 1422
1423 ntracks = 0;
ab9f7002 1424 for (adcIdx = 0; adcIdx < 18; adcIdx++) // ADCs
1425 if ( (fFitReg[adcIdx].fNhits
b0a41e80 1426 >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPCL)) &&
ab9f7002 1427 (fFitReg[adcIdx].fNhits+fFitReg[adcIdx+1].fNhits
b0a41e80 1428 >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPCT)))
1429 {
ab9f7002 1430 trackletCand[ntracks][0] = adcIdx;
1431 trackletCand[ntracks][1] = fFitReg[adcIdx].fNhits+fFitReg[adcIdx+1].fNhits;
4ff7ed2b 1432 AliDebug(10,Form("%d %2d %4d\n", ntracks, trackletCand[ntracks][0], trackletCand[ntracks][1]));
b0a41e80 1433 ntracks++;
1434 };
1435
4ff7ed2b 1436 for (i=0; i<ntracks;i++)
1437 AliDebug(10,Form("%d %d %d\n",i,trackletCand[i][0], trackletCand[i][1]));
b0a41e80 1438
1439 if (ntracks > 4)
1440 {
1441 // primitive sorting according to the number of hits
1442 for (j = 0; j < (ntracks-1); j++)
1443 {
1444 for (i = j+1; i < ntracks; i++)
1445 {
ab9f7002 1446 if ( (trackletCand[j][1] < trackletCand[i][1]) ||
1447 ( (trackletCand[j][1] == trackletCand[i][1]) && (trackletCand[j][0] < trackletCand[i][0]) ) )
b0a41e80 1448 {
1449 // swap j & i
ab9f7002 1450 tmp = trackletCand[j][1];
1451 trackletCand[j][1] = trackletCand[i][1];
1452 trackletCand[i][1] = tmp;
1453 tmp = trackletCand[j][0];
1454 trackletCand[j][0] = trackletCand[i][0];
1455 trackletCand[i][0] = tmp;
b0a41e80 1456 }
1d93b218 1457 }
1d93b218 1458 }
b0a41e80 1459 ntracks = 4; // cut the rest, 4 is the max
1d93b218 1460 }
b0a41e80 1461 // else is not necessary to sort
1d93b218 1462
b0a41e80 1463 // now sort, so that the first tracklet going to CPU0 corresponds to the highest adc channel - as in the TRAP
1464 for (j = 0; j < (ntracks-1); j++)
1465 {
1466 for (i = j+1; i < ntracks; i++)
1467 {
ab9f7002 1468 if (trackletCand[j][0] < trackletCand[i][0])
b0a41e80 1469 {
1470 // swap j & i
ab9f7002 1471 tmp = trackletCand[j][1];
1472 trackletCand[j][1] = trackletCand[i][1];
1473 trackletCand[i][1] = tmp;
1474 tmp = trackletCand[j][0];
1475 trackletCand[j][0] = trackletCand[i][0];
1476 trackletCand[i][0] = tmp;
1d93b218 1477 }
1d93b218 1478 }
1479 }
b0a41e80 1480 for (i = 0; i < ntracks; i++) // CPUs with tracklets.
ab9f7002 1481 fFitPtr[i] = trackletCand[i][0]; // pointer to the left channel with tracklet for CPU[i]
b0a41e80 1482 for (i = ntracks; i < 4; i++) // CPUs without tracklets
1483 fFitPtr[i] = 31; // pointer to the left channel with tracklet for CPU[i] = 31 (invalid)
4ff7ed2b 1484 AliDebug(10,Form("found %i tracklet candidates\n", ntracks));
1485 for (i = 0; i < 4; i++)
1486 AliDebug(10,Form("fitPtr[%i]: %i\n", i, fFitPtr[i]));
b0a41e80 1487}
1d93b218 1488
b0a41e80 1489void AliTRDmcmSim::FitTracklet()
1490{
1491 // Perform the actual tracklet fit based on the fit sums
1492 // which have been filled in the fit registers.
1493
1494 // parameters in fitred.asm (fit program)
1495 Int_t decPlaces = 5;
1496 Int_t rndAdd = 0;
1497 if (decPlaces > 1)
1498 rndAdd = (1 << (decPlaces-1)) + 1;
1499 else if (decPlaces == 1)
1500 rndAdd = 1;
4ff7ed2b 1501 Int_t ndriftDp = 5; // decimal places for drift time
1502 Long64_t shift = ((Long64_t) 1 << 32);
1503
4ff7ed2b 1504 // calculated in fitred.asm
1505 Int_t padrow = ((fRobPos >> 1) << 2) | (fMcmPos >> 2);
1506 Int_t yoffs = (((((fRobPos & 0x1) << 2) + (fMcmPos & 0x3)) * 18) << 8) -
1507 ((18*4*2 - 18*2 - 1) << 7);
1508 yoffs = yoffs << decPlaces; // holds position of ADC channel 1
1509 Int_t layer = fDetector % 6;
1510 UInt_t scaleY = (UInt_t) ((0.635 + 0.03 * layer)/(256.0 * 160.0e-4) * shift);
1511 UInt_t scaleD = (UInt_t) ((0.635 + 0.03 * layer)/(256.0 * 140.0e-4) * shift);
4ff7ed2b 1512
8ea391e3 1513 Int_t deflCorr = (Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCorr, fDetector, fRobPos, fMcmPos);
1514 Int_t ndrift = (Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrNdrift, fDetector, fRobPos, fMcmPos);
b0a41e80 1515
1516 // local variables for calculation
1517 Long64_t mult, temp, denom; //???
8ea391e3 1518 UInt_t q0, q1, pid; // charges in the two windows and total charge
b0a41e80 1519 UShort_t nHits; // number of hits
1520 Int_t slope, offset; // slope and offset of the tracklet
1521 Int_t sumX, sumY, sumXY, sumX2; // fit sums from fit registers
ce51199c 1522 Int_t sumY2; // not used in the current TRAP program, now used for error calculation (simulation only)
1523 Float_t fitError, fitSlope, fitOffset;
b0a41e80 1524 FitReg_t *fit0, *fit1; // pointers to relevant fit registers
1525
1526// const uint32_t OneDivN[32] = { // 2**31/N : exactly like in the TRAP, the simple division here gives the same result!
