]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDtrackerV1.cxx
Update in the interface for HLT and for visualization
[u/mrichter/AliRoot.git] / TRD / AliTRDtrackerV1.cxx
CommitLineData
bcb6fb78 1
e4f2f73d 2/**************************************************************************
972ef65e 3* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4* *
5* Author: The ALICE Off-line Project. *
6* Contributors are mentioned in the code where appropriate. *
7* *
8* Permission to use, copy, modify and distribute this software and its *
9* documentation strictly for non-commercial purposes is hereby granted *
10* without fee, provided that the above copyright notice appears in all *
11* copies and that both the copyright notice and this permission notice *
12* appear in the supporting documentation. The authors make no claims *
13* about the suitability of this software for any purpose. It is *
14* provided "as is" without express or implied warranty. *
15**************************************************************************/
e4f2f73d 16
17/* $Id$ */
18
19///////////////////////////////////////////////////////////////////////////////
20// //
21// Track finder //
22// //
23// Authors: //
24// Alex Bercuci <A.Bercuci@gsi.de> //
25// Markus Fasel <M.Fasel@gsi.de> //
26// //
27///////////////////////////////////////////////////////////////////////////////
28
bb56afff 29// #include <Riostream.h>
30// #include <stdio.h>
31// #include <string.h>
e4f2f73d 32
33#include <TBranch.h>
bb56afff 34#include <TDirectory.h>
e4f2f73d 35#include <TLinearFitter.h>
e4f2f73d 36#include <TTree.h>
37#include <TClonesArray.h>
e4f2f73d 38#include <TTreeStream.h>
39
40#include "AliLog.h"
41#include "AliESDEvent.h"
bb56afff 42#include "AliGeomManager.h"
e4f2f73d 43#include "AliRieman.h"
44#include "AliTrackPointArray.h"
45
e4f2f73d 46#include "AliTRDgeometry.h"
47#include "AliTRDpadPlane.h"
e4f2f73d 48#include "AliTRDcalibDB.h"
e4f2f73d 49#include "AliTRDReconstructor.h"
50#include "AliTRDCalibraFillHisto.h"
e4f2f73d 51#include "AliTRDrecoParam.h"
bb56afff 52
53#include "AliTRDcluster.h"
e4f2f73d 54#include "AliTRDseedV1.h"
0906e73e 55#include "AliTRDtrackV1.h"
bb56afff 56#include "AliTRDtrackerV1.h"
57#include "AliTRDtrackerDebug.h"
58#include "AliTRDtrackingChamber.h"
59#include "AliTRDchamberTimeBin.h"
60
e4f2f73d 61
e4f2f73d 62
63ClassImp(AliTRDtrackerV1)
eb38ed55 64
65
66const Float_t AliTRDtrackerV1::fgkMinClustersInTrack = 0.5; //
67const Float_t AliTRDtrackerV1::fgkLabelFraction = 0.8; //
68const Double_t AliTRDtrackerV1::fgkMaxChi2 = 12.0; //
69const Double_t AliTRDtrackerV1::fgkMaxSnp = 0.95; // Maximum local sine of the azimuthal angle
70const Double_t AliTRDtrackerV1::fgkMaxStep = 2.0; // Maximal step size in propagation
d76231c8 71Double_t AliTRDtrackerV1::fgTopologicQA[kNConfigs] = {
972ef65e 72 0.1112, 0.1112, 0.1112, 0.0786, 0.0786,
73 0.0786, 0.0786, 0.0579, 0.0579, 0.0474,
74 0.0474, 0.0408, 0.0335, 0.0335, 0.0335
e4f2f73d 75};
2985ffcb 76Int_t AliTRDtrackerV1::fgNTimeBins = 0;
eb38ed55 77TTreeSRedirector *AliTRDtrackerV1::fgDebugStreamer = 0x0;
78AliRieman* AliTRDtrackerV1::fgRieman = 0x0;
79TLinearFitter* AliTRDtrackerV1::fgTiltedRieman = 0x0;
80TLinearFitter* AliTRDtrackerV1::fgTiltedRiemanConstrained = 0x0;
e4f2f73d 81
82//____________________________________________________________________
eb38ed55 83AliTRDtrackerV1::AliTRDtrackerV1()
972ef65e 84 :AliTracker()
85 ,fGeom(new AliTRDgeometry())
86 ,fClusters(0x0)
87 ,fTracklets(0x0)
88 ,fTracks(0x0)
89 ,fSieveSeeding(0)
e4f2f73d 90{
972ef65e 91 //
92 // Default constructor.
93 //
94 if (!AliTRDcalibDB::Instance()) {
95 AliFatal("Could not get calibration object");
96 }
97 fgNTimeBins = AliTRDcalibDB::Instance()->GetNumberOfTimeBins();
98
99 for (Int_t isector = 0; isector < AliTRDgeometry::kNsect; isector++) new(&fTrSec[isector]) AliTRDtrackingSector(fGeom, isector);
100
101 if(AliTRDReconstructor::StreamLevel() > 1){
102 TDirectory *savedir = gDirectory;
103 fgDebugStreamer = new TTreeSRedirector("TRD.TrackerDebug.root");
104 savedir->cd();
105 }
eb38ed55 106}
107
e4f2f73d 108//____________________________________________________________________
109AliTRDtrackerV1::~AliTRDtrackerV1()
110{
972ef65e 111 //
112 // Destructor
113 //
114
115 if(fgDebugStreamer) delete fgDebugStreamer;
116 if(fgRieman) delete fgRieman;
117 if(fgTiltedRieman) delete fgTiltedRieman;
118 if(fgTiltedRiemanConstrained) delete fgTiltedRiemanConstrained;
119 if(fTracks) {fTracks->Delete(); delete fTracks;}
120 if(fTracklets) {fTracklets->Delete(); delete fTracklets;}
121 if(fClusters) {fClusters->Delete(); delete fClusters;}
122 if(fGeom) delete fGeom;
e4f2f73d 123}
124
125//____________________________________________________________________
126Int_t AliTRDtrackerV1::Clusters2Tracks(AliESDEvent *esd)
127{
972ef65e 128 //
129 // Steering stand alone tracking for full TRD detector
130 //
131 // Parameters :
132 // esd : The ESD event. On output it contains
133 // the ESD tracks found in TRD.
134 //
135 // Output :
136 // Number of tracks found in the TRD detector.
137 //
138 // Detailed description
139 // 1. Launch individual SM trackers.
140 // See AliTRDtrackerV1::Clusters2TracksSM() for details.
