]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDtrack.cxx
Storing the trigger class mask into the raw data header. Should be ok for TPC,PHOS...
[u/mrichter/AliRoot.git] / TRD / AliTRDtrack.cxx
CommitLineData
46d29e70 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
0fa7dfa7 16/* $Id$ */
46d29e70 17
a2cb5b3d 18#include <Riostream.h>
53c17fbf 19#include <TMath.h>
e1e6896f 20#include <TVector2.h>
46d29e70 21
53c17fbf 22#include "AliESDtrack.h"
46d29e70 23#include "AliTRDgeometry.h"
24#include "AliTRDcluster.h"
25#include "AliTRDtrack.h"
53c17fbf 26#include "AliTRDtracklet.h"
b3a5a838 27
46d29e70 28ClassImp(AliTRDtrack)
29
53c17fbf 30///////////////////////////////////////////////////////////////////////////////
31// //
32// Represents a reconstructed TRD track //
33// Local TRD Kalman track //
34// //
35///////////////////////////////////////////////////////////////////////////////
7ad19338 36
f146da82 37AliTRDtrack::AliTRDtrack():
38 AliKalmanTrack(),
39 fSeedLab(-1),
40 fdEdx(0),
41 fdEdxT(0),
42 fDE(0),
43 fAlpha(0),
44 fX(0),
45 fStopped(kFALSE),
46 fY(0),
47 fZ(0),
48 fE(0),
49 fT(0),
50 fC(0),
51 fCyy(1e10),
52 fCzy(0),
53 fCzz(1e10),
54 fCey(0),
55 fCez(0),
56 fCee(1e10),
57 fCty(0),
58 fCtz(0),
59 fCte(0),
60 fCtt(1e10),
61 fCcy(0),
62 fCcz(0),
63 fCce(0),
64 fCct(0),
65 fCcc(1e10),
66 fLhElectron(0),
67 fNWrong(0),
68 fNRotate(0),
69 fNCross(0),
70 fNExpected(0),
71 fNLast(0),
72 fNExpectedLast(0),
73 fNdedx(0),
74 fChi2Last(1e10),
75 fBackupTrack(0x0)
76
77{
78 for (Int_t i=0; i<kNplane; i++) {
79 fdEdxPlane[i] = 0;
80 fTimBinPlane[i] = -1;
81 }
82 for (UInt_t i=0; i<kMAXCLUSTERSPERTRACK; i++) {
83 fIndex[i] = 0;
84 fIndexBackup[i] = 0;
85 fdQdl[i] = 0;
86 }
87 for (Int_t i=0; i<3; i++) fBudget[i] = 0;
88}
46d29e70 89//_____________________________________________________________________________
a819a5f7 90AliTRDtrack::AliTRDtrack(const AliTRDcluster *c, UInt_t index,
5443e65e 91 const Double_t xx[5], const Double_t cc[15],
7ad19338 92 Double_t xref, Double_t alpha) : AliKalmanTrack() {
46d29e70 93 //-----------------------------------------------------------------
94 // This is the main track constructor.
95 //-----------------------------------------------------------------
5443e65e 96
97 fSeedLab = -1;
46d29e70 98
99 fAlpha=alpha;
5443e65e 100 if (fAlpha<-TMath::Pi()) fAlpha += 2*TMath::Pi();
101 if (fAlpha>=TMath::Pi()) fAlpha -= 2*TMath::Pi();
102
46d29e70 103 fX=xref;
104
b3a5a838 105 fY=xx[0]; fZ=xx[1]; fE=xx[2]; fT=xx[3]; fC=xx[4];
c84a5e9e 106
107 SaveLocalConvConst();
46d29e70 108
109 fCyy=cc[0];
110 fCzy=cc[1]; fCzz=cc[2];
b3a5a838 111 fCey=cc[3]; fCez=cc[4]; fCee=cc[5];
112 fCty=cc[6]; fCtz=cc[7]; fCte=cc[8]; fCtt=cc[9];
b8dc2353 113 fCcy=cc[10]; fCcz=cc[11]; fCce=cc[12]; fCct=cc[13]; fCcc=cc[14];
114
5443e65e 115 fIndex[0]=index;
116 SetNumberOfClusters(1);
117
118 fdEdx=0.;
03b0452e 119 fdEdxT=0.;
3fad3d32 120 fDE=0.;
53c17fbf 121 for (Int_t i=0;i<kNplane;i++){
eab5961e 122 fdEdxPlane[i] = 0.;
123 fTimBinPlane[i] = -1;
124 }
a2b90f83 125
b3a5a838 126 fLhElectron = 0.0;
9c9d2487 127 fNWrong = 0;
128 fNRotate = 0;
3c625a9b 129 fStopped = 0;
4f1c04d3 130 fNCross =0;
131 fNLast =0;
132 fChi2Last=0;
133 fNExpected=0;
134 fNExpectedLast=0;
135 fNdedx=0;
5443e65e 136 Double_t q = TMath::Abs(c->GetQ());
a819a5f7 137 Double_t s = fX*fC - fE, t=fT;
5443e65e 138 if(s*s < 1) q *= TMath::Sqrt((1-s*s)/(1+t*t));
139
140 fdQdl[0] = q;
0d5b5c27 141
142 // initialisation [SR, GSI 18.02.2003] (i startd for 1)
53c17fbf 143 for(UInt_t i=1; i<kMAXCLUSTERSPERTRACK; i++) {
0d5b5c27 144 fdQdl[i] = 0;
145 fIndex[i] = 0;
53c17fbf 146 fIndexBackup[i] = 0; //backup indexes MI
0d5b5c27 147 }
03b0452e 148 for (Int_t i=0;i<3;i++) { fBudget[i]=0;};
53c17fbf 149
150 fBackupTrack = 0;
151
46d29e70 152}
153
154//_____________________________________________________________________________
53c17fbf 155AliTRDtrack::AliTRDtrack(const AliTRDtrack& t) : AliKalmanTrack(t)
156{
46d29e70 157 //
158 // Copy constructor.
159 //
b8dc2353 160
5443e65e 161 SetLabel(t.GetLabel());
162 fSeedLab=t.GetSeedLabel();
46d29e70 163
5443e65e 164 SetChi2(t.GetChi2());
46d29e70 165 fdEdx=t.fdEdx;
03b0452e 166 fdEdxT=t.fdEdxT;
3fad3d32 167 fDE=t.fDE;
53c17fbf 168 for (Int_t i=0;i<kNplane;i++){
eab5961e 169 fdEdxPlane[i] = t.fdEdxPlane[i];
170 fTimBinPlane[i] = t.fTimBinPlane[i];
96c3a73c 171 fTracklets[i] = t.fTracklets[i];
eab5961e 172 }
46d29e70 173
b3a5a838 174 fLhElectron = 0.0;
9c9d2487 175 fNWrong = t.fNWrong;
176 fNRotate = t.fNRotate;
3c625a9b 177 fStopped = t.fStopped;
4f1c04d3 178 fNCross = t.fNCross;
179 fNExpected = t.fNExpected;
180 fNExpectedLast = t.fNExpectedLast;
181 fNdedx = t.fNdedx;
182 fNLast = t.fNLast;
183 fChi2Last = t.fChi2Last;
184 fBackupTrack =0;
46d29e70 185 fAlpha=t.fAlpha;
186 fX=t.fX;
187
4f1c04d3 188
b8dc2353 189 fY=t.fY; fZ=t.fZ; fE=t.fE; fT=t.fT; fC=t.fC;
46d29e70 190
191 fCyy=t.fCyy;
192 fCzy=t.fCzy; fCzz=t.fCzz;
b3a5a838 193 fCey=t.fCey; fCez=t.fCez; fCee=t.fCee;
194 fCty=t.fCty; fCtz=t.fCtz; fCte=t.fCte; fCtt=t.fCtt;
b8dc2353 195 fCcy=t.fCcy; fCcz=t.fCcz; fCce=t.fCce; fCct=t.fCct; fCcc=t.fCcc;
46d29e70 196
5443e65e 197 Int_t n=t.GetNumberOfClusters();
198 SetNumberOfClusters(n);
199 for (Int_t i=0; i<n; i++) {
a819a5f7 200 fIndex[i]=t.fIndex[i];
46e2d86c 201 fIndexBackup[i]=t.fIndex[i]; // MI - backup indexes
a819a5f7 202 fdQdl[i]=t.fdQdl[i];
203 }
b8dc2353 204
0d5b5c27 205 // initialisation (i starts from n) [SR, GSI, 18.02.2003]
53c17fbf 206 for(UInt_t i=n; i<kMAXCLUSTERSPERTRACK; i++) {
0d5b5c27 207 fdQdl[i] = 0;
208 fIndex[i] = 0;
46e2d86c 209 fIndexBackup[i] = 0; //MI backup indexes
0d5b5c27 210 }
03b0452e 211 for (Int_t i=0;i<6;i++){
212 fTracklets[i] = t.fTracklets[i];
213 }
214 for (Int_t i=0;i<3;i++) { fBudget[i]=t.fBudget[i];};
5443e65e 215}
216
217//_____________________________________________________________________________
b3a5a838 218AliTRDtrack::AliTRDtrack(const AliKalmanTrack& t, Double_t alpha)
53c17fbf 219 :AliKalmanTrack(t)
220{
5443e65e 221 //
222 // Constructor from AliTPCtrack or AliITStrack .