1527// 0x00000000, 0x80000000, 0x40000000, 0x2AAAAAA0, 0x20000000, 0x19999990, 0x15555550, 0x12492490,
1528// 0x10000000, 0x0E38E380, 0x0CCCCCC0, 0x0BA2E8B0, 0x0AAAAAA0, 0x09D89D80, 0x09249240, 0x08888880,
1529// 0x08000000, 0x07878780, 0x071C71C0, 0x06BCA1A0, 0x06666660, 0x06186180, 0x05D17450, 0x0590B210,
1530// 0x05555550, 0x051EB850, 0x04EC4EC0, 0x04BDA120, 0x04924920, 0x0469EE50, 0x04444440, 0x04210840};
1531
1532 for (Int_t cpu = 0; cpu < 4; cpu++) {
1533 if (fFitPtr[cpu] == 31)
1534 {
1535 fMCMT[cpu] = 0x10001000; //??? AliTRDfeeParam::GetTrackletEndmarker();
1d93b218 1536 }
b0a41e80 1537 else
1538 {
1539 fit0 = &fFitReg[fFitPtr[cpu] ];
1540 fit1 = &fFitReg[fFitPtr[cpu]+1]; // next channel
1541
1542 mult = 1;
1543 mult = mult << (32 + decPlaces);
1544 mult = -mult;
1545
1546 // Merging
ab9f7002 1547 nHits = fit0->fNhits + fit1->fNhits; // number of hits
1548 sumX = fit0->fSumX + fit1->fSumX;
1549 sumX2 = fit0->fSumX2 + fit1->fSumX2;
b0a41e80 1550 denom = nHits*sumX2 - sumX*sumX;
1551
1552 mult = mult / denom; // exactly like in the TRAP program
ab9f7002 1553 q0 = fit0->fQ0 + fit1->fQ0;
1554 q1 = fit0->fQ1 + fit1->fQ1;
1555 sumY = fit0->fSumY + fit1->fSumY + 256*fit1->fNhits;
1556 sumXY = fit0->fSumXY + fit1->fSumXY + 256*fit1->fSumX;
ce51199c 1557 sumY2 = fit0->fSumY2 + fit1->fSumY2 + 512*fit1->fSumY + 256*256*fit1->fNhits;
b0a41e80 1558
1559 slope = nHits*sumXY - sumX * sumY;
1560 offset = sumX2*sumY - sumX * sumXY;
1561 temp = mult * slope;
1562 slope = temp >> 32; // take the upper 32 bits
4ff7ed2b 1563 slope = -slope;
b0a41e80 1564 temp = mult * offset;
1565 offset = temp >> 32; // take the upper 32 bits
1566
4ff7ed2b 1567 offset = offset + yoffs;
ce4786b9 1568 AliDebug(10, Form("slope = %i, slope * ndrift = %i, deflCorr: %i",
1569 slope, slope * ndrift, deflCorr));
1570 slope = ((slope * ndrift) >> ndriftDp) + deflCorr;
b0a41e80 1571 offset = offset - (fFitPtr[cpu] << (8 + decPlaces));
1d93b218 1572
4ff7ed2b 1573 temp = slope;
1574 temp = temp * scaleD;
1575 slope = (temp >> 32);
4ff7ed2b 1576 temp = offset;
1577 temp = temp * scaleY;
1578 offset = (temp >> 32);
1579
1580 // rounding, like in the TRAP
1581 slope = (slope + rndAdd) >> decPlaces;
4ff7ed2b 1582 offset = (offset + rndAdd) >> decPlaces;
1583
ce4786b9 1584 AliDebug(5, Form("Det: %3i, ROB: %i, MCM: %2i: deflection: %i, min: %i, max: %i",
1585 fDetector, fRobPos, fMcmPos, slope,
8ea391e3 1586 (Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCutStart + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos),
1587 (Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCutStart + 1 + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos)));
ce4786b9 1588
ce51199c 1589 AliDebug(5, Form("Fit sums: x = %i, X = %i, y = %i, Y = %i, Z = %i",
1590 sumX, sumX2, sumY, sumY2, sumXY));
1591
1592 fitSlope = (Float_t) (nHits * sumXY - sumX * sumY) / (nHits * sumX2 - sumX*sumX);
1593
1594 fitOffset = (Float_t) (sumX2 * sumY - sumX * sumXY) / (nHits * sumX2 - sumX*sumX);
1595
1596 Float_t sx = (Float_t) sumX;
1597 Float_t sx2 = (Float_t) sumX2;
1598 Float_t sy = (Float_t) sumY;
1599 Float_t sy2 = (Float_t) sumY2;
1600 Float_t sxy = (Float_t) sumXY;
1601 fitError = sy2 - (sx2 * sy*sy - 2 * sx * sxy * sy + nHits * sxy*sxy) / (nHits * sx2 - sx*sx);
1602 //fitError = (Float_t) sumY2 - (Float_t) (sumY*sumY) / nHits - fitSlope * ((Float_t) (sumXY - sumX*sumY) / nHits);
1603
40bd6ee4 1604 Bool_t rejected = kFALSE;
ce4786b9 1605 // deflection range table from DMEM
8ea391e3 1606 if ((slope < ((Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCutStart + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos))) ||
1607 (slope > ((Int_t) fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrDeflCutStart + 1 + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos))))
40bd6ee4 1608 rejected = kTRUE;
4ff7ed2b 1609
1610 if (rejected && GetApplyCut())
b0a41e80 1611 {
1612 fMCMT[cpu] = 0x10001000; //??? AliTRDfeeParam::GetTrackletEndmarker();
1613 }
1614 else
1615 {
4ff7ed2b 1616 if (slope > 63 || slope < -64) { // wrapping in TRAP!