141 //
142
143 if(!AliTRDReconstructor::RecoParam()){
144 AliError("Reconstruction configuration not initialized. Call first AliTRDReconstructor::SetRecoParam().");
145 return 0;
146 }
147
148 //AliInfo("Start Track Finder ...");
149 Int_t ntracks = 0;
150 for(int ism=0; ism<AliTRDgeometry::kNsect; ism++){
151 // for(int ism=1; ism<2; ism++){
152 //AliInfo(Form("Processing supermodule %i ...", ism));
153 ntracks += Clusters2TracksSM(ism, esd);
154 }
155 AliInfo(Form("Number of found tracks : %d", ntracks));
156 return ntracks;
e4f2f73d 157}
158
0906e73e 159
160//_____________________________________________________________________________
eb38ed55 161Bool_t AliTRDtrackerV1::GetTrackPoint(Int_t index, AliTrackPoint &p) const
0906e73e 162{
972ef65e 163 //AliInfo(Form("Asking for tracklet %d", index));
0906e73e 164
3b57a3f7 165 if(index<0 || index == 0xffff) return kFALSE;
972ef65e 166 AliTRDseedV1 *tracklet = 0x0;
167 if(!(tracklet = (AliTRDseedV1*)fTracklets->UncheckedAt(index))) return kFALSE;
eb38ed55 168
972ef65e 169 // get detector for this tracklet
170 AliTRDcluster *cl = 0x0;
171 Int_t ic = 0; do; while(!(cl = tracklet->GetClusters(ic++)));
172 Int_t idet = cl->GetDetector();
eb38ed55 173
972ef65e 174 Double_t local[3];
175 local[0] = tracklet->GetX0();
176 local[1] = tracklet->GetYfit(0);
177 local[2] = tracklet->GetZfit(0);
178 Double_t global[3];
179 fGeom->RotateBack(idet, local, global);
180 p.SetXYZ(global[0],global[1],global[2]);
181
182
183 // setting volume id
184 AliGeomManager::ELayerID iLayer = AliGeomManager::kTRD1;
185 switch (fGeom->GetPlane(idet)) {
186 case 0:
187 iLayer = AliGeomManager::kTRD1;
188 break;
189 case 1:
190 iLayer = AliGeomManager::kTRD2;
191 break;
192 case 2:
193 iLayer = AliGeomManager::kTRD3;
194 break;
195 case 3:
196 iLayer = AliGeomManager::kTRD4;
197 break;
198 case 4:
199 iLayer = AliGeomManager::kTRD5;
200 break;
201 case 5:
202 iLayer = AliGeomManager::kTRD6;
203 break;
204 };
205 Int_t modId = fGeom->GetSector(idet) * fGeom->Ncham() + fGeom->GetChamber(idet);
206 UShort_t volid = AliGeomManager::LayerToVolUID(iLayer, modId);
207 p.SetVolumeID(volid);
eb38ed55 208
972ef65e 209 return kTRUE;
0906e73e 210}
211
eb38ed55 212//____________________________________________________________________
213TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitter()
214{
972ef65e 215 if(!fgTiltedRieman) fgTiltedRieman = new TLinearFitter(4, "hyp4");
216 return fgTiltedRieman;
eb38ed55 217}
0906e73e 218
eb38ed55 219//____________________________________________________________________
220TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitterConstraint()
221{
972ef65e 222 if(!fgTiltedRiemanConstrained) fgTiltedRiemanConstrained = new TLinearFitter(2, "hyp2");
223 return fgTiltedRiemanConstrained;
eb38ed55 224}
225
226//____________________________________________________________________
227AliRieman* AliTRDtrackerV1::GetRiemanFitter()
228{
972ef65e 229 if(!fgRieman) fgRieman = new AliRieman(AliTRDtrackingChamber::kNTimeBins * AliTRDgeometry::kNplan);
230 return fgRieman;
eb38ed55 231}
232
0906e73e 233//_____________________________________________________________________________
234Int_t AliTRDtrackerV1::PropagateBack(AliESDEvent *event)
235{
972ef65e 236 //
237 // Gets seeds from ESD event. The seeds are AliTPCtrack's found and
238 // backpropagated by the TPC tracker. Each seed is first propagated
239 // to the TRD, and then its prolongation is searched in the TRD.
240 // If sufficiently long continuation of the track is found in the TRD
241 // the track is updated, otherwise it's stored as originaly defined
242 // by the TPC tracker.
243 //
244
245 // Calibration monitor
246 AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance();
247 if (!calibra) AliInfo("Could not get Calibra instance\n");
248
249 Int_t found = 0; // number of tracks found
250 Float_t foundMin = 20.0;
251
252 Int_t nSeed = event->GetNumberOfTracks();
253 if(!nSeed){
254 // run stand alone tracking
255 if (AliTRDReconstructor::SeedingOn()) Clusters2Tracks(event);
256 return 0;
257 }
258
259 Float_t *quality = new Float_t[nSeed];
260 Int_t *index = new Int_t[nSeed];
261 for (Int_t iSeed = 0; iSeed < nSeed; iSeed++) {
262 AliESDtrack *seed = event->GetTrack(iSeed);
263 Double_t covariance[15];
264 seed->GetExternalCovariance(covariance);
265 quality[iSeed] = covariance[0] + covariance[2];
266 }
267 // Sort tracks according to covariance of local Y and Z
268 TMath::Sort(nSeed,quality,index,kFALSE);
269
270 // Backpropagate all seeds
271 Int_t expectedClr;
272 AliTRDtrackV1 track;
273 for (Int_t iSeed = 0; iSeed < nSeed; iSeed++) {
274
275 // Get the seeds in sorted sequence
276 AliESDtrack *seed = event->GetTrack(index[iSeed]);
277
278 // Check the seed status
279 ULong_t status = seed->GetStatus();
280 if ((status & AliESDtrack::kTPCout) == 0) continue;
281 if ((status & AliESDtrack::kTRDout) != 0) continue;
282
283 // Do the back prolongation
972ef65e 284 new(&track) AliTRDtrackV1(*seed);
285 //track->Print();
3b57a3f7 286 //Int_t lbl = seed->GetLabel();
287 //track.SetSeedLabel(lbl);
972ef65e 288 seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup); // Make backup
289 Float_t p4 = track.GetC();
290 if((expectedClr = FollowBackProlongation(track))){
291 // computes PID for track
292 track.CookPID();
293 // update calibration references using this track
294 if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(&track);
0c23ac49 295 // save calibration object
296 if ((track.GetNumberOfClusters() > 15) && (track.GetNumberOfClusters() > 0.5*expectedClr)) {
297 seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
298
299 track.UpdateESDtrack(seed);
300
301 // Add TRD track to ESDfriendTrack
302 if (AliTRDReconstructor::StreamLevel() > 0 /*&& quality TODO*/){
303 AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
304 calibTrack->SetOwner();
305 seed->AddCalibObject(calibTrack);
306 }
307 }
972ef65e 308 }
309
310 if ((TMath::Abs(track.GetC() - p4) / TMath::Abs(p4) < 0.2) ||(track.Pt() > 0.8)) {
311 //
312 // Make backup for back propagation
313 //
314 Int_t foundClr = track.GetNumberOfClusters();
315 if (foundClr >= foundMin) {
316 //AliInfo(Form("Making backup track ncls [%d]...", foundClr));
3b57a3f7 317 //track.CookdEdx();
318 //track.CookdEdxTimBin(seed->GetID());
972ef65e 319 track.CookLabel(1. - fgkLabelFraction);
320 if(track.GetBackupTrack()) UseClusters(track.GetBackupTrack());
0906e73e 321
0906e73e 322