223 //
224
225 SetLabel(t.GetLabel());
226 SetChi2(0.);
b8dc2353 227 SetMass(t.GetMass());
5443e65e 228 SetNumberOfClusters(0);
229
bbc6cd2c 230 fdEdx=t.GetPIDsignal();
aa504dc7 231 fDE = 0;
53c17fbf 232 for (Int_t i=0;i<kNplane;i++){
eab5961e 233 fdEdxPlane[i] = 0.0;
234 fTimBinPlane[i] = -1;
235 }
5443e65e 236
b3a5a838 237 fLhElectron = 0.0;
9c9d2487 238 fNWrong = 0;
239 fNRotate = 0;
3c625a9b 240 fStopped = 0;
4f1c04d3 241 fNExpected=0;
242 fNExpectedLast=0;
243 fNdedx =0;
244 fNCross =0;
245 fNLast =0;
246 fChi2Last =0;
247 fBackupTrack =0;
b3a5a838 248
5443e65e 249 fAlpha = alpha;
250 if (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
251 else if (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
252
253 Double_t x, p[5]; t.GetExternalParameters(x,p);
254
255 fX=x;
256
b8dc2353 257 fY=p[0];
258 fZ=p[1];
c84a5e9e 259 fT=p[3]; x=GetLocalConvConst();
b3a5a838 260 fC=p[4]/x;
b8dc2353 261 fE=fC*fX - p[2];
5443e65e 262
263 //Conversion of the covariance matrix
264 Double_t c[15]; t.GetExternalCovariance(c);
79e94bf8 265
266 c[10]/=x; c[11]/=x; c[12]/=x; c[13]/=x; c[14]/=x*x;
267
268 Double_t c22=fX*fX*c[14] - 2*fX*c[12] + c[5];
269 Double_t c32=fX*c[13] - c[8];
270 Double_t c20=fX*c[10] - c[3], c21=fX*c[11] - c[4], c42=fX*c[14] - c[12];
271
272 fCyy=c[0 ];
273 fCzy=c[1 ]; fCzz=c[2 ];
274 fCey=c20; fCez=c21; fCee=c22;
275 fCty=c[6 ]; fCtz=c[7 ]; fCte=c32; fCtt=c[9 ];
276 fCcy=c[10]; fCcz=c[11]; fCce=c42; fCct=c[13]; fCcc=c[14];
277
278 // Initialization [SR, GSI, 18.02.2003]
53c17fbf 279 for(UInt_t i=0; i<kMAXCLUSTERSPERTRACK; i++) {
79e94bf8 280 fdQdl[i] = 0;
281 fIndex[i] = 0;
46e2d86c 282 fIndexBackup[i] = 0; // MI backup indexes
79e94bf8 283 }
4f1c04d3 284
03b0452e 285 for (Int_t i=0;i<3;i++) { fBudget[i]=0;};
79e94bf8 286}
53c17fbf 287
79e94bf8 288//_____________________________________________________________________________
289AliTRDtrack::AliTRDtrack(const AliESDtrack& t)
53c17fbf 290 :AliKalmanTrack()
291{
79e94bf8 292 //
293 // Constructor from AliESDtrack
294 //
53c17fbf 295
79e94bf8 296 SetLabel(t.GetLabel());
297 SetChi2(0.);
298 SetMass(t.GetMass());
1e9bb598 299 SetNumberOfClusters(t.GetTRDclusters(fIndex));
46e2d86c 300 Int_t ncl = t.GetTRDclusters(fIndexBackup);
53c17fbf 301 for (UInt_t i=ncl;i<kMAXCLUSTERSPERTRACK;i++) {
46e2d86c 302 fIndexBackup[i]=0;
303 fIndex[i] = 0; //MI store indexes
304 }
aa504dc7 305 fdEdx=t.GetTRDsignal();
306 fDE =0;
53c17fbf 307 for (Int_t i=0;i<kNplane;i++){
eab5961e 308 fdEdxPlane[i] = t.GetTRDsignals(i);
309 fTimBinPlane[i] = t.GetTRDTimBin(i);
310 }
79e94bf8 311
312 fLhElectron = 0.0;
313 fNWrong = 0;
3c625a9b 314 fStopped = 0;
79e94bf8 315 fNRotate = 0;
4f1c04d3 316 fNExpected =0;
317 fNExpectedLast=0;
318 fNdedx = 0;
319 fNCross =0;
320 fNLast =0;
321 fChi2Last =0;
322 fBackupTrack =0;
79e94bf8 323
324 fAlpha = t.GetAlpha();
325 if (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
326 else if (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
327
328 Double_t x, p[5]; t.GetExternalParameters(x,p);
c5a8e3df 329 //Conversion of the covariance matrix
330 Double_t c[15]; t.GetExternalCovariance(c);
25cde026 331 if (t.GetStatus()&AliESDtrack::kTRDbackup){
c0b978f0 332 t.GetOuterExternalParameters(fAlpha,x,p);
c9ec41e8 333 t.GetOuterExternalCovariance(c);
f4e9508c 334 if (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
335 else if (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
c5a8e3df 336 }
79e94bf8 337
338 fX=x;
339
79e94bf8 340 fY=p[0];
c84a5e9e 341 fZ=p[1]; SaveLocalConvConst();
342 fT=p[3]; x=GetLocalConvConst();
79e94bf8 343 fC=p[4]/x;
344 fE=fC*fX - p[2];
345
5443e65e 346
347 c[10]/=x; c[11]/=x; c[12]/=x; c[13]/=x; c[14]/=x*x;
348
349 Double_t c22=fX*fX*c[14] - 2*fX*c[12] + c[5];
350 Double_t c32=fX*c[13] - c[8];
351 Double_t c20=fX*c[10] - c[3], c21=fX*c[11] - c[4], c42=fX*c[14] - c[12];
352
b8dc2353 353 fCyy=c[0 ];
354 fCzy=c[1 ]; fCzz=c[2 ];
355 fCey=c20; fCez=c21; fCee=c22;
356 fCty=c[6 ]; fCtz=c[7 ]; fCte=c32; fCtt=c[9 ];
357 fCcy=c[10]; fCcz=c[11]; fCce=c42; fCct=c[13]; fCcc=c[14];
5443e65e 358
0d5b5c27 359 // Initialization [SR, GSI, 18.02.2003]
53c17fbf 360 for(UInt_t i=0; i<kMAXCLUSTERSPERTRACK; i++) {
0d5b5c27 361 fdQdl[i] = 0;
46e2d86c 362 // fIndex[i] = 0; //MI store indexes
0d5b5c27 363 }
c630aafd 364
03b0452e 365 for (Int_t i=0;i<3;i++) { fBudget[i]=0;};
c630aafd 366 if ((t.GetStatus()&AliESDtrack::kTIME) == 0) return;
367 StartTimeIntegral();
368 Double_t times[10]; t.GetIntegratedTimes(times); SetIntegratedTimes(times);
369 SetIntegratedLength(t.GetIntegratedLength());
370
16d9fbba 371}
372
53c17fbf 373//____________________________________________________________________________
374AliTRDtrack::~AliTRDtrack()
3fad3d32 375{
376 //
53c17fbf 377 // Destructor
378 //
3fad3d32 379
53c17fbf 380 if (fBackupTrack) delete fBackupTrack;
381 fBackupTrack = 0;
3fad3d32 382
53c17fbf 383}
384
385//____________________________________________________________________________
386AliTRDtrack &AliTRDtrack::operator=(const AliTRDtrack &t)
16d9fbba 387{
388 //
53c17fbf 389 // Assignment operator
16d9fbba 390 //
eab5961e 391
53c17fbf 392 fLhElectron = 0.0;
393 fNWrong = 0;
394 fStopped = 0;
395 fNRotate = 0;
396 fNExpected =0;
397 fNExpectedLast=0;
398 fNdedx = 0;
399 fNCross =0;
400 fNLast =0;
401 fChi2Last =0;
402 fBackupTrack =0;
403
404 fAlpha = t.GetAlpha();
405 if (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
406 else if (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
407
408 return *this;
eab5961e 409
16d9fbba 410}
9c9d2487 411
53c17fbf 412// //____________________________________________________________________________
413// AliTRDtrack * AliTRDtrack::MakeTrack(const AliTrackReference *ref, Double_t mass)
414// {
415// //
