Tracking in non-uniform nmagnetic field (Yu.Belikov)
[u/mrichter/AliRoot.git] / TRD / AliTRDtrack.h
CommitLineData
46d29e70 1#ifndef ALITRDTRACK_H
b3a5a838 2#define ALITRDTRACK_H
46d29e70 3
4/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
b3a5a838 5 * See cxx source for full Copyright notice */
46d29e70 6
5443e65e 7#include <AliKalmanTrack.h>
b3a5a838 8#include <TMath.h>
46d29e70 9
9c9d2487 10#include "AliTRDgeometry.h"
304864ab 11#include "AliESDtrack.h"
9c9d2487 12#include "TVector2.h"
13
46d29e70 14class AliTRDcluster;
b3a5a838 15class AliTPCtrack;
79e94bf8 16class AliESDtrack;
5443e65e 17
7ad19338 18const unsigned kMAX_CLUSTERS_PER_TRACK=210;
19
20class AliTRDtracklet :public TObject{
21 friend class AliTRDtrack;
22 public:
23 AliTRDtracklet();
24 void Set(Float_t x, Float_t y, Float_t z, Float_t alpha, Float_t error2){fX=x; fY=y; fZ=z; fAlpha=alpha; fSigma2= error2;}
25 void SetP0(Float_t p0){fP0=p0;}
26 void SetP1(Float_t p1){fP1=p1;}
27 void SetN(Int_t n){fNFound=n;}
28 void SetNCross(Int_t nc){fNCross=nc;}
29 void SetPlane(Int_t plane){fPlane=plane;}
30 void SetSigma2(Float_t sigma2){fExpectedSigma2=sigma2;}
31 void SetChi2(Float_t chi2){fChi2=chi2;}
32 void SetTilt(Float_t tilt){fTilt=tilt;}
33 Float_t GetX() const { return fX;}
34 Float_t GetY() const { return fY;}
35 Float_t GetZ() const {return fZ;}
36 Float_t GetAlpha() const { return fAlpha;}
37 Float_t GetTrackletSigma2() const { return fSigma2;}
38 //
39 Float_t GetP0() const {return fP0;}
40 Float_t GetP1() const {return fP1;}
41 Int_t GetN() const {return fNFound;}
42 Int_t GetNCross() const {return fNCross;}
43 Int_t GetPlane() const {return fPlane;}
44 Float_t GetClusterSigma2() const {return fExpectedSigma2;}
45 Float_t GetChi2() const {return fChi2;}
46 Float_t GetTilt() const {return fTilt;}
47 protected:
48 Float_t fY; // y position
49 Float_t fZ; // z position
50 Float_t fX; // x position
51 Float_t fAlpha; // rotation angle
52 Float_t fSigma2; // expected error of tracklet position
53 Float_t fP0; // offset in y
54 Float_t fP1; // offset in tangent
55 Int_t fNFound; // number of found clusters
56 Int_t fNCross; // number of crosses
57 Int_t fPlane; // plane number
58 Float_t fExpectedSigma2; // expected sigma of residual distribution of clusters
59 Float_t fChi2; // chi2 of the tracklet
60 Float_t fTilt; // tilt factor
61 ClassDef(AliTRDtracklet,2)
62};
46d29e70 63
46d29e70 64
7ad19338 65class AliTRDtrack : public AliKalmanTrack {
66
67// Represents reconstructed TRD track
68 friend class AliTRDtracker;
46d29e70 69public:
70
16d9fbba 71 AliTRDtrack():AliKalmanTrack(){fBackupTrack=0;}
a819a5f7 72 AliTRDtrack(const AliTRDcluster *c, UInt_t index, const Double_t xx[5],
46d29e70 73 const Double_t cc[15], Double_t xr, Double_t alpha);
74 AliTRDtrack(const AliTRDtrack& t);
5443e65e 75 AliTRDtrack(const AliKalmanTrack& t, Double_t alpha);
79e94bf8 76 AliTRDtrack(const AliESDtrack& t);
16d9fbba 77 ~AliTRDtrack();
a819a5f7 78 Int_t Compare(const TObject *o) const;
4f1c04d3 79 void CookdEdx(Double_t low=0.05, Double_t up=0.55);
7ad19338 80 Float_t StatusForTOF();
46d29e70 81 Double_t GetAlpha() const {return fAlpha;}
9c9d2487 82 Int_t GetSector() const {
83 //if (fabs(fAlpha) < AliTRDgeometry::GetAlpha()/2) return 0;
84 return Int_t(TVector2::Phi_0_2pi(fAlpha)/AliTRDgeometry::GetAlpha())%AliTRDgeometry::kNsect;}
85