972ef65e 323 // Sign only gold tracks
324 if (track.GetChi2() / track.GetNumberOfClusters() < 4) {
325 if ((seed->GetKinkIndex(0) == 0) && (track.Pt() < 1.5)) UseClusters(&track);
326 }
327 Bool_t isGold = kFALSE;
0906e73e 328
972ef65e 329 // Full gold track
330 if (track.GetChi2() / track.GetNumberOfClusters() < 5) {
331 if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
0906e73e 332
972ef65e 333 isGold = kTRUE;
334 }
0906e73e 335
972ef65e 336 // Almost gold track
337 if ((!isGold) && (track.GetNCross() == 0) && (track.GetChi2() / track.GetNumberOfClusters() < 7)) {
338 //seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup);
339 if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
340
341 isGold = kTRUE;
342 }
0906e73e 343
972ef65e 344 if ((!isGold) && (track.GetBackupTrack())) {
345 if ((track.GetBackupTrack()->GetNumberOfClusters() > foundMin) && ((track.GetBackupTrack()->GetChi2()/(track.GetBackupTrack()->GetNumberOfClusters()+1)) < 7)) {
346 seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
347 isGold = kTRUE;
348 }
349 }
350
351 //if ((track->StatusForTOF() > 0) && (track->GetNCross() == 0) && (Float_t(track->GetNumberOfClusters()) / Float_t(track->GetNExpected()) > 0.4)) {
352 //seed->UpdateTrackParams(track->GetBackupTrack(), AliESDtrack::kTRDbackup);
353 //}
354 }
355 }
0c23ac49 356
972ef65e 357 // Propagation to the TOF (I.Belikov)
3b57a3f7 358 if (track.IsStopped() == kFALSE) {
972ef65e 359 Double_t xtof = 371.0;
360 Double_t xTOF0 = 370.0;
0906e73e 361
972ef65e 362 Double_t c2 = track.GetSnp() + track.GetC() * (xtof - track.GetX());
363 if (TMath::Abs(c2) >= 0.99) continue;
0906e73e 364
972ef65e 365 PropagateToX(track, xTOF0, fgkMaxStep);
0906e73e 366
972ef65e 367 // Energy losses taken to the account - check one more time
368 c2 = track.GetSnp() + track.GetC() * (xtof - track.GetX());
369 if (TMath::Abs(c2) >= 0.99) continue;
0906e73e 370
972ef65e 371 //if (!PropagateToX(*track,xTOF0,fgkMaxStep)) {
372 // fHBackfit->Fill(7);
373 //delete track;
374 // continue;
375 //}
376
377 Double_t ymax = xtof * TMath::Tan(0.5 * AliTRDgeometry::GetAlpha());
378 Double_t y;
379 track.GetYAt(xtof,GetBz(),y);
380 if (y > ymax) {
0c23ac49 381 if (!track.Rotate( AliTRDgeometry::GetAlpha())) continue;
972ef65e 382 }else if (y < -ymax) {
383 if (!track.Rotate(-AliTRDgeometry::GetAlpha())) continue;
384 }
0906e73e 385
972ef65e 386 if (track.PropagateTo(xtof)) {
387 seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
388 track.UpdateESDtrack(seed);
a23edf15 389
972ef65e 390 // Add TRD track to ESDfriendTrack
0c23ac49 391// if (AliTRDReconstructor::StreamLevel() > 0 /*&& quality TODO*/){
392// AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
393// calibTrack->SetOwner();
394// seed->AddCalibObject(calibTrack);
395// }
972ef65e 396 found++;
397 }
398 } else {
399 if ((track.GetNumberOfClusters() > 15) && (track.GetNumberOfClusters() > 0.5*expectedClr)) {
400 seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
0906e73e 401
972ef65e 402 track.UpdateESDtrack(seed);
a23edf15 403
972ef65e 404 // Add TRD track to ESDfriendTrack
0c23ac49 405// if (AliTRDReconstructor::StreamLevel() > 0 /*&& quality TODO*/){
406// AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
407// calibTrack->SetOwner();
408// seed->AddCalibObject(calibTrack);
409// }
972ef65e 410 found++;
411 }
412 }
d739fd4e 413
972ef65e 414 seed->SetTRDQuality(track.StatusForTOF());
415 seed->SetTRDBudget(track.GetBudget(0));
416 }
0906e73e 417
418
972ef65e 419 AliInfo(Form("Number of seeds: %d", nSeed));
420 AliInfo(Form("Number of back propagated TRD tracks: %d", found));
eb38ed55 421
972ef65e 422 delete [] index;
423 delete [] quality;
0906e73e 424
972ef65e 425 return 0;
0906e73e 426}
427
428
429//____________________________________________________________________
430Int_t AliTRDtrackerV1::RefitInward(AliESDEvent *event)
431{
972ef65e 432 //
433 // Refits tracks within the TRD. The ESD event is expected to contain seeds
434 // at the outer part of the TRD.
435 // The tracks are propagated to the innermost time bin
436 // of the TRD and the ESD event is updated
437 // Origin: Thomas KUHR (Thomas.Kuhr@cern.ch)
438 //
439
440 Int_t nseed = 0; // contor for loaded seeds
441 Int_t found = 0; // contor for updated TRD tracks
442
443
444 AliTRDtrackV1 track;
445 for (Int_t itrack = 0; itrack < event->GetNumberOfTracks(); itrack++) {
446 AliESDtrack *seed = event->GetTrack(itrack);
447 new(&track) AliTRDtrackV1(*seed);
448
449 if (track.GetX() < 270.0) {
450 seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup);
451 continue;
452 }
453
454 ULong_t status = seed->GetStatus();
455 if((status & AliESDtrack::kTRDout) == 0) continue;
456 if((status & AliESDtrack::kTRDin) != 0) continue;
457 nseed++;
458
459 track.ResetCovariance(50.0);
460
461 // do the propagation and processing
462 Bool_t kUPDATE = kFALSE;
463 Double_t xTPC = 250.0;
464 if(FollowProlongation(track)){
465 // Prolongate to TPC
466 if (PropagateToX(track, xTPC, fgkMaxStep)) { // -with update
d739fd4e 467 seed->UpdateTrackParams(&track, AliESDtrack::kTRDrefit);
468 found++;
469 kUPDATE = kTRUE;
972ef65e 470 }
471 }
bcb6fb78 472
972ef65e 473 // Prolongate to TPC without update
474 if(!kUPDATE) {
475 AliTRDtrackV1 tt(*seed);
476 if (PropagateToX(tt, xTPC, fgkMaxStep)) seed->UpdateTrackParams(&tt, AliESDtrack::kTRDrefit);
477 }
478 }
479 AliInfo(Form("Number of loaded seeds: %d",nseed));
480 AliInfo(Form("Number of found tracks from loaded seeds: %d",found));
481
482 return 0;
0906e73e 483}
484
485
486//____________________________________________________________________
487Int_t AliTRDtrackerV1::FollowProlongation(AliTRDtrackV1 &t)
488{
972ef65e 489 // Extrapolates the TRD track in the TPC direction.
490 //
491 // Parameters
492 // t : the TRD track which has to be extrapolated
493 //
494 // Output
495 // number of clusters attached to the track
496 //
497 // Detailed description
498 //
499 // Starting from current radial position of track <t> this function
500 // extrapolates the track through the 6 TRD layers. The following steps
501 // are being performed for each plane:
502 // 1. prepare track:
503 // a. get plane limits in the local x direction
504 // b. check crossing sectors
505 // c. check track inclination
506 // 2. search tracklet in the tracker list (see GetTracklet() for details)
507 // 3. evaluate material budget using the geo manager
508 // 4. propagate and update track using the tracklet information.