416// // Make dummy track from the track reference
417// // negative mass means opposite charge
418// //
419// Double_t xx[5];
420// Double_t cc[15];
421// for (Int_t i=0;i<15;i++) cc[i]=0;
422// Double_t x = ref->X(), y = ref->Y(), z = ref->Z();
423// Double_t alpha = TMath::ATan2(y,x);
424// Double_t xr = TMath::Sqrt(x*x+y*y);
425// xx[0] = 0;
426// xx[1] = z;
427// xx[3] = ref->Pz()/ref->Pt();
428// Float_t b[3];
429// Float_t xyz[3]={x,y,z};
430// Float_t convConst = 0;
431// (AliKalmanTrack::GetFieldMap())->Field(xyz,b);
432// convConst=1000/0.299792458/(1e-13 - b[2]);
433// xx[4] = 1./(convConst*ref->Pt());
434// if (mass<0) xx[4]*=-1.; // negative mass - negative direction
435// Double_t lcos = (x*ref->Px()+y*ref->Py())/(xr*ref->Pt());
436// Double_t lsin = TMath::Sin(TMath::ACos(lcos));
437// if (mass<0) lsin*=-1.;
438// xx[2] = xr*xx[4]-lsin;
439// AliTRDcluster cl;
440// AliTRDtrack * track = new AliTRDtrack(&cl,100,xx,cc,xr,alpha);
441// track->SetMass(TMath::Abs(mass));
442// track->StartTimeIntegral();
443// return track;
444// }
8206377c 445
53c17fbf 446//____________________________________________________________________________
447Float_t AliTRDtrack::StatusForTOF()
7ad19338 448{
53c17fbf 449 //
450 // Defines the status of the TOF extrapolation
451 //
03b0452e 452
453 Float_t res = (0.2 + 0.8*(fN/(fNExpected+5.)))*(0.4+0.6*fTracklets[5].GetN()/20.);
454 res *= (0.25+0.8*40./(40.+fBudget[2]));
455 return res;
456
4f1c04d3 457 Int_t status=0;
458 if (GetNumberOfClusters()<20) return 0; //
c84a5e9e 459 if (fN>110&&fChi2/(Float_t(fN))<3) return 3; //gold
460 if (fNLast>30&&fChi2Last/(Float_t(fNLast))<3) return 3; //gold
461 if (fNLast>20&&fChi2Last/(Float_t(fNLast))<2) return 3; //gold
462 if (fNLast/(fNExpectedLast+3.)>0.8 && fChi2Last/Float_t(fNLast)<5&&fNLast>20) return 2; //silber
463 if (fNLast>5 &&((fNLast+1.)/(fNExpectedLast+1.))>0.8&&fChi2Last/(fNLast-5.)<6) return 1;
53c17fbf 464
4f1c04d3 465 return status;
53c17fbf 466
4f1c04d3 467}
468
5443e65e 469//____________________________________________________________________________
53c17fbf 470void AliTRDtrack::GetExternalParameters(Double_t& xr, Double_t x[5]) const
471{
5443e65e 472 //
473 // This function returns external TRD track representation
474 //
53c17fbf 475
476 xr = fX;
477 x[0] = GetY();
478 x[1] = GetZ();
479 x[2] = GetSnp();
480 x[3] = GetTgl();
481 x[4] = Get1Pt();
482
5443e65e 483}
484
485//_____________________________________________________________________________
53c17fbf 486void AliTRDtrack::GetExternalCovariance(Double_t cc[15]) const
487{
5443e65e 488 //
489 // This function returns external representation of the covriance matrix.
490 //
53c17fbf 491
c84a5e9e 492 Double_t a=GetLocalConvConst();
5443e65e 493
b3a5a838 494 Double_t c22=fX*fX*fCcc-2*fX*fCce+fCee;
495 Double_t c32=fX*fCct-fCte;
496 Double_t c20=fX*fCcy-fCey, c21=fX*fCcz-fCez, c42=fX*fCcc-fCce;
5443e65e 497
498 cc[0 ]=fCyy;
499 cc[1 ]=fCzy; cc[2 ]=fCzz;
500 cc[3 ]=c20; cc[4 ]=c21; cc[5 ]=c22;
501 cc[6 ]=fCty; cc[7 ]=fCtz; cc[8 ]=c32; cc[9 ]=fCtt;
b8dc2353 502 cc[10]=fCcy*a; cc[11]=fCcz*a; cc[12]=c42*a; cc[13]=fCct*a; cc[14]=fCcc*a*a;
503
5443e65e 504}
505
46d29e70 506//_____________________________________________________________________________
53c17fbf 507void AliTRDtrack::GetCovariance(Double_t cc[15]) const
508{
509 //
510 // Returns the track covariance matrix
511 //
b8dc2353 512
46d29e70 513 cc[0]=fCyy;
514 cc[1]=fCzy; cc[2]=fCzz;
b3a5a838 515 cc[3]=fCey; cc[4]=fCez; cc[5]=fCee;
516 cc[6]=fCcy; cc[7]=fCcz; cc[8]=fCce; cc[9]=fCcc;
517 cc[10]=fCty; cc[11]=fCtz; cc[12]=fCte; cc[13]=fCct; cc[14]=fCtt;
b8dc2353 518
46d29e70 519}
520
521//_____________________________________________________________________________
53c17fbf 522Int_t AliTRDtrack::Compare(const TObject *o) const
523{
524 //
525 // Compares tracks according to their Y2 or curvature
526 //
46d29e70 527
528 AliTRDtrack *t=(AliTRDtrack*)o;
529 // Double_t co=t->GetSigmaY2();
530 // Double_t c =GetSigmaY2();
531
532 Double_t co=TMath::Abs(t->GetC());
533 Double_t c =TMath::Abs(GetC());
534
53c17fbf 535 if (c>co) return 1;
46d29e70 536 else if (c<co) return -1;
537 return 0;
53c17fbf 538
46d29e70 539}
540
a819a5f7 541//_____________________________________________________________________________
542void AliTRDtrack::CookdEdx(Double_t low, Double_t up) {
543 //-----------------------------------------------------------------
544 // Calculates dE/dX within the "low" and "up" cuts.
545 //-----------------------------------------------------------------
5443e65e 546
a819a5f7 547 Int_t i;
4f1c04d3 548 //Int_t nc=GetNumberOfClusters();
549 Int_t nc=fNdedx;
550 if (nc<10) {
551 SetdEdx(0);
552 return;
553 }
a819a5f7 554
53c17fbf 555 Float_t sorted[kMAXCLUSTERSPERTRACK];
5443e65e 556 for (i=0; i < nc; i++) {
c84a5e9e 557 sorted[i]=fdQdl[i];
5443e65e 558 }
a819a5f7 559 Int_t nl=Int_t(low*nc), nu=Int_t(up*nc);
560 Float_t dedx=0;
c84a5e9e 561 //for (i=nl; i<=nu; i++) dedx += sorted[i];
562 //dedx /= (nu-nl+1);
563 for (i=0; i<nc; i++) dedx += sorted[i]; // ADDED by PS
564 if((nu-nl)) dedx /= (nu-nl); // ADDED by PS
5443e65e 565
3551db50 566 //SetdEdx(dedx);
03b0452e 567 //
568 // now real truncated mean
569 for (i=0; i < nc; i++) {
570 sorted[i]=TMath::Abs(fdQdl[i]);
571 }
572 Int_t * index = new Int_t[nc];
573 TMath::Sort(nc, sorted, index,kFALSE);
574 dedx=0;
575 for (i=nl; i<=nu; i++) dedx += sorted[index[i]];
576 dedx /= (nu-nl+1);
577 fdEdxT = dedx;
578 delete [] index;
3551db50 579 SetdEdx(dedx);
580
a819a5f7 581}
582
46d29e70 583//_____________________________________________________________________________
b3a5a838 584Int_t AliTRDtrack::PropagateTo(Double_t xk,Double_t x0,Double_t rho)
46d29e70 585{
586 // Propagates a track of particle with mass=pm to a reference plane