40bd6ee4 1617 AliError(Form("Overflow in slope: %i, tracklet discarded!", slope));
1618 fMCMT[cpu] = 0x10001000;
1619 continue;
1620 }
b0a41e80 1621
4ff7ed2b 1622 slope = slope & 0x7F; // 7 bit
1623
40bd6ee4 1624 if (offset > 0xfff || offset < -0xfff)
b0a41e80 1625 AliWarning("Overflow in offset");
1626 offset = offset & 0x1FFF; // 13 bit
1627
8ea391e3 1628 pid = GetPID(q0 >> fgkAddDigits, q1 >> fgkAddDigits); // divided by 4 because in simulation there are two additional decimal places
4ff7ed2b 1629
8ea391e3 1630 if (pid > 0xff)
1631 AliWarning("Overflow in PID");
1632 pid = pid & 0xFF; // 8 bit, exactly like in the TRAP program
4ff7ed2b 1633
b0a41e80 1634 // assemble and store the tracklet word
8ea391e3 1635 fMCMT[cpu] = (pid << 24) | (padrow << 20) | (slope << 13) | offset;
40bd6ee4 1636
1637 // calculate MC label
1638 Int_t mcLabel = -1;
4ff7ed2b 1639 Int_t nHits0 = 0;
1640 Int_t nHits1 = 0;
40bd6ee4 1641 if (fDigitsManager) {
1642 Int_t label[30] = {0}; // up to 30 different labels possible
1643 Int_t count[30] = {0};
1644 Int_t maxIdx = -1;
1645 Int_t maxCount = 0;
1646 Int_t nLabels = 0;
1647 for (Int_t iHit = 0; iHit < fNHits; iHit++) {
1648 if ((fHits[iHit].fChannel - fFitPtr[cpu] < 0) ||
1649 (fHits[iHit].fChannel - fFitPtr[cpu] > 1))
1650 continue;
4ff7ed2b 1651
1652 // counting contributing hits
1653 if (fHits[iHit].fTimebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0) &&
1654 fHits[iHit].fTimebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE0))
1655 nHits0++;
1656 if (fHits[iHit].fTimebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS1) &&
1657 fHits[iHit].fTimebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1))
1658 nHits1++;
1659
40bd6ee4 1660 Int_t currLabel = fHits[iHit].fLabel;
1661 for (Int_t iLabel = 0; iLabel < nLabels; iLabel++) {
1662 if (currLabel == label[iLabel]) {
1663 count[iLabel]++;
1664 if (count[iLabel] > maxCount) {
1665 maxCount = count[iLabel];
1666 maxIdx = iLabel;
1667 }
ce51199c 1668 currLabel = -1;
40bd6ee4 1669 break;
1670 }
1671 }
ce51199c 1672 if (currLabel >= 0) {
40bd6ee4 1673 label[nLabels++] = currLabel;
1674 }
1675 }
1676 if (maxIdx >= 0)
1677 mcLabel = label[maxIdx];
1678 }
f793c83d 1679 new ((*fTrackletArray)[fTrackletArray->GetEntriesFast()]) AliTRDtrackletMCM((UInt_t) fMCMT[cpu], fDetector*2 + fRobPos%2, fRobPos, fMcmPos);
40bd6ee4 1680 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetLabel(mcLabel);
4ff7ed2b 1681
1682
1683 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetNHits(fit0->fNhits + fit1->fNhits);
1684 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetNHits0(nHits0);
1685 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetNHits1(nHits1);
48e5462a 1686 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetQ0(q0);
1687 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetQ1(q1);
ce51199c 1688 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetSlope(fitSlope);
1689 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetOffset(fitOffset);
1690 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetError(TMath::Sqrt(TMath::Abs(fitError)/nHits));
1691
1692// // cluster information
1693// Float_t *res = new Float_t[nHits];
1694// Float_t *qtot = new Float_t[nHits];
1695// Int_t nCls = 0;
1696// for (Int_t iHit = 0; iHit < fNHits; iHit++) {
1697// // check if hit contributes
1698// if (fHits[iHit].fChannel == fFitPtr[cpu]) {
1699// res[nCls] = fHits[iHit].fYpos - (fitSlope * fHits[iHit].fTimebin + fitOffset);
1700// qtot[nCls] = fHits[iHit].fQtot;
1701// nCls++;
1702// }
1703// else if (fHits[iHit].fChannel == fFitPtr[cpu] + 1) {
1704// res[nCls] = fHits[iHit].fYpos + 256 - (fitSlope * fHits[iHit].fTimebin + fitOffset);
1705// qtot[nCls] = fHits[iHit].fQtot;
1706// nCls++;
1707// }
1708// }
1709// ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetClusters(res, qtot, nCls);
1710// delete [] res;
1711// delete [] qtot;
1712
1713 if (fitError < 0)
1714 AliError(Form("Strange fit error: %f from Sx: %i, Sy: %i, Sxy: %i, Sx2: %i, Sy2: %i, nHits: %i",
1715 fitError, sumX, sumY, sumXY, sumX2, sumY2, nHits));
1716 AliDebug(3, Form("fit slope: %f, offset: %f, error: %f",
1717 fitSlope, fitOffset, TMath::Sqrt(TMath::Abs(fitError)/nHits)));
b0a41e80 1718 }
1d93b218 1719 }
1d93b218 1720 }
b0a41e80 1721}
1d93b218 1722
b0a41e80 1723void AliTRDmcmSim::Tracklet()
1724{
ab9f7002 1725 // Run the tracklet calculation by calling sequentially:
1726 // CalcFitreg(); TrackletSelection(); FitTracklet()
1727 // and store the tracklets
1728
b0a41e80 1729 if (!fInitialized) {
ab9f7002 1730 AliError("Called uninitialized! Nothing done!");
b0a41e80 1731 return;
1d93b218 1732 }
96e6312d 1733
b0a41e80 1734 fTrackletArray->Delete();
96e6312d 1735
b0a41e80 1736 CalcFitreg();
40bd6ee4 1737 if (fNHits == 0)
1738 return;
b0a41e80 1739 TrackletSelection();
1740 FitTracklet();
c8b1590d 1741}
1742
1743Bool_t AliTRDmcmSim::StoreTracklets()
1744{
36dc3337 1745 // store the found tracklets via the loader
1746
40bd6ee4 1747 if (fTrackletArray->GetEntriesFast() == 0)
c8b1590d 1748 return kTRUE;
1d93b218 1749
b0a41e80 1750 AliRunLoader *rl = AliRunLoader::Instance();
1751 AliDataLoader *dl = 0x0;
1752 if (rl)
1753 dl = rl->GetLoader("TRDLoader")->GetDataLoader("tracklets");
1754 if (!dl) {
1755 AliError("Could not get the tracklets data loader!");
c8b1590d 1756 return kFALSE;
1d93b218 1757 }
1d93b218 1758
c8b1590d 1759 TTree *trackletTree = dl->Tree();
1760 if (!trackletTree) {