509 //
510 // Debug level 2
511 //
512
513 Int_t nClustersExpected = 0;
514 Int_t lastplane = 5; //GetLastPlane(&t);
515 for (Int_t iplane = lastplane; iplane >= 0; iplane--) {
516 Int_t index = 0;
517 AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
518 if(!tracklet) continue;
519 if(!tracklet->IsOK()) AliWarning("tracklet not OK");
eb38ed55 520
972ef65e 521 Double_t x = tracklet->GetX0();
522 // reject tracklets which are not considered for inward refit
523 if(x > t.GetX()+fgkMaxStep) continue;
a23edf15 524
972ef65e 525 // append tracklet to track
3b57a3f7 526 t.SetTracklet(tracklet, index);
972ef65e 527
528 if (x < (t.GetX()-fgkMaxStep) && !PropagateToX(t, x+fgkMaxStep, fgkMaxStep)) break;
529 if (!AdjustSector(&t)) break;
eb38ed55 530
972ef65e 531 // Start global position
532 Double_t xyz0[3];
533 t.GetXYZ(xyz0);
534
535 // End global position
536 Double_t alpha = t.GetAlpha(), y, z;
537 if (!t.GetProlongation(x,y,z)) break;
538 Double_t xyz1[3];
539 xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
540 xyz1[1] = x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
541 xyz1[2] = z;
eb38ed55 542
972ef65e 543 // Get material budget
544 Double_t param[7];
545 AliTracker::MeanMaterialBudget(xyz0, xyz1, param);
546 Double_t xrho= param[0]*param[4];
547 Double_t xx0 = param[1]; // Get mean propagation parameters
548
549 // Propagate and update
550 t.PropagateTo(x, xx0, xrho);
551 if (!AdjustSector(&t)) break;
552
553 Double_t maxChi2 = t.GetPredictedChi2(tracklet);
554 if (maxChi2 < 1e+10 && t.Update(tracklet, maxChi2)){
555 nClustersExpected += tracklet->GetN();
556 }
557 }
558
559 if(AliTRDReconstructor::StreamLevel() > 1){
560 Int_t index;
561 for(int iplane=0; iplane<6; iplane++){
562 AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
563 if(!tracklet) continue;
3b57a3f7 564 t.SetTracklet(tracklet, index);
972ef65e 565 }
566
567 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
568 TTreeSRedirector &cstreamer = *fgDebugStreamer;
569 cstreamer << "FollowProlongation"
570 << "EventNumber=" << eventNumber
571 << "ncl=" << nClustersExpected
572 << "track.=" << &t
573 << "\n";
574 }
575
576 return nClustersExpected;
0906e73e 577
578}
579
580//_____________________________________________________________________________
581Int_t AliTRDtrackerV1::FollowBackProlongation(AliTRDtrackV1 &t)
582{
972ef65e 583 // Extrapolates the TRD track in the TOF direction.
584 //
585 // Parameters
586 // t : the TRD track which has to be extrapolated
587 //
588 // Output
589 // number of clusters attached to the track
590 //
591 // Detailed description
592 //
593 // Starting from current radial position of track <t> this function
594 // extrapolates the track through the 6 TRD layers. The following steps
595 // are being performed for each plane:
596 // 1. prepare track:
597 // a. get plane limits in the local x direction
598 // b. check crossing sectors
599 // c. check track inclination
600 // 2. build tracklet (see AliTRDseed::AttachClusters() for details)
601 // 3. evaluate material budget using the geo manager
602 // 4. propagate and update track using the tracklet information.
603 //
604 // Debug level 2
605 //
606
607 Int_t nClustersExpected = 0;
608 Double_t clength = AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick();
609 AliTRDtrackingChamber *chamber = 0x0;
610
3b57a3f7 611 AliTRDseedV1 tracklet, *ptrTracklet = 0x0;
612
972ef65e 613 // Loop through the TRD planes
614 for (Int_t iplane = 0; iplane < AliTRDgeometry::Nplan(); iplane++) {
615 // BUILD TRACKLET IF NOT ALREADY BUILT
616 Double_t x = 0., y, z, alpha;
3b57a3f7 617 ptrTracklet = t.GetTracklet(iplane);
618 if(!ptrTracklet){
619 new(&tracklet) AliTRDseedV1(iplane);
972ef65e 620 alpha = t.GetAlpha();
621 Int_t sector = Int_t(alpha/AliTRDgeometry::GetAlpha() + (alpha>0. ? 0 : AliTRDgeometry::kNsect));
622
623 if(!fTrSec[sector].GetNChambers()) continue;
624
625 if((x = fTrSec[sector].GetX(iplane)) < 1.) continue;
eb38ed55 626
972ef65e 627 if (!t.GetProlongation(x, y, z)) break;
628 Int_t stack = fGeom->GetChamber(z, iplane);
629 Int_t nCandidates = stack >= 0 ? 1 : 2;
630 z -= stack >= 0 ? 0. : 4.;
eb38ed55 631
972ef65e 632 for(int icham=0; icham<nCandidates; icham++, z+=8){
51863bc0 633 if((stack = fGeom->GetChamber(z, iplane)) < 0) continue;
972ef65e 634
51863bc0 635 if(!(chamber = fTrSec[sector].GetChamber(stack, iplane))) continue;
972ef65e 636
51863bc0 637 if(chamber->GetNClusters() < fgNTimeBins*AliTRDReconstructor::RecoParam()->GetFindableClusters()) continue;
972ef65e 638
51863bc0 639 x = chamber->GetX();
972ef65e 640
51863bc0 641 AliTRDpadPlane *pp = fGeom->GetPadPlane(iplane, stack);
642 tracklet.SetTilt(TMath::Tan(-TMath::DegToRad()*pp->GetTiltingAngle()));
643 tracklet.SetPadLength(pp->GetLengthIPad());
644 tracklet.SetPlane(iplane);
645 tracklet.SetX0(x);
0c23ac49 646 if(!tracklet.Init(&t)){
3b57a3f7 647 t.SetStopped(kTRUE);
0c23ac49 648 return nClustersExpected;
649 }
51863bc0 650 if(!tracklet.AttachClustersIter(chamber, 1000.)) continue;
651 tracklet.Init(&t);
972ef65e 652
51863bc0 653 if(tracklet.GetN() < fgNTimeBins * AliTRDReconstructor::RecoParam()->GetFindableClusters()) continue;
972ef65e 654
51863bc0 655 break;
656 }
972ef65e 657 }
658 if(!tracklet.IsOK()){
659 if(x < 1.) continue; //temporary
660 if(!PropagateToX(t, x-fgkMaxStep, fgkMaxStep)) break;
661 if(!AdjustSector(&t)) break;
662 if(TMath::Abs(t.GetSnp()) > fgkMaxSnp) break;
663 continue;
664 }
0906e73e 665
972ef65e 666 // Propagate closer to the current chamber if neccessary
667 x -= clength;
668 if (x > (fgkMaxStep + t.GetX()) && !PropagateToX(t, x-fgkMaxStep, fgkMaxStep)) break;
669 if (!AdjustSector(&t)) break;
670 if (TMath::Abs(t.GetSnp()) > fgkMaxSnp) break;
0906e73e 671
972ef65e 672 // load tracklet to the tracker and the track
3b57a3f7 673 ptrTracklet = SetTracklet(&tracklet);
674 t.SetTracklet(ptrTracklet, fTracklets->GetEntriesFast()-1);
972ef65e 675
676
677 // Calculate the mean material budget along the path inside the chamber
678 //Calculate global entry and exit positions of the track in chamber (only track prolongation)
679 Double_t xyz0[3]; // entry point
680 t.GetXYZ(xyz0);
681 alpha = t.GetAlpha();
3b57a3f7 682 x = ptrTracklet->GetX0();
972ef65e 683 if (!t.GetProlongation(x, y, z)) break;
684 Double_t xyz1[3]; // exit point
685 xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
686 xyz1[1] = +x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
687 xyz1[2] = z;
688 Double_t param[7];
689 AliTracker::MeanMaterialBudget(xyz0, xyz1, param);
690 // The mean propagation parameters
691 Double_t xrho = param[0]*param[4]; // density*length
692 Double_t xx0 = param[1]; // radiation length
693
694 // Propagate and update track
695 t.PropagateTo(x, xx0, xrho);
696 if (!AdjustSector(&t)) break;
3b57a3f7 697 Double_t maxChi2 = t.GetPredictedChi2(ptrTracklet);
698 if (maxChi2<1e+10 && t.Update(ptrTracklet, maxChi2)){
699 nClustersExpected += ptrTracklet->GetN();
700 //t.SetTracklet(&tracklet, index);
972ef65e 701 }
702 // Reset material budget if 2 consecutive gold
3b57a3f7 703 if(iplane>0 && t.GetTracklet(iplane-1) && ptrTracklet->GetN() + t.GetTracklet(iplane-1)->GetN() > 20) t.SetBudget(2, 0.);
972ef65e 704
705 // Make backup of the track until is gold
706 // TO DO update quality check of the track.