587 // defined by x=xk through media of density=rho and radiationLength=x0
588
9c9d2487 589 if (xk == fX) return 1;
590
3c625a9b 591 if (TMath::Abs(fC*xk - fE) >= 0.90000) {
592 // Int_t n=GetNumberOfClusters();
593 //if (n>4) cerr << n << " AliTRDtrack: Propagation failed, \tPt = "
594 // << GetPt() << "\t" << GetLabel() << "\t" << GetMass() << endl;
46d29e70 595 return 0;
596 }
c84a5e9e 597 Double_t lcc=GetLocalConvConst();
46d29e70 598
0d5b5c27 599 // track Length measurement [SR, GSI, 17.02.2003]
600 Double_t oldX = fX, oldY = fY, oldZ = fZ;
601
46d29e70 602 Double_t x1=fX, x2=x1+(xk-x1), dx=x2-x1, y1=fY, z1=fZ;
5443e65e 603 Double_t c1=fC*x1 - fE;
604 if((c1*c1) > 1) return 0;
605 Double_t r1=sqrt(1.- c1*c1);
b8dc2353 606 Double_t c2=fC*x2 - fE;
5443e65e 607 if((c2*c2) > 1) return 0;
608 Double_t r2=sqrt(1.- c2*c2);
46d29e70 609
610 fY += dx*(c1+c2)/(r1+r2);
611 fZ += dx*(c1+c2)/(c1*r2 + c2*r1)*fT;
612
613 //f = F - 1
614 Double_t rr=r1+r2, cc=c1+c2, xx=x1+x2;
b3a5a838 615 Double_t f02=-dx*(2*rr + cc*(c1/r1 + c2/r2))/(rr*rr);
616 Double_t f04= dx*(rr*xx + cc*(c1*x1/r1+c2*x2/r2))/(rr*rr);
46d29e70 617 Double_t cr=c1*r2+c2*r1;
b3a5a838 618 Double_t f12=-dx*fT*(2*cr + cc*(c2*c1/r1-r1 + c1*c2/r2-r2))/(cr*cr);
619 Double_t f13= dx*cc/cr;
b8dc2353 620 Double_t f14=dx*fT*(cr*xx-cc*(r1*x2-c2*c1*x1/r1+r2*x1-c1*c2*x2/r2))/(cr*cr);
46d29e70 621
622 //b = C*ft
b3a5a838 623 Double_t b00=f02*fCey + f04*fCcy, b01=f12*fCey + f14*fCcy + f13*fCty;
624 Double_t b10=f02*fCez + f04*fCcz, b11=f12*fCez + f14*fCcz + f13*fCtz;
625 Double_t b20=f02*fCee + f04*fCce, b21=f12*fCee + f14*fCce + f13*fCte;
626 Double_t b30=f02*fCte + f04*fCct, b31=f12*fCte + f14*fCct + f13*fCtt;
627 Double_t b40=f02*fCce + f04*fCcc, b41=f12*fCce + f14*fCcc + f13*fCct;
46d29e70 628
629 //a = f*b = f*C*ft
b3a5a838 630 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a11=f12*b21+f14*b41+f13*b31;
46d29e70 631
632 //F*C*Ft = C + (a + b + bt)
633 fCyy += a00 + 2*b00;
634 fCzy += a01 + b01 + b10;
b3a5a838 635 fCey += b20;
636 fCty += b30;
637 fCcy += b40;
46d29e70 638 fCzz += a11 + 2*b11;
b3a5a838 639 fCez += b21;
640 fCtz += b31;
b8dc2353 641 fCcz += b41;
46d29e70 642
b8dc2353 643 fX=x2;
46d29e70 644
c84a5e9e 645 //Change of the magnetic field *************
646 SaveLocalConvConst();
647 cc=fC;
648 fC*=lcc/GetLocalConvConst();
649 fE+=fX*(fC-cc);
650
46d29e70 651 //Multiple scattering ******************
46d29e70 652 Double_t d=sqrt((x1-fX)*(x1-fX)+(y1-fY)*(y1-fY)+(z1-fZ)*(z1-fZ));
b8dc2353 653 Double_t p2=(1.+ GetTgl()*GetTgl())/(Get1Pt()*Get1Pt());
b3a5a838 654 Double_t beta2=p2/(p2 + GetMass()*GetMass());
b8dc2353 655 Double_t theta2=14.1*14.1/(beta2*p2*1e6)*d/x0*rho;
c84a5e9e 656
46d29e70 657 Double_t ey=fC*fX - fE, ez=fT;
658 Double_t xz=fC*ez, zz1=ez*ez+1, xy=fE+ey;
3c625a9b 659
46d29e70 660 fCee += (2*ey*ez*ez*fE+1-ey*ey+ez*ez+fE*fE*ez*ez)*theta2;
661 fCte += ez*zz1*xy*theta2;
662 fCtt += zz1*zz1*theta2;
b3a5a838 663 fCce += xz*ez*xy*theta2;
664 fCct += xz*zz1*theta2;
665 fCcc += xz*xz*theta2;
3c625a9b 666 /*
667 Double_t dc22 = (1-ey*ey+xz*xz*fX*fX)*theta2;
668 Double_t dc32 = (xz*fX*zz1)*theta2;
669 Double_t dc33 = (zz1*zz1)*theta2;
670 Double_t dc42 = (xz*fX*xz)*theta2;
671 Double_t dc43 = (zz1*xz)*theta2;
672 Double_t dc44 = (xz*xz)*theta2;
673 fCee += dc22;
674 fCte += dc32;
675 fCtt += dc33;
676 fCce += dc42;
677 fCct += dc43;
678 fCcc += dc44;
679 */
46d29e70 680 //Energy losses************************
b8dc2353 681 if((5940*beta2/(1-beta2+1e-10) - beta2) < 0) return 0;
5443e65e 682
c84a5e9e 683 Double_t dE=0.153e-3/beta2*(log(5940*beta2/(1-beta2+1e-10)) - beta2)*d*rho;
2276b464 684 Float_t budget = d* rho;
685 fBudget[0] +=budget;
96c3a73c 686 //
687 // suspicious part - think about it ?
688 Double_t kinE = TMath::Sqrt(p2);
689 if (dE>0.8*kinE) dE = 0.8*kinE; //
690 if (dE<0) dE = 0.0; // not valid region for Bethe bloch
691 //
692 //
3fad3d32 693 fDE+=dE;
b8dc2353 694 if (x1 < x2) dE=-dE;
695 cc=fC;
b3a5a838 696 fC*=(1.- sqrt(p2+GetMass()*GetMass())/p2*dE);
b8dc2353 697 fE+=fX*(fC-cc);
3fad3d32 698 // Double_t sigmade = 0.1*dE*TMath::Sqrt(TMath::Sqrt(1+fT*fT)*90./(d+0.0001)); // 20 percent fluctuation - normalized to some length
03b0452e 699 Double_t sigmade = 0.07*TMath::Sqrt(TMath::Abs(dE)); // energy loss fluctuation
3fad3d32 700 Double_t sigmac2 = sigmade*sigmade*fC*fC*(p2+GetMass()*GetMass())/(p2*p2);
701 fCcc += sigmac2;
702 fCee += fX*fX*sigmac2;
c84a5e9e 703
0d5b5c27 704 // track time measurement [SR, GSI 17.02.2002]
0fa7dfa7 705 if (x1 < x2)
0d5b5c27 706 if (IsStartedTimeIntegral()) {
03b0452e 707 Double_t l2 = TMath::Sqrt((fX-oldX)*(fX-oldX) + (fY-oldY)*(fY-oldY) + (fZ-oldZ)*(fZ-oldZ));
708 if (TMath::Abs(l2*fC)>0.0001){
709 // make correction for curvature if neccesary
710 l2 = 0.5*TMath::Sqrt((fX-oldX)*(fX-oldX) + (fY-oldY)*(fY-oldY));
711 l2 = 2*TMath::ASin(l2*fC)/fC;
712 l2 = TMath::Sqrt(l2*l2+(fZ-oldZ)*(fZ-oldZ));
713 }
714 AddTimeStep(l2);
0d5b5c27 715 }
716
b8dc2353 717 return 1;
46d29e70 718}
719
46d29e70 720//_____________________________________________________________________________
53c17fbf 721Int_t AliTRDtrack::Update(const AliTRDcluster *c, Double_t chisq, UInt_t index
722 , Double_t h01)
46d29e70 723{
724 // Assignes found cluster to the track and updates track information
725
b8dc2353 726 Bool_t fNoTilt = kTRUE;
727 if(TMath::Abs(h01) > 0.003) fNoTilt = kFALSE;
46e2d86c 728 // add angular effect to the error contribution - MI
3c625a9b 729 Float_t tangent2 = (fC*fX-fE)*(fC*fX-fE);
730 if (tangent2 < 0.90000){
46e2d86c 731 tangent2 = tangent2/(1.-tangent2);
732 }
733 Float_t errang = tangent2*0.04; //
734 Float_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12.);
fd621f36 735
46e2d86c 736 Double_t r00=c->GetSigmaY2() +errang, r01=0., r11=c->GetSigmaZ2()*100.;