1761 dl->MakeTree();
1762 trackletTree = dl->Tree();
1763 }
1764
1765 AliTRDtrackletMCM *trkl = 0x0;
6b094867 1766 TBranch *trkbranch = trackletTree->GetBranch(fTrklBranchName.Data());
c8b1590d 1767 if (!trkbranch)
6b094867 1768 trkbranch = trackletTree->Branch(fTrklBranchName.Data(), "AliTRDtrackletMCM", &trkl, 32000);
c8b1590d 1769
1770 for (Int_t iTracklet = 0; iTracklet < fTrackletArray->GetEntriesFast(); iTracklet++) {
1771 trkl = ((AliTRDtrackletMCM*) (*fTrackletArray)[iTracklet]);
1772 trkbranch->SetAddress(&trkl);
c8b1590d 1773 trkbranch->Fill();
1d93b218 1774 }
c8b1590d 1775
1776 return kTRUE;
b0a41e80 1777}
1d93b218 1778
b0a41e80 1779void AliTRDmcmSim::WriteData(AliTRDarrayADC *digits)
1780{
1781 // write back the processed data configured by EBSF
1782 // EBSF = 1: unfiltered data; EBSF = 0: filtered data
1783 // zero-suppressed valued are written as -1 to digits
1d93b218 1784
ce4786b9 1785 if( !CheckInitialized() )
b0a41e80 1786 return;
1d93b218 1787
ce4786b9 1788 Int_t offset = (fMcmPos % 4 + 1) * 21 + (fRobPos % 2) * 84 - 1;
1d93b218 1789
b0a41e80 1790 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBSF) != 0) // store unfiltered data
1791 {
ce4786b9 1792 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
1793 if (~fZSMap[iAdc] == 0) {
b0a41e80 1794 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1795 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, -1);
b0a41e80 1796 }
1d93b218 1797 }
ce51199c 1798 else if (iAdc < 2 || iAdc == 20) {
1799 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
1800 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, (fADCR[iAdc][iTimeBin] >> fgkAddDigits) - fgAddBaseline);
1801 }
1802 }
b0a41e80 1803 }
1d93b218 1804 }
52c19022 1805 else {
ce4786b9 1806 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
1807 if (~fZSMap[iAdc] != 0) {
b0a41e80 1808 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1809 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, (fADCF[iAdc][iTimeBin] >> fgkAddDigits) - fgAddBaseline);
b0a41e80 1810 }
1811 }
1812 else {
1813 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1814 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, -1);
b0a41e80 1815 }
1816 }
52c19022 1817 }
52c19022 1818 }
b0a41e80 1819}
23200400 1820
8ea391e3 1821
1822// ******************************
1823// PID section
1824//
1825// Memory area for the LUT: 0xC100 to 0xC3FF
1826//
1827// The addresses for the parameters (the order is optimized for maximum calculation speed in the MCMs):
1828// 0xC028: cor1
1829// 0xC029: nBins(sF)
1830// 0xC02A: cor0
1831// 0xC02B: TableLength
1832// Defined in AliTRDtrapConfig.h
1833//
1834// The algorithm implemented in the TRAP program of the MCMs (Venelin Angelov)
1835// 1) set the read pointer to the beginning of the Parameters in DMEM
1836// 2) shift right the FitReg with the Q0 + (Q1 << 16) to get Q1
1837// 3) read cor1 with rpointer++
1838// 4) start cor1*Q1
1839// 5) read nBins with rpointer++
1840// 6) start nBins*cor1*Q1
1841// 7) read cor0 with rpointer++
1842// 8) swap hi-low parts in FitReg, now is Q1 + (Q0 << 16)
1843// 9) shift right to get Q0
1844// 10) start cor0*Q0
1845// 11) read TableLength
1846// 12) compare cor0*Q0 with nBins
1847// 13) if >=, clip cor0*Q0 to nBins-1
1848// 14) add cor0*Q0 to nBins*cor1*Q1
1849// 15) compare the result with TableLength
1850// 16) if >=, clip to TableLength-1
1851// 17) read from the LUT 8 bits
1852
1853
1854Int_t AliTRDmcmSim::GetPID(Int_t q0, Int_t q1)
1855{
6b094867 1856 // return PID calculated from charges accumulated in two time windows
1857
8ea391e3 1858 ULong64_t addrQ0;
1859 ULong64_t addr;
1860
1861 UInt_t nBinsQ0 = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTnbins); // number of bins in q0 / 4 !!
1862 UInt_t pidTotalSize = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTLength);
1863
1864 ULong_t corrQ0 = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTcor0, fDetector, fRobPos, fMcmPos);
1865 ULong_t corrQ1 = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTcor1, fDetector, fRobPos, fMcmPos);
1866
1867 addrQ0 = corrQ0;
1868 addrQ0 = (((addrQ0*q0)>>16)>>16); // because addrQ0 = (q0 * corrQ0) >> 32; does not work for unknown reasons
1869 // std::cout << "addrQ0: " << addrQ0 << ", q0: " << q0 << ", corrQ0: " << corrQ0 << std::endl;
1870
1871 if(addrQ0 >= nBinsQ0) { // check for overflow
1872 AliDebug(5,Form("Overflow in q0: %i/4 is bigger then %i", addrQ0, nBinsQ0));
1873 addrQ0 = nBinsQ0 -1;
1874 }
1875
1876 addr = corrQ1;
1877 addr = (((addr*q1)>>16)>>16);
1878 addr = addrQ0 + nBinsQ0*addr; // because addr = addrQ0 + nBinsQ0* (((corrQ1*q1)>>32); does not work
1879 // std::cout << "addr: " << addr << ", q1: " << q1 << ", corrQ1: " << corrQ1 << std::endl;
1880
1881 if(addr >= pidTotalSize) {
1882 AliDebug(5,Form("Overflow in q1. Address %i/4 is bigger then %i", addr, pidTotalSize));
1883 addr = pidTotalSize -1;
1884 }
1885
1886 // For a LUT with 11 input and 8 output bits, the first memory address is set to LUT[0] | (LUT[1] << 8) | (LUT[2] << 16) | (LUT[3] << 24)
1887 // and so on
1888 UInt_t result = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTStart+(addr/4));
1889 return (result>>((addr%4)*8)) & 0xFF;
1890}
1891
1892
1893
6b094867 1894void AliTRDmcmSim::SetPIDLut(TH2F * const lut)
8ea391e3 1895{
1896 // set a user-defined PID LUT from a 2D histogram
1897
1898 UInt_t nBinsQ0 = lut->GetNbinsX();
1899 UInt_t nBinsQ1 = lut->GetNbinsY();