707 // consider comparison with fTimeBinsRange
3b57a3f7 708 Float_t ratio0 = ptrTracklet->GetN() / Float_t(fgNTimeBins);
972ef65e 709 //Float_t ratio1 = Float_t(t.GetNumberOfClusters()+1) / Float_t(t.GetNExpected()+1);
710 //printf("tracklet.GetChi2() %f [< 18.0]\n", tracklet.GetChi2());
711 //printf("ratio0 %f [> 0.8]\n", ratio0);
712 //printf("ratio1 %f [> 0.6]\n", ratio1);
713 //printf("ratio0+ratio1 %f [> 1.5]\n", ratio0+ratio1);
714 //printf("t.GetNCross() %d [== 0]\n", t.GetNCross());
715 //printf("TMath::Abs(t.GetSnp()) %f [< 0.85]\n", TMath::Abs(t.GetSnp()));
716 //printf("t.GetNumberOfClusters() %d [> 20]\n", t.GetNumberOfClusters());
0906e73e 717
972ef65e 718 if (//(tracklet.GetChi2() < 18.0) && TO DO check with FindClusters and move it to AliTRDseed::Update
719 (ratio0 > 0.8) &&
720 //(ratio1 > 0.6) &&
721 //(ratio0+ratio1 > 1.5) &&
722 (t.GetNCross() == 0) &&
723 (TMath::Abs(t.GetSnp()) < 0.85) &&
724 (t.GetNumberOfClusters() > 20)) t.MakeBackupTrack();
725
726 } // end planes loop
727
728 if(AliTRDReconstructor::StreamLevel() > 1){
729 TTreeSRedirector &cstreamer = *fgDebugStreamer;
730 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
731 cstreamer << "FollowBackProlongation"
732 << "EventNumber=" << eventNumber
733 << "ncl=" << nClustersExpected
734 << "track.=" << &t
735 << "\n";
736 }
737
738 return nClustersExpected;
0906e73e 739}
740
eb38ed55 741//_________________________________________________________________________
742Float_t AliTRDtrackerV1::FitRieman(AliTRDseedV1 *tracklets, Double_t *chi2, Int_t *planes){
972ef65e 743 //
744 // Fits a Riemann-circle to the given points without tilting pad correction.
745 // The fit is performed using an instance of the class AliRieman (equations
746 // and transformations see documentation of this class)
747 // Afterwards all the tracklets are Updated
748 //
749 // Parameters: - Array of tracklets (AliTRDseedV1)
750 // - Storage for the chi2 values (beginning with direction z)
751 // - Seeding configuration
752 // Output: - The curvature
753 //
754 AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
755 fitter->Reset();
756 Int_t allplanes[] = {0, 1, 2, 3, 4, 5};
757 Int_t *ppl = &allplanes[0];
758 Int_t maxLayers = 6;
759 if(planes){
760 maxLayers = 4;
761 ppl = planes;
762 }
763 for(Int_t il = 0; il < maxLayers; il++){
764 if(!tracklets[ppl[il]].IsOK()) continue;
765 fitter->AddPoint(tracklets[ppl[il]].GetX0(), tracklets[ppl[il]].GetYfitR(0), tracklets[ppl[il]].GetZProb(),1,10);
766 }
767 fitter->Update();
768 // Set the reference position of the fit and calculate the chi2 values
769 memset(chi2, 0, sizeof(Double_t) * 2);
770 for(Int_t il = 0; il < maxLayers; il++){
771 // Reference positions
772 tracklets[ppl[il]].Init(fitter);
eb38ed55 773
972ef65e 774 // chi2
775 if((!tracklets[ppl[il]].IsOK()) && (!planes)) continue;
776 chi2[0] += tracklets[ppl[il]].GetChi2Y();
777 chi2[1] += tracklets[ppl[il]].GetChi2Z();
778 }
779 return fitter->GetC();
eb38ed55 780}
781
782//_________________________________________________________________________
783void AliTRDtrackerV1::FitRieman(AliTRDcluster **seedcl, Double_t chi2[2])
784{
972ef65e 785 //
786 // Performs a Riemann helix fit using the seedclusters as spacepoints
787 // Afterwards the chi2 values are calculated and the seeds are updated
788 //
789 // Parameters: - The four seedclusters
790 // - The tracklet array (AliTRDseedV1)
791 // - The seeding configuration
792 // - Chi2 array
793 //
794 // debug level 2
795 //
796 AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
797 fitter->Reset();
798 for(Int_t i = 0; i < 4; i++)
799 fitter->AddPoint(seedcl[i]->GetX(), seedcl[i]->GetY(), seedcl[i]->GetZ(), 1, 10);
800 fitter->Update();
801
802
803 // Update the seed and calculated the chi2 value
804 chi2[0] = 0; chi2[1] = 0;
805 for(Int_t ipl = 0; ipl < kNSeedPlanes; ipl++){
806 // chi2
807 chi2[0] += (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX()));
808 chi2[1] += (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX()));
809 }
eb38ed55 810}
811
812
813//_________________________________________________________________________
814Float_t AliTRDtrackerV1::FitTiltedRiemanConstraint(AliTRDseedV1 *tracklets, Double_t zVertex)
815{
972ef65e 816 //
817 // Fits a helix to the clusters. Pad tilting is considered. As constraint it is
818 // assumed that the vertex position is set to 0.