b8dc2353 737 r00+=fCyy; r01+=fCzy; r11+=fCzz;
46d29e70 738 Double_t det=r00*r11 - r01*r01;
739 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
740
b8dc2353 741 Double_t k00=fCyy*r00+fCzy*r01, k01=fCyy*r01+fCzy*r11;
742 Double_t k10=fCzy*r00+fCzz*r01, k11=fCzy*r01+fCzz*r11;
743 Double_t k20=fCey*r00+fCez*r01, k21=fCey*r01+fCez*r11;
744 Double_t k30=fCty*r00+fCtz*r01, k31=fCty*r01+fCtz*r11;
745 Double_t k40=fCcy*r00+fCcz*r01, k41=fCcy*r01+fCcz*r11;
46d29e70 746
747 Double_t dy=c->GetY() - fY, dz=c->GetZ() - fZ;
b3a5a838 748 Double_t cur=fC + k40*dy + k41*dz, eta=fE + k20*dy + k21*dz;
fd621f36 749
46d29e70 750
b8dc2353 751 if(fNoTilt) {
3c625a9b 752 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
753 // Int_t n=GetNumberOfClusters();
754 //if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
b8dc2353 755 return 0;
756 }
757 fY += k00*dy + k01*dz;
758 fZ += k10*dy + k11*dz;
759 fE = eta;
9c9d2487 760 //fT += k30*dy + k31*dz;
b8dc2353 761 fC = cur;
762 }
763 else {
53c17fbf 764 Double_t xuFactor = 100.; // empirical factor set by C.Xu
b8dc2353 765 // in the first tilt version
46e2d86c 766 dy=c->GetY() - fY; dz=c->GetZ() - fZ;
767 dy=dy+h01*dz;
768 Float_t add=0;
769 if (TMath::Abs(dz)>padlength/2.){
3c625a9b 770 Float_t dy2 = c->GetY() - fY;
771 Float_t sign = (dz>0) ? -1.: 1.;
772 dy2+=h01*sign*padlength/2.;
773 dy = dy2;
774 add = 0;
46e2d86c 775 }
776
777
778
53c17fbf 779 r00=c->GetSigmaY2()+errang+add, r01=0., r11=c->GetSigmaZ2()*xuFactor;
b8dc2353 780 r00+=(fCyy+2.0*h01*fCzy+h01*h01*fCzz);
1299b231 781 r01+=(fCzy+h01*fCzz);
782 r11+=fCzz;
46e2d86c 783
b8dc2353 784 det=r00*r11 - r01*r01;
785 tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
786
787 k00=fCyy*r00+fCzy*(r01+h01*r00),k01=fCyy*r01+fCzy*(r11+h01*r01);
788 k10=fCzy*r00+fCzz*(r01+h01*r00),k11=fCzy*r01+fCzz*(r11+h01*r01);
789 k20=fCey*r00+fCez*(r01+h01*r00),k21=fCey*r01+fCez*(r11+h01*r01);
790 k30=fCty*r00+fCtz*(r01+h01*r00),k31=fCty*r01+fCtz*(r11+h01*r01);
791 k40=fCcy*r00+fCcz*(r01+h01*r00),k41=fCcy*r01+fCcz*(r11+h01*r01);
792
b8dc2353 793
794 cur=fC + k40*dy + k41*dz; eta=fE + k20*dy + k21*dz;
3c625a9b 795 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
796 // Int_t n=GetNumberOfClusters();
797 //if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
b8dc2353 798 return 0;
799 }
800 fY += k00*dy + k01*dz;
801 fZ += k10*dy + k11*dz;
802 fE = eta;
46e2d86c 803 fT += k30*dy + k31*dz;
b8dc2353 804 fC = cur;
805
806 k01+=h01*k00;
807 k11+=h01*k10;
808 k21+=h01*k20;
809 k31+=h01*k30;
810 k41+=h01*k40;
46e2d86c 811
b8dc2353 812 }
46e2d86c 813 Double_t c01=fCzy, c02=fCey, c03=fCty, c04=fCcy;
814 Double_t c12=fCez, c13=fCtz, c14=fCcz;
815
b8dc2353 816
46d29e70 817 fCyy-=k00*fCyy+k01*fCzy; fCzy-=k00*c01+k01*fCzz;
b3a5a838 818 fCey-=k00*c02+k01*c12; fCty-=k00*c03+k01*c13;
819 fCcy-=k00*c04+k01*c14;
b8dc2353 820
46d29e70 821 fCzz-=k10*c01+k11*fCzz;
b3a5a838 822 fCez-=k10*c02+k11*c12; fCtz-=k10*c03+k11*c13;
823 fCcz-=k10*c04+k11*c14;
b8dc2353 824
b3a5a838 825 fCee-=k20*c02+k21*c12; fCte-=k20*c03+k21*c13;
826 fCce-=k20*c04+k21*c14;
b8dc2353 827
b3a5a838 828 fCtt-=k30*c03+k31*c13;
46e2d86c 829 fCct-=k40*c03+k41*c13;
830 //fCct-=k30*c04+k31*c14; // symmetric formula MI
b8dc2353 831
832 fCcc-=k40*c04+k41*c14;
46d29e70 833
b8dc2353 834 Int_t n=GetNumberOfClusters();
5443e65e 835 fIndex[n]=index;
b8dc2353 836 SetNumberOfClusters(n+1);
fd621f36 837
b8dc2353 838 SetChi2(GetChi2()+chisq);
46d29e70 839 // cerr<<"in update: fIndex["<<fN<<"] = "<<index<<endl;
5443e65e 840
b8dc2353 841 return 1;
53c17fbf 842
46d29e70 843}
53c17fbf 844
46e2d86c 845//_____________________________________________________________________________
3c625a9b 846Int_t AliTRDtrack::UpdateMI(const AliTRDcluster *c, Double_t chisq, UInt_t index, Double_t h01,
4f1c04d3 847 Int_t /*plane*/)
46e2d86c 848{
849 // Assignes found cluster to the track and updates track information
850
851 Bool_t fNoTilt = kTRUE;
852 if(TMath::Abs(h01) > 0.003) fNoTilt = kFALSE;
3c625a9b 853 // add angular effect to the error contribution and make correction - MI
c5a8e3df 854 //AliTRDclusterCorrection *corrector = AliTRDclusterCorrection::GetCorrection();
3c625a9b 855 //
856 Double_t tangent2 = (fC*fX-fE)*(fC*fX-fE);
857 if (tangent2 < 0.90000){
46e2d86c 858 tangent2 = tangent2/(1.-tangent2);
859 }
3c625a9b 860 Double_t tangent = TMath::Sqrt(tangent2);
861 if ((fC*fX-fE)<0) tangent*=-1;
c84a5e9e 862 // Double_t correction = 0*plane;
863 Double_t errang = tangent2*0.04; //
864 Double_t errsys =0.025*0.025*20; //systematic error part
865 Float_t extend =1;
866 if (c->GetNPads()==4) extend=2;
867 //if (c->GetNPads()==5) extend=3;
868 //if (c->GetNPads()==6) extend=3;
869 //if (c->GetQ()<15) return 1;
4f1c04d3 870
c5a8e3df 871 /*
3c625a9b 872 if (corrector!=0){
873 //if (0){
874 correction = corrector->GetCorrection(plane,c->GetLocalTimeBin(),tangent);
875 if (TMath::Abs(correction)>0){
876 //if we have info
877 errang = corrector->GetSigma(plane,c->GetLocalTimeBin(),tangent);
878 errang *= errang;
879 errang += tangent2*0.04;
880 }
881 }
c5a8e3df 882 */
3c625a9b 883 //
c84a5e9e 884 // Double_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12.);
885
886 Double_t r00=(c->GetSigmaY2() +errang+errsys)*extend, r01=0., r11=c->GetSigmaZ2()*10000.;
46e2d86c 887 r00+=fCyy; r01+=fCzy; r11+=fCzz;
888 Double_t det=r00*r11 - r01*r01;
889 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
890
891 Double_t k00=fCyy*r00+fCzy*r01, k01=fCyy*r01+fCzy*r11;
892 Double_t k10=fCzy*r00+fCzz*r01, k11=fCzy*r01+fCzz*r11;
893 Double_t k20=fCey*r00+fCez*r01, k21=fCey*r01+fCez*r11;
894 Double_t k30=fCty*r00+fCtz*r01, k31=fCty*r01+fCtz*r11;
895 Double_t k40=fCcy*r00+fCcz*r01, k41=fCcy*r01+fCcz*r11;
896
897 Double_t dy=c->GetY() - fY, dz=c->GetZ() - fZ;