1900
1901 Double_t scaleQ0 = lut->GetNbinsX() / lut->GetXaxis()->GetXmax();
1902 Double_t scaleQ1 = lut->GetNbinsY() / lut->GetYaxis()->GetXmax();
1903 fTrapConfig->SetPIDscale(scaleQ0, scaleQ1);
1904 SetPIDLutScaleDMEM();
1905
1906 UInt_t fPIDsizeX = 0;
1907 if(nBinsQ0%4==0)
1908 fPIDsizeX=nBinsQ0/4;
1909 else
1910 fPIDsizeX = (nBinsQ0/4)+1;
1911
1912 fTrapConfig->SetDmem(AliTRDtrapConfig::fgkDmemAddrLUTnbins, nBinsQ0); // number of bins in q0
1913 fTrapConfig->SetDmem(AliTRDtrapConfig::fgkDmemAddrLUTLength, nBinsQ0*nBinsQ1); // total size of the table in BYTES (does work because each bin is 8 bit wide)
1914
1915 UInt_t buffer;
1916 Int_t dmemAddr=0;
1917 if(nBinsQ0*nBinsQ1/4 < AliTRDtrapConfig::fgkDmemAddrLUTEnd - AliTRDtrapConfig::fgkDmemAddrLUTStart) { // /4 because each memory address contains 4 LUT entries
1918 for (UInt_t iy = 0; iy < nBinsQ1; iy++) {
1919 for (UInt_t ix = 0; ix < fPIDsizeX; ix++) {
1920 buffer=0;
1921 for(UInt_t isub=0; isub<4; isub++) {
1922 if(ix*4+isub<nBinsQ0) {
1923 buffer |= ((Int_t) (255. * lut->GetBinContent(ix*4+isub +1, iy +1))) << isub*8 ;
1924 //AliDebug(10, Form("x: %d, y: %d -- %d, %d \n", ix*4+isub, iy, lut->GetBinContent(ix*4+isub, iy), ((Int_t) (255. * lut->GetBinContent(ix*4+isub +1, iy +1)))));
1925 }
1926 else
1927 buffer |= 0<<isub*8;
1928 }
1929 dmemAddr = AliTRDtrapConfig::fgkDmemAddrLUTStart+ix+(iy*fPIDsizeX);
1930 if(dmemAddr >= AliTRDtrapConfig::fgkDmemAddrLUTEnd) {
1931 AliError("LUT table size is too big!");
1932 }
1933 else {
1934 // AliDebug(8,Form("x: %d, y: %d is memory address %d, setting to %d \n", ix, iy, dmemAddr, buffer));
1935 fTrapConfig->SetDmem(AliTRDtrapConfig::fgkDmemAddrLUTStart+ix+(iy*fPIDsizeX), buffer);
1936 }
1937 }
1938 }
1939 }
1940 else {
1941 AliError("LUT table is too big!");
1942 }
1943}
1944
1945
1946void AliTRDmcmSim::SetPIDLutScaleDMEM()
1947{
6b094867 1948 // set scale factor for PID in DMEM
1949
8ea391e3 1950 Double_t scaleQ[2];
1951 fTrapConfig->GetPIDscale(scaleQ);
1952
1953 ULong64_t scale = 1;
1954 scale = scale<<32;
1955
1956 fTrapConfig->SetDmem(AliTRDtrapConfig::fgkDmemAddrLUTcor0, TMath::Nint(scale*scaleQ[0]));
1957 fTrapConfig->SetDmem(AliTRDtrapConfig::fgkDmemAddrLUTcor1, TMath::Nint(scale*scaleQ[1]));
1958}
1959
1960
1961void AliTRDmcmSim::SetPIDLut(Int_t* /* lut */, Int_t /* nbinsq0 */, Int_t /* nbinsq1 */)
1962{
1963 ;
1964}
1965
1966
1967
1968
b0a41e80 1969// help functions, to be cleaned up
1d93b218 1970
ab9f7002 1971UInt_t AliTRDmcmSim::AddUintClipping(UInt_t a, UInt_t b, UInt_t nbits) const
b0a41e80 1972{
1973 //
1974 // This function adds a and b (unsigned) and clips to
1975 // the specified number of bits.
1976 //
1977
1978 UInt_t sum = a + b;
1979 if (nbits < 32)
1980 {
1981 UInt_t maxv = (1 << nbits) - 1;;
1982 if (sum > maxv)
1983 sum = maxv;
1984 }
1985 else
1986 {
1987 if ((sum < a) || (sum < b))
1988 sum = 0xFFFFFFFF;
1989 }
1990 return sum;
1d93b218 1991}
b0a41e80 1992
982869bc 1993void AliTRDmcmSim::Sort2(UShort_t idx1i, UShort_t idx2i, \
1994 UShort_t val1i, UShort_t val2i, \
6b094867 1995 UShort_t * const idx1o, UShort_t * const idx2o, \
1996 UShort_t * const val1o, UShort_t * const val2o) const
b65e5048 1997{
ab9f7002 1998 // sorting for tracklet selection
b65e5048 1999
b0a41e80 2000 if (val1i > val2i)
b65e5048 2001 {
b0a41e80 2002 *idx1o = idx1i;
2003 *idx2o = idx2i;
2004 *val1o = val1i;
2005 *val2o = val2i;
b65e5048 2006 }
b0a41e80 2007 else
b65e5048 2008 {
b0a41e80 2009 *idx1o = idx2i;
2010 *idx2o = idx1i;
2011 *val1o = val2i;
2012 *val2o = val1i;
b65e5048 2013 }
2014}
b65e5048 2015
982869bc 2016void AliTRDmcmSim::Sort3(UShort_t idx1i, UShort_t idx2i, UShort_t idx3i, \
2017 UShort_t val1i, UShort_t val2i, UShort_t val3i, \
6b094867 2018 UShort_t * const idx1o, UShort_t * const idx2o, UShort_t * const idx3o, \
2019 UShort_t * const val1o, UShort_t * const val2o, UShort_t * const val3o)
b65e5048 2020{
ab9f7002 2021 // sorting for tracklet selection
2022
4ff7ed2b 2023 Int_t sel;
b65e5048 2024
b65e5048 2025
b0a41e80 2026 if (val1i > val2i) sel=4; else sel=0;
2027 if (val2i > val3i) sel=sel + 2;
2028 if (val3i > val1i) sel=sel + 1;
b0a41e80 2029 switch(sel)
b65e5048 2030 {
b0a41e80 2031 case 6 : // 1 > 2 > 3 => 1 2 3
2032 case 0 : // 1 = 2 = 3 => 1 2 3 : in this case doesn't matter, but so is in hardware!
2033 *idx1o = idx1i;
2034 *idx2o = idx2i;
2035 *idx3o = idx3i;
2036 *val1o = val1i;
2037 *val2o = val2i;
2038 *val3o = val3i;
2039 break;
2040
2041 case 4 : // 1 > 2, 2 <= 3, 3 <= 1 => 1 3 2
2042 *idx1o = idx1i;
2043 *idx2o = idx3i;
2044 *idx3o = idx2i;
2045 *val1o = val1i;
2046 *val2o = val3i;
2047 *val3o = val2i;
2048 break;
2049
2050 case 2 : // 1 <= 2, 2 > 3, 3 <= 1 => 2 1 3
2051 *idx1o = idx2i;
2052 *idx2o = idx1i;
2053 *idx3o = idx3i;
2054 *val1o = val2i;
2055 *val2o = val1i;
2056 *val3o = val3i;
2057 break;
2058
2059 case 3 : // 1 <= 2, 2 > 3, 3 > 1 => 2 3 1
2060 *idx1o = idx2i;
2061 *idx2o = idx3i;
2062 *idx3o = idx1i;
2063 *val1o = val2i;
2064 *val2o = val3i;
2065 *val3o = val1i;
2066 break;
2067
2068 case 1 : // 1 <= 2, 2 <= 3, 3 > 1 => 3 2 1
2069 *idx1o = idx3i;
2070 *idx2o = idx2i;
2071 *idx3o = idx1i;
2072 *val1o = val3i;
2073 *val2o = val2i;
2074 *val3o = val1i;
2075 break;
2076
2077 case 5 : // 1 > 2, 2 <= 3, 3 > 1 => 3 1 2
2078 *idx1o = idx3i;
2079 *idx2o = idx1i;
2080 *idx3o = idx2i;
2081 *val1o = val3i;
2082 *val2o = val1i;
2083 *val3o = val2i;
2084 break;
2085
2086 default: // the rest should NEVER happen!