819 // This method is very usefull for high-pt particles
820 // Basis for the fit: (x - x0)^2 + (y - y0)^2 - R^2 = 0
821 // x0, y0: Center of the circle
822 // Measured y-position: ymeas = y - tan(phiT)(zc - zt)
823 // zc: center of the pad row
824 // Equation which has to be fitted (after transformation):
825 // a + b * u + e * v + 2*(ymeas + tan(phiT)(z - zVertex))*t = 0
826 // Transformation:
827 // t = 1/(x^2 + y^2)
828 // u = 2 * x * t
829 // v = 2 * x * tan(phiT) * t
830 // Parameters in the equation:
831 // a = -1/y0, b = x0/y0, e = dz/dx
832 //
833 // The Curvature is calculated by the following equation:
834 // - curv = a/Sqrt(b^2 + 1) = 1/R
835 // Parameters: - the 6 tracklets
836 // - the Vertex constraint
837 // Output: - the Chi2 value of the track
838 //
839 // debug level 5
840 //
841
842 TLinearFitter *fitter = GetTiltedRiemanFitterConstraint();
843 fitter->StoreData(kTRUE);
844 fitter->ClearPoints();
845 AliTRDcluster *cl = 0x0;
846
847 Float_t x, y, z, w, t, error, tilt;
848 Double_t uvt[2];
849 Int_t nPoints = 0;
850 for(Int_t ipl = 0; ipl < AliTRDgeometry::kNplan; ipl++){
851 if(!tracklets[ipl].IsOK()) continue;
852 for(Int_t itb = 0; itb < fgNTimeBins; itb++){
853 if(!tracklets[ipl].IsUsable(itb)) continue;
854 cl = tracklets[ipl].GetClusters(itb);
855 x = cl->GetX();
856 y = cl->GetY();
857 z = cl->GetZ();
858 tilt = tracklets[ipl].GetTilt();
859 // Transformation
860 t = 1./(x * x + y * y);
861 uvt[0] = 2. * x * t;
862 uvt[1] = 2. * x * t * tilt ;
863 w = 2. * (y + tilt * (z - zVertex)) * t;
864 error = 2. * 0.2 * t;
865 fitter->AddPoint(uvt, w, error);
866 nPoints++;
867 }
868 }
869 fitter->Eval();
870
871 // Calculate curvature
872 Double_t a = fitter->GetParameter(0);
873 Double_t b = fitter->GetParameter(1);
874 Double_t curvature = a/TMath::Sqrt(b*b + 1);
875
876 Float_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
877 for(Int_t ip = 0; ip < AliTRDtrackerV1::kNPlanes; ip++)
878 tracklets[ip].SetCC(curvature);
879
880 if(AliTRDReconstructor::StreamLevel() >= 5){
881 //Linear Model on z-direction
882 Double_t xref = CalculateReferenceX(tracklets); // Relative to the middle of the stack
883 Double_t slope = fitter->GetParameter(2);
884 Double_t zref = slope * xref;
885 Float_t chi2Z = CalculateChi2Z(tracklets, zref, slope, xref);
886 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
887 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
888 TTreeSRedirector &treeStreamer = *fgDebugStreamer;
889 treeStreamer << "FitTiltedRiemanConstraint"
890 << "EventNumber=" << eventNumber
891 << "CandidateNumber=" << candidateNumber
892 << "Curvature=" << curvature
893 << "Chi2Track=" << chi2track
894 << "Chi2Z=" << chi2Z
895 << "zref=" << zref
896 << "\n";
897 }
898 return chi2track;
eb38ed55 899}
900
901//_________________________________________________________________________
902Float_t AliTRDtrackerV1::FitTiltedRieman(AliTRDseedV1 *tracklets, Bool_t sigError)
903{
972ef65e 904 //
905 // Performs a Riemann fit taking tilting pad correction into account
906 // The equation of a Riemann circle, where the y position is substituted by the
907 // measured y-position taking pad tilting into account, has to be transformed
908 // into a 4-dimensional hyperplane equation
909 // Riemann circle: (x-x0)^2 + (y-y0)^2 -R^2 = 0
910 // Measured y-Position: ymeas = y - tan(phiT)(zc - zt)
911 // zc: center of the pad row
912 // zt: z-position of the track
913 // The z-position of the track is assumed to be linear dependent on the x-position
914 // Transformed equation: a + b * u + c * t + d * v + e * w - 2 * (ymeas + tan(phiT) * zc) * t = 0
915 // Transformation: u = 2 * x * t
916 // v = 2 * tan(phiT) * t
917 // w = 2 * tan(phiT) * (x - xref) * t
918 // t = 1 / (x^2 + ymeas^2)
919 // Parameters: a = -1/y0
920 // b = x0/y0
921 // c = (R^2 -x0^2 - y0^2)/y0
922 // d = offset
923 // e = dz/dx
924 // If the offset respectively the slope in z-position is impossible, the parameters are fixed using
925 // results from the simple riemann fit. Afterwards the fit is redone.
926 // The curvature is calculated according to the formula:
927 // curv = a/(1 + b^2 + c*a) = 1/R
928 //
929 // Paramters: - Array of tracklets (connected to the track candidate)
930 // - Flag selecting the error definition
931 // Output: - Chi2 values of the track (in Parameter list)
932 //
933 TLinearFitter *fitter = GetTiltedRiemanFitter();
934 fitter->StoreData(kTRUE);
935 fitter->ClearPoints();
936 AliTRDLeastSquare zfitter;
937 AliTRDcluster *cl = 0x0;
938
939 Double_t xref = CalculateReferenceX(tracklets);
940 Double_t x, y, z, t, tilt, dx, w, we;
941 Double_t uvt[4];
942 Int_t nPoints = 0;
943 // Containers for Least-square fitter
944 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
945 if(!tracklets[ipl].IsOK()) continue;
946 for(Int_t itb = 0; itb < fgNTimeBins; itb++){
947 if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
948 if (!tracklets[ipl].IsUsable(itb)) continue;
949 x = cl->GetX();
950 y = cl->GetY();
951 z = cl->GetZ();
952 tilt = tracklets[ipl].GetTilt();
953 dx = x - xref;
954 // Transformation
955 t = 1./(x*x + y*y);
956 uvt[0] = 2. * x * t;
957 uvt[1] = t;
958 uvt[2] = 2. * tilt * t;
959 uvt[3] = 2. * tilt * dx * t;
960 w = 2. * (y + tilt*z) * t;
961 // error definition changes for the different calls
962 we = 2. * t;
963 we *= sigError ? tracklets[ipl].GetSigmaY() : 0.2;
964 fitter->AddPoint(uvt, w, we);
965 zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
966 nPoints++;
967 }
968 }
969 fitter->Eval();
970 zfitter.Eval();
971
972 Double_t offset = fitter->GetParameter(3);
973 Double_t slope = fitter->GetParameter(4);
974
975 // Linear fitter - not possible to make boundaries
976 // Do not accept non possible z and dzdx combinations
977 Bool_t acceptablez = kTRUE;
978 Double_t zref = 0.0;
979 for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
980 if(!tracklets[iLayer].IsOK()) continue;
981 zref = offset + slope * (tracklets[iLayer].GetX0() - xref);
982 if (TMath::Abs(tracklets[iLayer].GetZProb() - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0)
983 acceptablez = kFALSE;
984 }
985 if (!acceptablez) {
986 Double_t dzmf = zfitter.GetFunctionParameter(1);
987 Double_t zmf = zfitter.GetFunctionValue(&xref);
988 fgTiltedRieman->FixParameter(3, zmf);
989 fgTiltedRieman->FixParameter(4, dzmf);
990 fitter->Eval();
991 fitter->ReleaseParameter(3);
992 fitter->ReleaseParameter(4);
993 offset = fitter->GetParameter(3);
994 slope = fitter->GetParameter(4);
995 }
996
997 // Calculate Curvarture
998 Double_t a = fitter->GetParameter(0);
999 Double_t b = fitter->GetParameter(1);
1000 Double_t c = fitter->GetParameter(2);
1001 Double_t curvature = 1.0 + b*b - c*a;
1002 if (curvature > 0.0)
1003 curvature = a / TMath::Sqrt(curvature);
1004
1005 Double_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
1006
1007 // Update the tracklets
1008 Double_t dy, dz;
1009 for(Int_t iLayer = 0; iLayer < AliTRDtrackerV1::kNPlanes; iLayer++) {
1010
1011 x = tracklets[iLayer].GetX0();
1012 y = 0;
1013 z = 0;
1014 dy = 0;
1015 dz = 0;
1016
1017 // y: R^2 = (x - x0)^2 + (y - y0)^2
1018 // => y = y0 +/- Sqrt(R^2 - (x - x0)^2)
1019 // R = Sqrt() = 1/Curvature
1020 // => y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2)
1021 Double_t res = (x * a + b); // = (x - x0)/y0
1022 res *= res;
1023 res = 1.0 - c * a + b * b - res; // = (R^2 - (x - x0)^2)/y0^2
1024 if (res >= 0) {
1025 res = TMath::Sqrt(res);
1026 y = (1.0 - res) / a;
1027 }
1028
1029 // dy: R^2 = (x - x0)^2 + (y - y0)^2
1030 // => y = +/- Sqrt(R^2 - (x - x0)^2) + y0
1031 // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2)