46d29e70 86 Double_t GetC() const {return fC;}
87 Int_t GetClusterIndex(Int_t i) const {return fIndex[i];}
a819a5f7 88 Float_t GetClusterdQdl(Int_t i) const {return fdQdl[i];}
5443e65e 89
46d29e70 90 void GetCovariance(Double_t cov[15]) const;
c5507f6d 91 Double_t GetdEdx() const {return fdEdx;}
79e94bf8 92 Double_t GetPIDsignal() const {return GetdEdx();}
7ad19338 93 Float_t GetPIDsignals(Int_t i) const {return fdEdxPlane[i];}
94 Int_t GetPIDTimBin(Int_t i) const {return fTimBinPlane[i];}
46d29e70 95 Double_t GetEta() const {return fE;}
5443e65e 96
97 void GetExternalCovariance(Double_t cov[15]) const ;
98 void GetExternalParameters(Double_t& xr, Double_t x[5]) const ;
99
100 Double_t GetLikelihoodElectron() const { return fLhElectron; };
101
c84a5e9e 102 Double_t Get1Pt() const {
103 return (TMath::Sign(1e-9,fC) + fC)*GetLocalConvConst();
104 }
46d29e70 105 Double_t GetP() const {
106 return TMath::Abs(GetPt())*sqrt(1.+GetTgl()*GetTgl());
107 }
7ad19338 108 Double_t GetPredictedChi2(const AliTRDcluster*, Double_t h01) const ;
5443e65e 109 Double_t GetPt() const {return 1./Get1Pt();}
46d29e70 110 void GetPxPyPz(Double_t &px, Double_t &py, Double_t &pz) const ;
5443e65e 111 void GetGlobalXYZ(Double_t &x, Double_t &y, Double_t &z) const ;
112 Int_t GetSeedLabel() const { return fSeedLab; }
46d29e70 113 Double_t GetSigmaC2() const {return fCcc;}
114 Double_t GetSigmaTgl2() const {return fCtt;}
115 Double_t GetSigmaY2() const {return fCyy;}
116 Double_t GetSigmaZ2() const {return fCzz;}
5443e65e 117 Double_t GetSnp() const {return fX*fC - fE;}
118 Double_t GetTgl() const {return fT;}
119 Double_t GetX() const {return fX;}
120 Double_t GetY() const {return fY;}
121 Double_t GetZ() const {return fZ;}
46e2d86c 122 UInt_t * GetBackupIndexes() {return fIndexBackup;}
123 UInt_t * GetIndexes() {return fIndex;}
3c625a9b 124 Double_t GetYat(Double_t xk) const {
7ad19338 125//-----------------------------------------------------------------
126// This function calculates the Y-coordinate of a track at the plane x=xk.
127// Needed for matching with the TOF (I.Belikov)
128//-----------------------------------------------------------------
1e9bb598 129 Double_t c1=fC*fX - fE, r1=TMath::Sqrt(1.- c1*c1);
130 Double_t c2=fC*xk - fE, r2=TMath::Sqrt(1.- c2*c2);
131 return fY + (xk-fX)*(c1+c2)/(r1+r2);
132 }
7ad19338 133 Int_t GetProlongation(Double_t xk, Double_t &y, Double_t &z);
4f1c04d3 134
7ad19338 135 void SetStop(Bool_t stop) {fStopped=stop;}
136 Bool_t GetStop() const {return fStopped;}
1e9bb598 137
b3a5a838 138 Int_t PropagateTo(Double_t xr, Double_t x0=8.72, Double_t rho=5.86e-3);
5443e65e 139 void ResetCovariance();
46e2d86c 140 void ResetCovariance(Float_t mult);
7ad19338 141 void ResetClusters() { SetChi2(0.); SetNumberOfClusters(0); }
46d29e70 142 Int_t Rotate(Double_t angle);
143
46d29e70 144 void SetdEdx(Float_t dedx) {fdEdx=dedx;}
7ad19338 145 void SetPIDsignals(Float_t dedx, Int_t i) {fdEdxPlane[i]=dedx;}
146 void SetPIDTimBin(Int_t timbin, Int_t i) {fTimBinPlane[i]=timbin;}
5443e65e 147 void SetLikelihoodElectron(Float_t l) { fLhElectron = l; };
148
149 void SetSampledEdx(Float_t q, Int_t i) {
4f1c04d3 150 Double_t s=GetSnp(), t=GetTgl();
151 q*= TMath::Sqrt((1-s*s)/(1+t*t));
152 fdQdl[i]=q;
153 }
154 void SetSampledEdx(Float_t q) {
5443e65e 155 Double_t s=GetSnp(), t=GetTgl();
156 q*= TMath::Sqrt((1-s*s)/(1+t*t));
4f1c04d3 157 fdQdl[fNdedx]=q;