40bd6ee4 2087 AliError("ERROR in Sort3!!!\n");
b0a41e80 2088 break;
2089 }
b65e5048 2090}
b0a41e80 2091
982869bc 2092void AliTRDmcmSim::Sort6To4(UShort_t idx1i, UShort_t idx2i, UShort_t idx3i, UShort_t idx4i, UShort_t idx5i, UShort_t idx6i, \
2093 UShort_t val1i, UShort_t val2i, UShort_t val3i, UShort_t val4i, UShort_t val5i, UShort_t val6i, \
6b094867 2094 UShort_t * const idx1o, UShort_t * const idx2o, UShort_t * const idx3o, UShort_t * const idx4o, \
2095 UShort_t * const val1o, UShort_t * const val2o, UShort_t * const val3o, UShort_t * const val4o)
b65e5048 2096{
ab9f7002 2097 // sorting for tracklet selection
b65e5048 2098
982869bc 2099 UShort_t idx21s, idx22s, idx23s, dummy;
2100 UShort_t val21s, val22s, val23s;
2101 UShort_t idx23as, idx23bs;
2102 UShort_t val23as, val23bs;
b0a41e80 2103
2104 Sort3(idx1i, idx2i, idx3i, val1i, val2i, val3i,
2105 idx1o, &idx21s, &idx23as,
2106 val1o, &val21s, &val23as);
2107
2108 Sort3(idx4i, idx5i, idx6i, val4i, val5i, val6i,
2109 idx2o, &idx22s, &idx23bs,
2110 val2o, &val22s, &val23bs);
2111
2112 Sort2(idx23as, idx23bs, val23as, val23bs, &idx23s, &dummy, &val23s, &dummy);
2113
2114 Sort3(idx21s, idx22s, idx23s, val21s, val22s, val23s,
2115 idx3o, idx4o, &dummy,
2116 val3o, val4o, &dummy);
2117
b65e5048 2118}
b0a41e80 2119
982869bc 2120void AliTRDmcmSim::Sort6To2Worst(UShort_t idx1i, UShort_t idx2i, UShort_t idx3i, UShort_t idx4i, UShort_t idx5i, UShort_t idx6i, \
2121 UShort_t val1i, UShort_t val2i, UShort_t val3i, UShort_t val4i, UShort_t val5i, UShort_t val6i, \
6b094867 2122 UShort_t * const idx5o, UShort_t * const idx6o)
0d64b05f 2123{
ab9f7002 2124 // sorting for tracklet selection
0d64b05f 2125
982869bc 2126 UShort_t idx21s, idx22s, idx23s, dummy1, dummy2, dummy3, dummy4, dummy5;
2127 UShort_t val21s, val22s, val23s;
2128 UShort_t idx23as, idx23bs;
2129 UShort_t val23as, val23bs;
b0a41e80 2130
2131 Sort3(idx1i, idx2i, idx3i, val1i, val2i, val3i,
2132 &dummy1, &idx21s, &idx23as,
2133 &dummy2, &val21s, &val23as);
2134
2135 Sort3(idx4i, idx5i, idx6i, val4i, val5i, val6i,
2136 &dummy1, &idx22s, &idx23bs,
2137 &dummy2, &val22s, &val23bs);
2138
2139 Sort2(idx23as, idx23bs, val23as, val23bs, &idx23s, idx5o, &val23s, &dummy1);
b65e5048 2140
b0a41e80 2141 Sort3(idx21s, idx22s, idx23s, val21s, val22s, val23s,
2142 &dummy1, &dummy2, idx6o,
2143 &dummy3, &dummy4, &dummy5);
0d64b05f 2144}
f793c83d 2145
2146
ce4786b9 2147// ----- I/O implementation -----
2148
59f78ad5 2149ostream& AliTRDmcmSim::Text(ostream& os)
ce4786b9 2150{
2151 // manipulator to activate output in text format (default)
2152
2153 os.iword(fgkFormatIndex) = 0;
2154 return os;
2155}
2156
59f78ad5 2157ostream& AliTRDmcmSim::Cfdat(ostream& os)
ce4786b9 2158{
2159 // manipulator to activate output in CFDAT format
2160 // to send to the FEE via SCSN
2161
2162 os.iword(fgkFormatIndex) = 1;
2163 return os;
2164}
2165
59f78ad5 2166ostream& AliTRDmcmSim::Raw(ostream& os)
ce4786b9 2167{
2168 // manipulator to activate output as raw data dump
2169
2170 os.iword(fgkFormatIndex) = 2;
2171 return os;
2172}
2173
2174ostream& operator<<(ostream& os, const AliTRDmcmSim& mcm)
2175{
2176 // output implementation
2177
2178 // no output for non-initialized MCM
2179 if (!mcm.CheckInitialized())
2180 return os;
2181
2182 // ----- human-readable output -----
2183 if (os.iword(AliTRDmcmSim::fgkFormatIndex) == 0) {
2184
2185 os << "MCM " << mcm.fMcmPos << " on ROB " << mcm.fRobPos <<
2186 " in detector " << mcm.fDetector << std::endl;
2187
2188 os << "----- Unfiltered ADC data (10 bit) -----" << std::endl;
2189 os << "ch ";
2190 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++)
2191 os << std::setw(5) << iChannel;
2192 os << std::endl;
2193 for (Int_t iTimeBin = 0; iTimeBin < mcm.fNTimeBin; iTimeBin++) {
2194 os << "tb " << std::setw(2) << iTimeBin << ":";
2195 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++) {
2196 os << std::setw(5) << (mcm.fADCR[iChannel][iTimeBin] >> mcm.fgkAddDigits);
2197 }
2198 os << std::endl;
2199 }
2200
2201 os << "----- Filtered ADC data (10+2 bit) -----" << std::endl;
2202 os << "ch ";
2203 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++)
2204 os << std::setw(4) << iChannel
2205 << ((~mcm.fZSMap[iChannel] != 0) ? "!" : " ");
2206 os << std::endl;
2207 for (Int_t iTimeBin = 0; iTimeBin < mcm.fNTimeBin; iTimeBin++) {
2208 os << "tb " << std::setw(2) << iTimeBin << ":";
2209 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++) {
2210 os << std::setw(4) << (mcm.fADCF[iChannel][iTimeBin])
2211 << (((mcm.fZSMap[iChannel] & (1 << iTimeBin)) == 0) ? "!" : " ");
2212 }
2213 os << std::endl;
2214 }
2215 }
2216
2217 // ----- CFDAT output -----
2218 else if(os.iword(AliTRDmcmSim::fgkFormatIndex) == 1) {
2219 Int_t dest = 127;
2220 Int_t addrOffset = 0x2000;
2221 Int_t addrStep = 0x80;