898 Double_t cur=fC + k40*dy + k41*dz, eta=fE + k20*dy + k21*dz;
899
900
901 if(fNoTilt) {
3c625a9b 902 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
903 // Int_t n=GetNumberOfClusters();
904 //if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
46e2d86c 905 return 0;
906 }
907 fY += k00*dy + k01*dz;
908 fZ += k10*dy + k11*dz;
909 fE = eta;
910 //fT += k30*dy + k31*dz;
911 fC = cur;
912 }
913 else {
c84a5e9e 914 Double_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12);
4f1c04d3 915
53c17fbf 916 Double_t xuFactor = 1000.; // empirical factor set by C.Xu
46e2d86c 917 // in the first tilt version
918 dy=c->GetY() - fY; dz=c->GetZ() - fZ;
c84a5e9e 919 //dy=dy+h01*dz+correction;
4f1c04d3 920
921 Double_t tiltdz = dz;
c84a5e9e 922 if (TMath::Abs(tiltdz)>padlength/2.) {
923 tiltdz = TMath::Sign(padlength/2,dz);
924 }
925 // dy=dy+h01*dz;
4f1c04d3 926 dy=dy+h01*tiltdz;
927
c84a5e9e 928 Double_t add=0;
929 if (TMath::Abs(dz)>padlength/2.){
930 //Double_t dy2 = c->GetY() - fY;
931 //Double_t sign = (dz>0) ? -1.: 1.;
932 //dy2-=h01*sign*padlength/2.;
933 //dy = dy2;
934 add =1;
935 }
936 Double_t s00 = (c->GetSigmaY2()+errang)*extend+errsys+add; // error pad
53c17fbf 937 Double_t s11 = c->GetSigmaZ2()*xuFactor; // error pad-row
46e2d86c 938 //
939 r00 = fCyy + 2*fCzy*h01 + fCzz*h01*h01+s00;
940 r01 = fCzy + fCzz*h01;
941 r11 = fCzz + s11;
942 det = r00*r11 - r01*r01;
943 // inverse matrix
944 tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
945
946 // K matrix
947 k00=fCyy*r00+fCzy*(r01+h01*r00),k01=fCyy*r01+fCzy*(r11+h01*r01);
948 k10=fCzy*r00+fCzz*(r01+h01*r00),k11=fCzy*r01+fCzz*(r11+h01*r01);
949 k20=fCey*r00+fCez*(r01+h01*r00),k21=fCey*r01+fCez*(r11+h01*r01);
950 k30=fCty*r00+fCtz*(r01+h01*r00),k31=fCty*r01+fCtz*(r11+h01*r01);
951 k40=fCcy*r00+fCcz*(r01+h01*r00),k41=fCcy*r01+fCcz*(r11+h01*r01);
952 //
953 //Update measurement
954 cur=fC + k40*dy + k41*dz; eta=fE + k20*dy + k21*dz;
3c625a9b 955 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
956 //Int_t n=GetNumberOfClusters();
957 // if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
46e2d86c 958 return 0;
959 }
960 fY += k00*dy + k01*dz;
961 fZ += k10*dy + k11*dz;
962 fE = eta;
963 fT += k30*dy + k31*dz;
964 fC = cur;
965
966 k01+=h01*k00;
967 k11+=h01*k10;
968 k21+=h01*k20;
969 k31+=h01*k30;
970 k41+=h01*k40;
971
972 }
973 //Update covariance
974 //
975 //
976 Double_t oldyy = fCyy, oldzz = fCzz; //, oldee=fCee, oldcc =fCcc;
977 Double_t oldzy = fCzy, oldey = fCey, oldty=fCty, oldcy =fCcy;
978 Double_t oldez = fCez, oldtz = fCtz, oldcz=fCcz;
979 //Double_t oldte = fCte, oldce = fCce;
980 //Double_t oldct = fCct;
981
982 fCyy-=k00*oldyy+k01*oldzy;
983 fCzy-=k10*oldyy+k11*oldzy;
984 fCey-=k20*oldyy+k21*oldzy;
985 fCty-=k30*oldyy+k31*oldzy;
986 fCcy-=k40*oldyy+k41*oldzy;
987 //
988 fCzz-=k10*oldzy+k11*oldzz;
989 fCez-=k20*oldzy+k21*oldzz;
990 fCtz-=k30*oldzy+k31*oldzz;
991 fCcz-=k40*oldzy+k41*oldzz;
992 //
993 fCee-=k20*oldey+k21*oldez;
994 fCte-=k30*oldey+k31*oldez;
995 fCce-=k40*oldey+k41*oldez;
996 //
997 fCtt-=k30*oldty+k31*oldtz;
998 fCct-=k40*oldty+k41*oldtz;
999 //
1000 fCcc-=k40*oldcy+k41*oldcz;
1001 //
1002
1003 Int_t n=GetNumberOfClusters();
1004 fIndex[n]=index;
1005 SetNumberOfClusters(n+1);
1006
1007 SetChi2(GetChi2()+chisq);
1008 // cerr<<"in update: fIndex["<<fN<<"] = "<<index<<endl;
1009
1010 return 1;
7ad19338 1011
53c17fbf 1012}
7ad19338 1013
7ad19338 1014//_____________________________________________________________________________
1015Int_t AliTRDtrack::UpdateMI(const AliTRDtracklet &tracklet)
1016{
1017 //
1018 // Assignes found tracklet to the track and updates track information
1019 //
1020 //
1021 Double_t r00=(tracklet.GetTrackletSigma2()), r01=0., r11= 10000.;
1022 r00+=fCyy; r01+=fCzy; r11+=fCzz;
1023 //
1024 Double_t det=r00*r11 - r01*r01;
1025 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
1026 //
1027
1028 Double_t dy=tracklet.GetY() - fY, dz=tracklet.GetZ() - fZ;
1029
1030
1031 Double_t s00 = tracklet.GetTrackletSigma2(); // error pad
1032 Double_t s11 = 100000; // error pad-row
1033 Float_t h01 = tracklet.GetTilt();
1034 //
1035 // r00 = fCyy + 2*fCzy*h01 + fCzz*h01*h01+s00;
1036 r00 = fCyy + fCzz*h01*h01+s00;
1037 // r01 = fCzy + fCzz*h01;
1038 r01 = fCzy ;
1039 r11 = fCzz + s11;
1040 det = r00*r11 - r01*r01;
1041 // inverse matrix
1042 tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
1043
1044 Double_t k00=fCyy*r00+fCzy*r01, k01=fCyy*r01+fCzy*r11;
1045 Double_t k10=fCzy*r00+fCzz*r01, k11=fCzy*r01+fCzz*r11;
1046 Double_t k20=fCey*r00+fCez*r01, k21=fCey*r01+fCez*r11;
1047 Double_t k30=fCty*r00+fCtz*r01, k31=fCty*r01+fCtz*r11;
1048 Double_t k40=fCcy*r00+fCcz*r01, k41=fCcy*r01+fCcz*r11;
1049
1050 // K matrix
1051// k00=fCyy*r00+fCzy*(r01+h01*r00),k01=fCyy*r01+fCzy*(r11+h01*r01);
1052// k10=fCzy*r00+fCzz*(r01+h01*r00),k11=fCzy*r01+fCzz*(r11+h01*r01);
1053// k20=fCey*r00+fCez*(r01+h01*r00),k21=fCey*r01+fCez*(r11+h01*r01);
1054// k30=fCty*r00+fCtz*(r01+h01*r00),k31=fCty*r01+fCtz*(r11+h01*r01);
1055// k40=fCcy*r00+fCcz*(r01+h01*r00),k41=fCcy*r01+fCcz*(r11+h01*r01);
1056 //
1057 //Update measurement
1058 Double_t cur=fC + k40*dy + k41*dz, eta=fE + k20*dy + k21*dz;
1059 // cur=fC + k40*dy + k41*dz; eta=fE + k20*dy + k21*dz;
1060 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
1061 //Int_t n=GetNumberOfClusters();
1062 // if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
1063 return 0;
1064 }
1065// k01+=h01*k00;
1066// k11+=h01*k10;
1067// k21+=h01*k20;
1068// k31+=h01*k30;
1069// k41+=h01*k40;
1070
1071
1072 fY += k00*dy + k01*dz;
1073 fZ += k10*dy + k11*dz;
1074 fE = eta;
1075 fT += k30*dy + k31*dz;
1076 fC = cur;
1077
1078
1079 //Update covariance
1080 //
1081 //
1082 Double_t oldyy = fCyy, oldzz = fCzz; //, oldee=fCee, oldcc =fCcc;