158 fNdedx++;
5443e65e 159 }
160
161 void SetSeedLabel(Int_t lab) { fSeedLab=lab; }
162
fd621f36 163 Int_t Update(const AliTRDcluster* c, Double_t chi2, UInt_t i,
b8dc2353 164 Double_t h01);
46e2d86c 165 Int_t UpdateMI(const AliTRDcluster* c, Double_t chi2, UInt_t i,
3c625a9b 166 Double_t h01, Int_t plane);
7ad19338 167 Int_t UpdateMI(const AliTRDtracklet & tracklet);
fd621f36 168
7ad19338 169 //
170 void AddNWrong() {fNWrong++;}
9c9d2487 171
7ad19338 172 Int_t GetNWrong() const {return fNWrong;}
173 Int_t GetNRotate() const {return fNRotate;}
174 Int_t GetNCross() const {return fNCross;}
175 void IncCross() {fNCross++; if (fBackupTrack) fBackupTrack->IncCross();}
16d9fbba 176 AliTRDtrack * GetBackupTrack(){return fBackupTrack;}
7ad19338 177 void MakeBackupTrack();
178 //
179
9c9d2487 180
bbf92647 181protected:
c84a5e9e 182 void GetXYZ(Float_t r[3]) const;
183
184 Double_t GetPredictedChi2(const AliCluster*/*c*/) const {return 0.;}
185 Int_t Update(const AliCluster*/*c*/, Double_t /*chi2*/, UInt_t /*i*/) {
186 return 0;
187 }
bbf92647 188
7ad19338 189 Int_t fSeedLab; // track label taken from seeding
190 Float_t fdEdx; // dE/dx
191 Float_t fdEdxPlane[kNPlane]; // dE/dx from all 6 planes
192 Int_t fTimBinPlane[kNPlane]; // time bin of Max cluster from all 6 planes
bbf92647 193
7ad19338 194 Double_t fAlpha; // rotation angle
195 Double_t fX; // running local X-coordinate of the track (time bin)
196 Bool_t fStopped; // track stop indication
b8dc2353 197
198 Double_t fY; // Y-coordinate of the track
199 Double_t fZ; // Z-coordinate of the track
200 Double_t fE; // C*x0
201 Double_t fT; // tangent of the track momentum dip angle
202 Double_t fC; // track curvature
bbf92647 203
204 Double_t fCyy; // covariance
205 Double_t fCzy, fCzz; // matrix
b3a5a838 206 Double_t fCey, fCez, fCee; // of the
207 Double_t fCty, fCtz, fCte, fCtt; // track
208 Double_t fCcy, fCcz, fCce, fCct, fCcc; // parameters
b8dc2353 209
7ad19338 210 UInt_t fIndex[kMAX_CLUSTERS_PER_TRACK]; // global indexes of clusters
211 UInt_t fIndexBackup[kMAX_CLUSTERS_PER_TRACK]; //backup indexes of clusters - used in iterations
212 Float_t fdQdl[kMAX_CLUSTERS_PER_TRACK]; // cluster amplitudes corrected
213 // for track angles
b8dc2353 214
a819a5f7 215 Float_t fLhElectron; // Likelihood to be an electron
7ad19338 216 Int_t fNWrong; // number of wrong clusters
217 Int_t fNRotate; // number of rotation
218 Int_t fNCross; // number of the cross materials
219 Int_t fNExpected; //expected number of cluster
220 Int_t fNLast; //number of clusters in last 2 layers
221 Int_t fNExpectedLast; //number of expected clusters on last 2 layers
222 Int_t fNdedx; //number of clusters for dEdx measurment
223 Float_t fChi2Last; //chi2 in the last 2 layers
224 AliTRDtracklet fTracklets[6]; //tracklets
16d9fbba 225 AliTRDtrack * fBackupTrack; //! backup track
a819a5f7 226 ClassDef(AliTRDtrack,2) // TRD reconstructed tracks
46d29e70 227};
228
c84a5e9e 229inline void AliTRDtrack::GetXYZ(Float_t r[3]) const {
230 //---------------------------------------------------------------------
231 // Returns the position of the track in the global coord. system
232 //---------------------------------------------------------------------
233 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
234 r[0]=fX*cs - fY*sn; r[1]=fX*sn + fY*cs; r[2]=fZ;
235}
46d29e70 236
46d29e70 237#endif