2222
2223 for (Int_t iTimeBin = 0; iTimeBin < mcm.fNTimeBin; iTimeBin++) {
2224 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++) {
2225 os << std::setw(5) << 10
2226 << std::setw(5) << addrOffset + iChannel * addrStep + iTimeBin
2227 << std::setw(5) << (mcm.fADCF[iChannel][iTimeBin])
2228 << std::setw(5) << dest << std::endl;
2229 }
2230 os << std::endl;
2231 }
2232 }
2233
2234 // ----- raw data ouptut -----
2235 else if (os.iword(AliTRDmcmSim::fgkFormatIndex) == 2) {
2236 Int_t bufSize = 300;
2237 UInt_t *buf = new UInt_t[bufSize];
2238
2239 Int_t bufLength = mcm.ProduceRawStream(&buf[0], bufSize);
2240
2241 for (Int_t i = 0; i < bufLength; i++)
2242 std::cout << "0x" << std::hex << buf[i] << std::endl;
2243
2244 delete [] buf;
2245 }
2246
2247 else {
2248 os << "unknown format set" << std::endl;
2249 }
2250
2251 return os;
2252}
8ea391e3 2253
2254
2255void AliTRDmcmSim::PrintFitRegXml(ostream& os) const
2256{
6b094867 2257 // print fit registres in XML format
2258
8ea391e3 2259 bool tracklet=false;
2260
2261 for (Int_t cpu = 0; cpu < 4; cpu++) {
2262 if(fFitPtr[cpu] != 31)
2263 tracklet=true;
2264 }
2265
2266 if(tracklet==true) {
2267 os << "<nginject>" << std::endl;
2268 os << "<ack roc=\""<< fDetector << "\" cmndid=\"0\">" << std::endl;
2269 os << "<dmem-readout>" << std::endl;
2270 os << "<d det=\"" << fDetector << "\">" << std::endl;
2271 os << " <ro-board rob=\"" << fRobPos << "\">" << std::endl;
2272 os << " <m mcm=\"" << fMcmPos << "\">" << std::endl;
2273
2274 for(int cpu=0; cpu<4; cpu++) {
2275 os << " <c cpu=\"" << cpu << "\">" << std::endl;
2276 if(fFitPtr[cpu] != 31) {
2277 for(int adcch=fFitPtr[cpu]; adcch<fFitPtr[cpu]+2; adcch++) {
2278 os << " <ch chnr=\">" << adcch << "\">"<< std::endl;
2279 os << " <hits>" << fFitReg[adcch].fNhits << "</hits>"<< std::endl;
2280 os << " <q0>" << fFitReg[adcch].fQ0/4 << "</q0>"<< std::endl; // divided by 4 because in simulation we have 2 additional decimal places
2281 os << " <q1>" << fFitReg[adcch].fQ1/4 << "</q1>"<< std::endl; // in the output
2282 os << " <sumx>" << fFitReg[adcch].fSumX << "</sumx>"<< std::endl;
2283 os << " <sumxsq>" << fFitReg[adcch].fSumX2 << "</sumxsq>"<< std::endl;
2284 os << " <sumy>" << fFitReg[adcch].fSumY << "</sumy>"<< std::endl;
2285 os << " <sumysq>" << fFitReg[adcch].fSumY2 << "</sumysq>"<< std::endl;
2286 os << " <sumxy>" << fFitReg[adcch].fSumXY << "</sumxy>"<< std::endl;
2287 os << " </ch>" << std::endl;
2288 }
2289 }
2290 os << " </c>" << std::endl;
2291 }
2292 os << " </m>" << std::endl;
2293 os << " </ro-board>" << std::endl;
2294 os << "</d>" << std::endl;
2295 os << "</dmem-readout>" << std::endl;
2296 os << "</ack>" << std::endl;
2297 os << "</nginject>" << std::endl;
2298 }
2299}
2300
2301
2302void AliTRDmcmSim::PrintTrackletsXml(ostream& os) const
2303{
6b094867 2304 // print tracklets in XML format
2305
8ea391e3 2306 os << "<nginject>" << std::endl;
2307 os << "<ack roc=\""<< fDetector << "\" cmndid=\"0\">" << std::endl;
2308 os << "<dmem-readout>" << std::endl;
2309 os << "<d det=\"" << fDetector << "\">" << std::endl;
2310 os << " <ro-board rob=\"" << fRobPos << "\">" << std::endl;
2311 os << " <m mcm=\"" << fMcmPos << "\">" << std::endl;
2312
2313 Int_t pid, padrow, slope, offset;
2314 for(Int_t cpu=0; cpu<4; cpu++) {
2315 if(fMCMT[cpu] == 0x10001000) {
2316 pid=-1;
2317 padrow=-1;
2318 slope=-1;
2319 offset=-1;
2320 }
2321 else {
2322 pid = (fMCMT[cpu] & 0xFF000000) >> 24;
2323 padrow = (fMCMT[cpu] & 0xF00000 ) >> 20;
2324 slope = (fMCMT[cpu] & 0xFE000 ) >> 13;
2325 offset = (fMCMT[cpu] & 0x1FFF ) ;
2326
2327 }
2328 os << " <trk> <pid>" << pid << "</pid>" << " <padrow>" << padrow << "</padrow>"
2329 << " <slope>" << slope << "</slope>" << " <offset>" << offset << "</offset>" << std::endl;
2330 }
2331
2332 os << " </m>" << std::endl;
2333 os << " </ro-board>" << std::endl;
2334 os << "</d>" << std::endl;
2335 os << "</dmem-readout>" << std::endl;
2336 os << "</ack>" << std::endl;
2337 os << "</nginject>" << std::endl;
2338}
2339
2340
2341void AliTRDmcmSim::PrintAdcDatHuman(ostream& os) const
2342{
6b094867 2343 // print ADC data in human-readable format
2344
8ea391e3 2345 os << "MCM " << fMcmPos << " on ROB " << fRobPos <<
2346 " in detector " << fDetector << std::endl;
2347
2348 os << "----- Unfiltered ADC data (10 bit) -----" << std::endl;
2349 os << "ch ";
2350 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++)
2351 os << std::setw(5) << iChannel;
2352 os << std::endl;
2353 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
2354 os << "tb " << std::setw(2) << iTimeBin << ":";
2355 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++) {
2356 os << std::setw(5) << (fADCR[iChannel][iTimeBin] >> fgkAddDigits);
2357 }
2358 os << std::endl;
2359 }
2360