1032 // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a)
1033 // => dy/dx = (x - x0)/(1/(cr^2) - (x - x0)^2)
1034 Double_t x0 = -b / a;
1035 if (-c * a + b * b + 1 > 0) {
1036 if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) {
d739fd4e 1037 Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0));
1038 if (a < 0) yderiv *= -1.0;
1039 dy = yderiv;
972ef65e 1040 }
1041 }
1042 z = offset + slope * (x - xref);
1043 dz = slope;
1044 tracklets[iLayer].SetYref(0, y);
1045 tracklets[iLayer].SetYref(1, dy);
1046 tracklets[iLayer].SetZref(0, z);
1047 tracklets[iLayer].SetZref(1, dz);
1048 tracklets[iLayer].SetC(curvature);
1049 tracklets[iLayer].SetChi2(chi2track);
1050 }
1051
1052 if(AliTRDReconstructor::StreamLevel() >=5){
1053 TTreeSRedirector &cstreamer = *fgDebugStreamer;
1054 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1055 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1056 Double_t chi2z = CalculateChi2Z(tracklets, offset, slope, xref);
1057 cstreamer << "FitTiltedRieman0"
1058 << "EventNumber=" << eventNumber
1059 << "CandidateNumber=" << candidateNumber
1060 << "xref=" << xref
1061 << "Chi2Z=" << chi2z
1062 << "\n";
1063 }
1064 return chi2track;
eb38ed55 1065}
1066
3b57a3f7 1067
1068//_________________________________________________________________________
1069Double_t AliTRDtrackerV1::FitRiemanTilt(AliTRDtrackV1 *track, AliTRDseedV1 *tracklets, Bool_t sigError, Int_t np, AliTrackPoint *points)
1070{
1071 //
1072 // Performs a Riemann fit taking tilting pad correction into account
1073 // The equation of a Riemann circle, where the y position is substituted by the
1074 // measured y-position taking pad tilting into account, has to be transformed
1075 // into a 4-dimensional hyperplane equation
1076 // Riemann circle: (x-x0)^2 + (y-y0)^2 -R^2 = 0
1077 // Measured y-Position: ymeas = y - tan(phiT)(zc - zt)
1078 // zc: center of the pad row
1079 // zt: z-position of the track
1080 // The z-position of the track is assumed to be linear dependent on the x-position
1081 // Transformed equation: a + b * u + c * t + d * v + e * w - 2 * (ymeas + tan(phiT) * zc) * t = 0
1082 // Transformation: u = 2 * x * t
1083 // v = 2 * tan(phiT) * t
1084 // w = 2 * tan(phiT) * (x - xref) * t
1085 // t = 1 / (x^2 + ymeas^2)
1086 // Parameters: a = -1/y0
1087 // b = x0/y0
1088 // c = (R^2 -x0^2 - y0^2)/y0
1089 // d = offset
1090 // e = dz/dx
1091 // If the offset respectively the slope in z-position is impossible, the parameters are fixed using
1092 // results from the simple riemann fit. Afterwards the fit is redone.
1093 // The curvature is calculated according to the formula:
1094 // curv = a/(1 + b^2 + c*a) = 1/R
1095 //
1096 // Paramters: - Array of tracklets (connected to the track candidate)
1097 // - Flag selecting the error definition
1098 // Output: - Chi2 values of the track (in Parameter list)
1099 //
1100 TLinearFitter *fitter = GetTiltedRiemanFitter();
1101 fitter->StoreData(kTRUE);
1102 fitter->ClearPoints();
1103 AliTRDLeastSquare zfitter;
1104 AliTRDcluster *cl = 0x0;
1105
1106 AliTRDseedV1 work[kNPlanes], *tracklet = 0x0;
1107 if(!tracklets){
1108 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1109 if(!(tracklet = track->GetTracklet(ipl))) continue;
1110 if(!tracklet->IsOK()) continue;
1111 new(&work[ipl]) AliTRDseedV1(*tracklet);
1112 }
1113 tracklets = &work[0];
1114 }
1115
1116 Double_t xref = CalculateReferenceX(tracklets);
1117 Double_t x, y, z, t, tilt, dx, w, we;
1118 Double_t uvt[4];
1119 Int_t nPoints = 0;
1120 // Containers for Least-square fitter
1121 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1122 if(!tracklets[ipl].IsOK()) continue;
1123 for(Int_t itb = 0; itb < fgNTimeBins; itb++){
1124 if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
1125 if (!tracklets[ipl].IsUsable(itb)) continue;
1126 x = cl->GetX();
1127 y = cl->GetY();
1128 z = cl->GetZ();
1129 tilt = tracklets[ipl].GetTilt();
1130 dx = x - xref;
1131 // Transformation
1132 t = 1./(x*x + y*y);
1133 uvt[0] = 2. * x * t;
1134 uvt[1] = t;
1135 uvt[2] = 2. * tilt * t;
1136 uvt[3] = 2. * tilt * dx * t;
1137 w = 2. * (y + tilt*z) * t;
1138 // error definition changes for the different calls
1139 we = 2. * t;
1140 we *= sigError ? tracklets[ipl].GetSigmaY() : 0.2;
1141 fitter->AddPoint(uvt, w, we);
1142 zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
1143 nPoints++;
1144 }
1145 }
1146 fitter->Eval();
1147 Double_t z0 = fitter->GetParameter(3);
1148 Double_t dzdx = fitter->GetParameter(4);
1149
1150
1151 // Linear fitter - not possible to make boundaries
1152 // Do not accept non possible z and dzdx combinations
1153 Bool_t accept = kTRUE;
1154 Double_t zref = 0.0;
1155 for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
1156 if(!tracklets[iLayer].IsOK()) continue;
1157 zref = z0 + dzdx * (tracklets[iLayer].GetX0() - xref);
1158 if (TMath::Abs(tracklets[iLayer].GetZProb() - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0)
1159 accept = kFALSE;
1160 }
1161 if (!accept) {
1162 zfitter.Eval();
1163 Double_t dzmf = zfitter.GetFunctionParameter(1);
1164 Double_t zmf = zfitter.GetFunctionValue(&xref);
1165 fitter->FixParameter(3, zmf);
1166 fitter->FixParameter(4, dzmf);
1167 fitter->Eval();
1168 fitter->ReleaseParameter(3);
1169 fitter->ReleaseParameter(4);
1170 z0 = fitter->GetParameter(3); // = zmf ?
1171 dzdx = fitter->GetParameter(4); // = dzmf ?
1172 }
1173
1174 // Calculate Curvature
1175 Double_t a = fitter->GetParameter(0);
1176 Double_t b = fitter->GetParameter(1);
1177 Double_t c = fitter->GetParameter(2);
1178 Double_t y0 = 1. / a;
1179 Double_t x0 = -b * y0;
1180 Double_t R = TMath::Sqrt(y0*y0 + x0*x0 - c*y0);
1181 Double_t C = 1.0 + b*b - c*a;
1182 if (C > 0.0) C = a / TMath::Sqrt(C);
1183
1184 // Calculate chi2 of the fit
1185 Double_t chi2 = fitter->GetChisquare()/Double_t(nPoints);
1186
1187 // Update the tracklets
1188 if(!track){
1189 for(Int_t ip = 0; ip < kNPlanes; ip++) {
1190 x = tracklets[ip].GetX0();
1191 Double_t tmp = TMath::Sqrt(R*R-(x-x0)*(x-x0));
1192
1193 // y: R^2 = (x - x0)^2 + (y - y0)^2
1194 // => y = y0 +/- Sqrt(R^2 - (x - x0)^2)
1195 tracklets[ip].SetYref(0, y0 - (y0>0.?1.:-1)*tmp);
1196 // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2)
1197 tracklets[ip].SetYref(1, (x - x0) / tmp);
1198 tracklets[ip].SetZref(0, z0 + dzdx * (x - xref));
1199 tracklets[ip].SetZref(1, dzdx);
1200 tracklets[ip].SetC(C);
1201 tracklets[ip].SetChi2(chi2);
1202 }
1203 }
1204
1205 //update track points array
1206 if(np && points){
1207 Float_t xyz[3];
1208 for(int ip=0; ip<np; ip++){
1209 points[ip].GetXYZ(xyz);
1210 xyz[1] = y0 - (y0>0.?1.:-1)*TMath::Sqrt(R*R-(xyz[0]-x0)*(xyz[0]-x0));
1211 xyz[2] = z0 + dzdx * (xyz[0] - xref);
1212 points[ip].SetXYZ(xyz);
1213 }
1214 }
1215
1216 if(AliTRDReconstructor::StreamLevel() >=5){
1217 TTreeSRedirector &cstreamer = *fgDebugStreamer;
1218 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1219 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1220 Double_t chi2z = CalculateChi2Z(tracklets, z0, dzdx, xref);
1221 cstreamer << "FitRiemanTilt"
1222 << "EventNumber=" << eventNumber
1223 << "CandidateNumber=" << candidateNumber
1224 << "xref=" << xref
1225 << "Chi2Z=" << chi2z
1226 << "\n";
1227 }
1228 return chi2;
1229}
1230
1231
1232
eb38ed55 1233//_________________________________________________________________________
bb56afff 1234Float_t AliTRDtrackerV1::CalculateChi2Z(AliTRDseedV1 *tracklets, Double_t offset, Double_t slope, Double_t xref)
eb38ed55 1235{
972ef65e 1236 //
1237 // Calculates the chi2-value of the track in z-Direction including tilting pad correction.