1083 Double_t oldzy = fCzy, oldey = fCey, oldty=fCty, oldcy =fCcy;
1084 Double_t oldez = fCez, oldtz = fCtz, oldcz=fCcz;
1085 //Double_t oldte = fCte, oldce = fCce;
1086 //Double_t oldct = fCct;
1087
1088 fCyy-=k00*oldyy+k01*oldzy;
1089 fCzy-=k10*oldyy+k11*oldzy;
1090 fCey-=k20*oldyy+k21*oldzy;
1091 fCty-=k30*oldyy+k31*oldzy;
1092 fCcy-=k40*oldyy+k41*oldzy;
1093 //
1094 fCzz-=k10*oldzy+k11*oldzz;
1095 fCez-=k20*oldzy+k21*oldzz;
1096 fCtz-=k30*oldzy+k31*oldzz;
1097 fCcz-=k40*oldzy+k41*oldzz;
1098 //
1099 fCee-=k20*oldey+k21*oldez;
1100 fCte-=k30*oldey+k31*oldez;
1101 fCce-=k40*oldey+k41*oldez;
1102 //
1103 fCtt-=k30*oldty+k31*oldtz;
1104 fCct-=k40*oldty+k41*oldtz;
1105 //
1106 fCcc-=k40*oldcy+k41*oldcz;
1107 //
1108 /*
1109 Int_t n=GetNumberOfClusters();
1110 fIndex[n]=index;
1111 SetNumberOfClusters(n+1);
1112
1113 SetChi2(GetChi2()+chisq);
1114 // cerr<<"in update: fIndex["<<fN<<"] = "<<index<<endl;
1115 */
7ad19338 1116
53c17fbf 1117 return 1;
7ad19338 1118
53c17fbf 1119}
c84a5e9e 1120
46d29e70 1121//_____________________________________________________________________________
3fad3d32 1122Int_t AliTRDtrack::Rotate(Double_t alpha, Bool_t absolute)
46d29e70 1123{
1124 // Rotates track parameters in R*phi plane
3fad3d32 1125 // if absolute rotation alpha is in global system
1126 // otherwise alpha rotation is relative to the current rotation angle
9c9d2487 1127
3fad3d32 1128 if (absolute) {
1129 alpha -= fAlpha;
1130 }
1131 else{
1132 fNRotate++;
1133 }
46d29e70 1134
1135 fAlpha += alpha;
b3a5a838 1136 if (fAlpha<-TMath::Pi()) fAlpha += 2*TMath::Pi();
b8dc2353 1137 if (fAlpha>=TMath::Pi()) fAlpha -= 2*TMath::Pi();
46d29e70 1138
1139 Double_t x1=fX, y1=fY;
1140 Double_t ca=cos(alpha), sa=sin(alpha);
1141 Double_t r1=fC*fX - fE;
1142
1143 fX = x1*ca + y1*sa;
b8dc2353 1144 fY =-x1*sa + y1*ca;
1145 if((r1*r1) > 1) return 0;
46d29e70 1146 fE=fE*ca + (fC*y1 + sqrt(1.- r1*r1))*sa;
1147
1148 Double_t r2=fC*fX - fE;
3c625a9b 1149 if (TMath::Abs(r2) >= 0.90000) {
b8dc2353 1150 Int_t n=GetNumberOfClusters();
5443e65e 1151 if (n>4) cerr<<n<<" AliTRDtrack warning: Rotation failed !\n";
46d29e70 1152 return 0;
1153 }
1154
b8dc2353 1155 if((r2*r2) > 1) return 0;
46d29e70 1156 Double_t y0=fY + sqrt(1.- r2*r2)/fC;
1157 if ((fY-y0)*fC >= 0.) {
b8dc2353 1158 Int_t n=GetNumberOfClusters();
5443e65e 1159 if (n>4) cerr<<n<<" AliTRDtrack warning: Rotation failed !!!\n";
46d29e70 1160 return 0;
1161 }
1162
1163 //f = F - 1
b3a5a838 1164 Double_t f00=ca-1, f24=(y1 - r1*x1/sqrt(1.- r1*r1))*sa,
b8dc2353 1165 f20=fC*sa, f22=(ca + sa*r1/sqrt(1.- r1*r1))-1;
46d29e70 1166
1167 //b = C*ft
b3a5a838 1168 Double_t b00=fCyy*f00, b02=fCyy*f20+fCcy*f24+fCey*f22;
1169 Double_t b10=fCzy*f00, b12=fCzy*f20+fCcz*f24+fCez*f22;
1170 Double_t b20=fCey*f00, b22=fCey*f20+fCce*f24+fCee*f22;
1171 Double_t b30=fCty*f00, b32=fCty*f20+fCct*f24+fCte*f22;
1172 Double_t b40=fCcy*f00, b42=fCcy*f20+fCcc*f24+fCce*f22;
46d29e70 1173
1174 //a = f*b = f*C*ft
b3a5a838 1175 Double_t a00=f00*b00, a02=f00*b02, a22=f20*b02+f24*b42+f22*b22;
46d29e70 1176
46d29e70 1177 //F*C*Ft = C + (a + b + bt)
1178 fCyy += a00 + 2*b00;
1179 fCzy += b10;
b3a5a838 1180 fCey += a02+b20+b02;
1181 fCty += b30;
1182 fCcy += b40;
1183 fCez += b12;
1184 fCte += b32;
1185 fCee += a22 + 2*b22;
1186 fCce += b42;
46d29e70 1187
b8dc2353 1188 return 1;
46d29e70 1189
53c17fbf 1190}
7ad19338 1191
46d29e70 1192//_____________________________________________________________________________
fd621f36 1193Double_t AliTRDtrack::GetPredictedChi2(const AliTRDcluster *c, Double_t h01) const
46d29e70 1194{
53c17fbf 1195 //
1196 // Returns the track chi2
1197 //
1198
b8dc2353 1199 Bool_t fNoTilt = kTRUE;
1200 if(TMath::Abs(h01) > 0.003) fNoTilt = kFALSE;
1201 Double_t chi2, dy, r00, r01, r11;
1202
1203 if(fNoTilt) {
1204 dy=c->GetY() - fY;
1205 r00=c->GetSigmaY2();
1206 chi2 = (dy*dy)/r00;
46d29e70 1207 }
b8dc2353 1208 else {
4f1c04d3 1209 Double_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12);
1210 //
b8dc2353 1211 r00=c->GetSigmaY2(); r01=0.; r11=c->GetSigmaZ2();
1212 r00+=fCyy; r01+=fCzy; r11+=fCzz;
1213
1214 Double_t det=r00*r11 - r01*r01;
1215 if (TMath::Abs(det) < 1.e-10) {
1216 Int_t n=GetNumberOfClusters();
1217 if (n>4) cerr<<n<<" AliTRDtrack warning: Singular matrix !\n";
1218 return 1e10;
1219 }
1220 Double_t tmp=r00; r00=r11; r11=tmp; r01=-r01;
1221 Double_t dy=c->GetY() - fY, dz=c->GetZ() - fZ;
4f1c04d3 1222 Double_t tiltdz = dz;
1223 if (TMath::Abs(tiltdz)>padlength/2.) {
1224 tiltdz = TMath::Sign(padlength/2,dz);
1225 }
1226 // dy=dy+h01*dz;
1227 dy=dy+h01*tiltdz;
a819a5f7 1228
b8dc2353 1229 chi2 = (dy*r00*dy + 2*r01*dy*dz + dz*r11*dz)/det;
1230 }
53c17fbf 1231
b8dc2353 1232 return chi2;
46d29e70 1233
53c17fbf 1234}
7ad19338 1235
46d29e70 1236//_________________________________________________________________________
1237void AliTRDtrack::GetPxPyPz(Double_t& px, Double_t& py, Double_t& pz) const
1238{
1239 // Returns reconstructed track momentum in the global system.
1240
1241 Double_t pt=TMath::Abs(GetPt()); // GeV/c
1242 Double_t r=fC*fX-fE;
5443e65e 1243
1244 Double_t y0;
1245 if(r > 1) { py = pt; px = 0; }
1246 else if(r < -1) { py = -pt; px = 0; }
1247 else {
1248 y0=fY + sqrt(1.- r*r)/fC;
1249 px=-pt*(fY-y0)*fC; //cos(phi);
1250 py=-pt*(fE-fX*fC); //sin(phi);
1251 }
46d29e70 1252 pz=pt*fT;
1253 Double_t tmp=px*TMath::Cos(fAlpha) - py*TMath::Sin(fAlpha);
1254 py=px*TMath::Sin(fAlpha) + py*TMath::Cos(fAlpha);
1255 px=tmp;
1256
1257}
1258
5443e65e 1259//_________________________________________________________________________
1260void AliTRDtrack::GetGlobalXYZ(Double_t& x, Double_t& y, Double_t& z) const
46d29e70 1261{
5443e65e 1262 // Returns reconstructed track coordinates in the global system.