2361 os << "----- Filtered ADC data (10+2 bit) -----" << std::endl;
2362 os << "ch ";
2363 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++)
2364 os << std::setw(4) << iChannel
2365 << ((~fZSMap[iChannel] != 0) ? "!" : " ");
2366 os << std::endl;
2367 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
2368 os << "tb " << std::setw(2) << iTimeBin << ":";
2369 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++) {
2370 os << std::setw(4) << (fADCF[iChannel][iTimeBin])
2371 << (((fZSMap[iChannel] & (1 << iTimeBin)) == 0) ? "!" : " ");
2372 }
2373 os << std::endl;
2374 }
2375}
2376
2377
2378void AliTRDmcmSim::PrintAdcDatXml(ostream& os) const
2379{
6b094867 2380 // print ADC data in XML format
2381
8ea391e3 2382 os << "<nginject>" << std::endl;
2383 os << "<ack roc=\""<< fDetector << "\" cmndid=\"0\">" << std::endl;
2384 os << "<dmem-readout>" << std::endl;
2385 os << "<d det=\"" << fDetector << "\">" << std::endl;
2386 os << " <ro-board rob=\"" << fRobPos << "\">" << std::endl;
2387 os << " <m mcm=\"" << fMcmPos << "\">" << std::endl;
2388
2389 for(Int_t iChannel = 0; iChannel < fgkNADC; iChannel++) {
2390 os << " <ch chnr=\"" << iChannel << "\">" << std::endl;
2391 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
2392 os << "<tb>" << fADCF[iChannel][iTimeBin]/4 << "</tb>";
2393 }
2394 os << " </ch>" << std::endl;
2395 }
2396
2397 os << " </m>" << std::endl;
2398 os << " </ro-board>" << std::endl;
2399 os << "</d>" << std::endl;
2400 os << "</dmem-readout>" << std::endl;
2401 os << "</ack>" << std::endl;
2402 os << "</nginject>" << std::endl;
2403}
2404
2405
2406
2407void AliTRDmcmSim::PrintAdcDatDatx(ostream& os, Bool_t broadcast) const
2408{
6b094867 2409 // print ADC data in datx format (to send to FEE)
2410
8ea391e3 2411 fTrapConfig->PrintDatx(os, 2602, 1, 0, 127); // command to enable the ADC clock - necessary to write ADC values to MCM
2412 os << std::endl;
2413
2414 Int_t addrOffset = 0x2000;
2415 Int_t addrStep = 0x80;
2416 Int_t addrOffsetEBSIA = 0x20;
2417
2418 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
2419 for (Int_t iChannel = 0; iChannel < fgkNADC; iChannel++) {
2420 if(broadcast==kFALSE)
2421 fTrapConfig->PrintDatx(os, addrOffset+iChannel*addrStep+addrOffsetEBSIA+iTimeBin, (fADCF[iChannel][iTimeBin]/4), GetRobPos(), GetMcmPos());
2422 else
2423 fTrapConfig->PrintDatx(os, addrOffset+iChannel*addrStep+addrOffsetEBSIA+iTimeBin, (fADCF[iChannel][iTimeBin]/4), 0, 127);
2424 }
2425 os << std::endl;
2426 }
2427}
2428
2429
2430void AliTRDmcmSim::PrintPidLutHuman()
2431{
6b094867 2432 // print PID LUT in human readable format
2433
8ea391e3 2434 UInt_t result;
2435
2436 UInt_t addrEnd = AliTRDtrapConfig::fgkDmemAddrLUTStart + fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTLength)/4; // /4 because each addr contains 4 values
2437 UInt_t nBinsQ0 = fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTnbins);
2438
2439 std::cout << "nBinsQ0: " << nBinsQ0 << std::endl;
2440 std::cout << "LUT table length: " << fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTLength)/4 << std::endl;
2441
2442 for(UInt_t addr=AliTRDtrapConfig::fgkDmemAddrLUTStart; addr< addrEnd; addr++) {
2443 result = fTrapConfig->GetDmemUnsigned(addr);
2444 std::cout << addr << " # x: " << (addr-AliTRDtrapConfig::fgkDmemAddrLUTStart)%(nBinsQ0/4) << ", y: " <<(addr-AliTRDtrapConfig::fgkDmemAddrLUTStart)/nBinsQ0 << " # " <<((result>>0)&0xFF)/255.0
2445 << " | " << ((result>>8)&0xFF)/255.0
2446 << " | " << ((result>>16)&0xFF)/255.0 << " | " << ((result>>24)&0xFF)/255.0 << std::endl;
2447 }
2448}
2449
2450
2451void AliTRDmcmSim::PrintPidLutDatx(ostream& os) const
2452{
6b094867 2453 // print PID LUT in datx format (to send to FEE)
2454
8ea391e3 2455 Double_t scaleQ[2];
2456 fTrapConfig->GetPIDscale(scaleQ);
2457
2458 ULong64_t scale = 1;
2459 scale = scale<<32;
2460
2461 os << std::setw(5) << 27; // cmd
2462 os << std::setw(8) << 4; // scaleQ0
2463 os << std::setw(12) << TMath::Nint(scale*scaleQ[0]); // value
2464 os << std::setw(8) << 1 << std::endl; // destination
2465
2466 os << std::setw(5) << 27; // cmd
2467 os << std::setw(8) << 5; // scaleQ1
2468 os << std::setw(12) << TMath::Nint(scale*scaleQ[1]); // value
2469 os << std::setw(8) << 1 << std::endl << std::endl; // destination
2470
2471 fTrapConfig->PrintMemDatx(os, AliTRDtrapConfig::fgkDmemAddrLUTnbins);
2472 fTrapConfig->PrintMemDatx(os, AliTRDtrapConfig::fgkDmemAddrLUTLength);
2473
2474 UInt_t addrStart = AliTRDtrapConfig::fgkDmemAddrLUTStart;
2475 UInt_t addrEnd = addrStart + (fTrapConfig->GetDmemUnsigned(AliTRDtrapConfig::fgkDmemAddrLUTLength)/4); // divided by 4 because each addr contains four values
2476 for(UInt_t addr=AliTRDtrapConfig::fgkDmemAddrLUTStart; addr< addrEnd; addr++) {
2477 fTrapConfig->PrintMemDatx(os, addr);
2478 }
2479}