1263
1264 x = fX; y = fY; z = fZ;
1265 Double_t tmp=x*TMath::Cos(fAlpha) - y*TMath::Sin(fAlpha);
1266 y=x*TMath::Sin(fAlpha) + y*TMath::Cos(fAlpha);
1267 x=tmp;
1268
1269}
3ab6f951 1270
5443e65e 1271//_________________________________________________________________________
53c17fbf 1272void AliTRDtrack::ResetCovariance()
1273{
5443e65e 1274 //
1275 // Resets covariance matrix
1276 //
46d29e70 1277
5443e65e 1278 fCyy*=10.;
b8dc2353 1279 fCzy=0.; fCzz*=10.;
1280 fCey=0.; fCez=0.; fCee*=10.;
1281 fCty=0.; fCtz=0.; fCte=0.; fCtt*=10.;
1282 fCcy=0.; fCcz=0.; fCce=0.; fCct=0.; fCcc*=10.;
53c17fbf 1283
5443e65e 1284}
b8dc2353 1285
53c17fbf 1286//_____________________________________________________________________________
1287void AliTRDtrack::ResetCovariance(Float_t mult)
1288{
46e2d86c 1289 //
1290 // Resets covariance matrix
1291 //
1292
1293 fCyy*=mult;
4f1c04d3 1294 fCzy*=0.; fCzz*=1.;
3c625a9b 1295 fCey*=0.; fCez*=0.; fCee*=mult;
4f1c04d3 1296 fCty*=0.; fCtz*=0.; fCte*=0.; fCtt*=1.;
3c625a9b 1297 fCcy*=0.; fCcz*=0.; fCce*=0.; fCct*=0.; fCcc*=mult;
7ad19338 1298
53c17fbf 1299}
7ad19338 1300
53c17fbf 1301//_____________________________________________________________________________
16d9fbba 1302void AliTRDtrack::MakeBackupTrack()
1303{
1304 //
53c17fbf 1305 // Creates a backup track
16d9fbba 1306 //
53c17fbf 1307
16d9fbba 1308 if (fBackupTrack) delete fBackupTrack;
1309 fBackupTrack = new AliTRDtrack(*this);
4f1c04d3 1310
1311}
1312
53c17fbf 1313//_____________________________________________________________________________
1314Int_t AliTRDtrack::GetProlongation(Double_t xk, Double_t &y, Double_t &z)
1315{
4f1c04d3 1316 //
1317 // Find prolongation at given x
1318 // return 0 if not exist
1319
1320 Double_t c1=fC*fX - fE;
c84a5e9e 1321 if (TMath::Abs(c1)>1.) return 0;
4f1c04d3 1322 Double_t r1=TMath::Sqrt(1.- c1*c1);
1323 Double_t c2=fC*xk - fE;
c84a5e9e 1324 if (TMath::Abs(c2)>1.) return 0;
4f1c04d3 1325 Double_t r2=TMath::Sqrt(1.- c2*c2);
1326 y =fY + (xk-fX)*(c1+c2)/(r1+r2);
1327 z =fZ + (xk-fX)*(c1+c2)/(c1*r2 + c2*r1)*fT;
1328
1329 return 1;
1330
16d9fbba 1331}
3fad3d32 1332
53c17fbf 1333//_____________________________________________________________________________
3fad3d32 1334Int_t AliTRDtrack::PropagateToX(Double_t xr, Double_t step)
1335{
1336 //
1337 // Propagate track to given x position
1338 // works inside of the 20 degree segmentation (local cooordinate frame for TRD , TPC, TOF)
1339 //
1340 // material budget from geo manager
1341 //
1342 Double_t xyz0[3], xyz1[3],y,z;
53c17fbf 1343 const Double_t kAlphac = TMath::Pi()/9.;
1344 const Double_t kTalphac = TMath::Tan(kAlphac*0.5);
3fad3d32 1345 // critical alpha - cross sector indication
1346 //
1347 Double_t dir = (fX>xr) ? -1.:1.;
1348 // direction +-
1349 for (Double_t x=fX+dir*step;dir*x<dir*xr;x+=dir*step){
1350 //
1351 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1352 GetProlongation(x,y,z);
1353 xyz1[0] = x*TMath::Cos(fAlpha)+y*TMath::Sin(fAlpha);
1354 xyz1[1] = x*TMath::Sin(fAlpha)-y*TMath::Cos(fAlpha);
1355 xyz1[2] = z;
1356 Double_t param[7];
1357 AliKalmanTrack::MeanMaterialBudget(xyz0,xyz1,param);
1358 //
1359 if (param[0]>0&&param[1]>0) PropagateTo(x,param[1],param[0]);
53c17fbf 1360 if (fY>fX*kTalphac){
1361 Rotate(-kAlphac);
3fad3d32 1362 }
53c17fbf 1363 if (fY<-fX*kTalphac){
1364 Rotate(kAlphac);
3fad3d32 1365 }
1366 }
1367 //
1368 PropagateTo(xr);
53c17fbf 1369
3fad3d32 1370 return 0;
3fad3d32 1371
53c17fbf 1372}
3fad3d32 1373
53c17fbf 1374//_____________________________________________________________________________
3fad3d32 1375Int_t AliTRDtrack::PropagateToR(Double_t r,Double_t step)
1376{
1377 //
1378 // propagate track to the radial position
1379 // rotation always connected to the last track position
1380 //
1381 Double_t xyz0[3], xyz1[3],y,z;
1382 Double_t radius = TMath::Sqrt(fX*fX+fY*fY);
1383 Double_t dir = (radius>r) ? -1.:1.; // direction +-
1384 //
1385 for (Double_t x=radius+dir*step;dir*x<dir*r;x+=dir*step){
1386 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1387 Double_t alpha = TMath::ATan2(xyz0[1],xyz0[0]);
1388 Rotate(alpha,kTRUE);
1389 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1390 GetProlongation(x,y,z);
1391 xyz1[0] = x*TMath::Cos(alpha)+y*TMath::Sin(alpha);
1392 xyz1[1] = x*TMath::Sin(alpha)-y*TMath::Cos(alpha);
1393 xyz1[2] = z;
1394 Double_t param[7];
1395 AliKalmanTrack::MeanMaterialBudget(xyz0,xyz1,param);
1396 if (param[1]<=0) param[1] =100000000;
1397 PropagateTo(x,param[1],param[0]);
1398 }
1399 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1400 Double_t alpha = TMath::ATan2(xyz0[1],xyz0[0]);
1401 Rotate(alpha,kTRUE);
1402 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1403 GetProlongation(r,y,z);
1404 xyz1[0] = r*TMath::Cos(alpha)+y*TMath::Sin(alpha);
1405 xyz1[1] = r*TMath::Sin(alpha)-y*TMath::Cos(alpha);
1406 xyz1[2] = z;
1407 Double_t param[7];
1408 AliKalmanTrack::MeanMaterialBudget(xyz0,xyz1,param);
1409 //
1410 if (param[1]<=0) param[1] =100000000;
1411 PropagateTo(r,param[1],param[0]);
53c17fbf 1412
3fad3d32 1413 return 0;
53c17fbf 1414
1415}
1416
1417//_____________________________________________________________________________
4e28c495 1418Int_t AliTRDtrack::GetSector() const
53c17fbf 1419{
1420 //
1421 // Return the current sector
1422 //
1423
1424 return Int_t(TVector2::Phi_0_2pi(fAlpha)
1425 / AliTRDgeometry::GetAlpha())
1426 % AliTRDgeometry::kNsect;
1427
3fad3d32 1428}
1429
53c17fbf 1430//_____________________________________________________________________________
4e28c495 1431Double_t AliTRDtrack::Get1Pt() const
53c17fbf 1432{
1433 //
1434 // Returns 1 / pt
1435 //
3fad3d32 1436
53c17fbf 1437 return (TMath::Sign(1e-9,fC) + fC)*GetLocalConvConst();
1438
1439}
1440
1441//_____________________________________________________________________________
4e28c495 1442Double_t AliTRDtrack::GetP() const
53c17fbf 1443{
1444 //
1445 // Returns the total momentum
1446 //
1447
1448 return TMath::Abs(GetPt())*sqrt(1.+GetTgl()*GetTgl());
1449
1450}
1451
1452//_____________________________________________________________________________
4e28c495 1453Double_t AliTRDtrack::GetYat(Double_t xk) const
53c17fbf 1454{
1455 //
1456 // This function calculates the Y-coordinate of a track at
1457 // the plane x = xk.
1458 // Needed for matching with the TOF (I.Belikov)
1459 //
1460
1461 Double_t c1 = fC*fX - fE;
1462 Double_t r1 = TMath::Sqrt(1.0 - c1*c1);
1463 Double_t c2 = fC*xk - fE;
1464 Double_t r2 = TMath::Sqrt(1.0- c2*c2);
1465 return fY + (xk-fX)*(c1+c2)/(r1+r2);
1466
1467}
1468
1469//_____________________________________________________________________________
4e28c495 1470void AliTRDtrack::SetSampledEdx(Float_t q, Int_t i)
53c17fbf 1471{
1472 //
1473 // The sampled energy loss
1474 //
1475
1476 Double_t s = GetSnp();
1477 Double_t t = GetTgl();
1478 q *= TMath::Sqrt((1-s*s)/(1+t*t));
1479 fdQdl[i] = q;
1480
1481}
1482
1483 //_____________________________________________________________________________
4e28c495 1484void AliTRDtrack::SetSampledEdx(Float_t q)
53c17fbf 1485{
1486 //
1487 // The sampled energy loss
1488 //
1489
1490 Double_t s = GetSnp();
1491 Double_t t = GetTgl();
1492 q*= TMath::Sqrt((1-s*s)/(1+t*t));
1493 fdQdl[fNdedx] = q;
1494 fNdedx++;
1495
1496}
1497
1498//_____________________________________________________________________________
4e28c495 1499void AliTRDtrack::GetXYZ(Float_t r[3]) const
53c17fbf 1500{
1501
1502 //---------------------------------------------------------------------
1503 // Returns the position of the track in the global coord. system
1504 //---------------------------------------------------------------------
1505
1506 Double_t cs = TMath::Cos(fAlpha);
1507 Double_t sn = TMath::Sin(fAlpha);
1508 r[0] = fX*cs - fY*sn;
1509 r[1] = fX*sn + fY*cs;
1510 r[2] = fZ;
1511
1512}