1238 // A linear dependence on the x-value serves as a model.
1239 // The parameters are related to the tilted Riemann fit.
1240 // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
1241 // - the offset for the reference x
1242 // - the slope
1243 // - the reference x position
1244 // Output: - The Chi2 value of the track in z-Direction
1245 //
1246 Float_t chi2Z = 0, nLayers = 0;
1247 for (Int_t iLayer = 0; iLayer < AliTRDgeometry::kNplan; iLayer++) {
1248 if(!tracklets[iLayer].IsOK()) continue;
1249 Double_t z = offset + slope * (tracklets[iLayer].GetX0() - xref);
1250 chi2Z += TMath::Abs(tracklets[iLayer].GetMeanz() - z);
1251 nLayers++;
1252 }
1253 chi2Z /= TMath::Max((nLayers - 3.0),1.0);
1254 return chi2Z;
eb38ed55 1255}
1256
bccda319 1257//_____________________________________________________________________________
1258Int_t AliTRDtrackerV1::PropagateToX(AliTRDtrackV1 &t, Double_t xToGo, Double_t maxStep)
1259{
972ef65e 1260 //
1261 // Starting from current X-position of track <t> this function
1262 // extrapolates the track up to radial position <xToGo>.
1263 // Returns 1 if track reaches the plane, and 0 otherwise
1264 //
bccda319 1265
972ef65e 1266 const Double_t kEpsilon = 0.00001;
bccda319 1267
972ef65e 1268 // Current track X-position
1269 Double_t xpos = t.GetX();
bccda319 1270
972ef65e 1271 // Direction: inward or outward
1272 Double_t dir = (xpos < xToGo) ? 1.0 : -1.0;
bccda319 1273
972ef65e 1274 while (((xToGo - xpos) * dir) > kEpsilon) {
bccda319 1275
972ef65e 1276 Double_t xyz0[3];
1277 Double_t xyz1[3];
1278 Double_t param[7];
1279 Double_t x;
1280 Double_t y;
1281 Double_t z;
bccda319 1282
972ef65e 1283 // The next step size
1284 Double_t step = dir * TMath::Min(TMath::Abs(xToGo-xpos),maxStep);
bccda319 1285
972ef65e 1286 // Get the global position of the starting point
1287 t.GetXYZ(xyz0);
bccda319 1288
972ef65e 1289 // X-position after next step
1290 x = xpos + step;
bccda319 1291
972ef65e 1292 // Get local Y and Z at the X-position of the next step
1293 if (!t.GetProlongation(x,y,z)) {
1294 return 0; // No prolongation possible
1295 }
bccda319 1296
972ef65e 1297 // The global position of the end point of this prolongation step
1298 xyz1[0] = x * TMath::Cos(t.GetAlpha()) - y * TMath::Sin(t.GetAlpha());
1299 xyz1[1] = +x * TMath::Sin(t.GetAlpha()) + y * TMath::Cos(t.GetAlpha());
1300 xyz1[2] = z;
bccda319 1301
972ef65e 1302 // Calculate the mean material budget between start and
1303 // end point of this prolongation step
1304 AliTracker::MeanMaterialBudget(xyz0, xyz1, param);
bccda319 1305
972ef65e 1306 // Propagate the track to the X-position after the next step
1307 if (!t.PropagateTo(x,param[1],param[0]*param[4])) {
1308 return 0;
1309 }
bccda319 1310
972ef65e 1311 // Rotate the track if necessary
1312 AdjustSector(&t);
bccda319 1313
972ef65e 1314 // New track X-position
1315 xpos = t.GetX();
bccda319 1316
972ef65e 1317 }
bccda319 1318
972ef65e 1319 return 1;
bccda319 1320
1321}
1322
eb38ed55 1323
1324//_____________________________________________________________________________
1325Int_t AliTRDtrackerV1::ReadClusters(TClonesArray* &array, TTree *clusterTree) const
1326{
972ef65e 1327 //
1328 // Reads AliTRDclusters from the file.
1329 // The names of the cluster tree and branches
1330 // should match the ones used in AliTRDclusterizer::WriteClusters()
1331 //
1332
1333 Int_t nsize = Int_t(clusterTree->GetTotBytes() / (sizeof(AliTRDcluster)));
1334 TObjArray *clusterArray = new TObjArray(nsize+1000);
1335
1336 TBranch *branch = clusterTree->GetBranch("TRDcluster");
1337 if (!branch) {
1338 AliError("Can't get the branch !");
1339 return 1;
1340 }
1341 branch->SetAddress(&clusterArray);
1342
1343 if(!fClusters){
1344 array = new TClonesArray("AliTRDcluster", nsize);
1345 array->SetOwner(kTRUE);
1346 }
1347
1348 // Loop through all entries in the tree
1349 Int_t nEntries = (Int_t) clusterTree->GetEntries();
1350 Int_t nbytes = 0;
1351 Int_t ncl = 0;
1352 AliTRDcluster *c = 0x0;
1353 for (Int_t iEntry = 0; iEntry < nEntries; iEntry++) {
1354 // Import the tree
1355 nbytes += clusterTree->GetEvent(iEntry);
1356
1357 // Get the number of points in the detector
1358 Int_t nCluster = clusterArray->GetEntriesFast();
1359 for (Int_t iCluster = 0; iCluster < nCluster; iCluster++) {
1360 if(!(c = (AliTRDcluster *) clusterArray->UncheckedAt(iCluster))) continue;
1361 c->SetInChamber();
1362 new((*fClusters)[ncl++]) AliTRDcluster(*c);
87a7fa94 1363 delete (clusterArray->RemoveAt(iCluster));
972ef65e 1364 }
1365
1366 }
1367 delete clusterArray;
1368
1369 return 0;
eb38ed55 1370}
1371
1372//_____________________________________________________________________________
1373Int_t AliTRDtrackerV1::LoadClusters(TTree *cTree)
1374{
972ef65e 1375 //
1376 // Fills clusters into TRD tracking_sectors
1377 // Note that the numbering scheme for the TRD tracking_sectors
1378 // differs from that of TRD sectors
1379 //
1380
1381
1382 if (ReadClusters(fClusters, cTree)) {
1383 AliError("Problem with reading the clusters !");
1384 return 1;
1385 }
1386 Int_t ncl = fClusters->GetEntriesFast(), nin = 0;
1387 if(!ncl){
1388 AliInfo("Clusters 0");
1389 return 1;
1390 }
1391
1392 Int_t icl = ncl;
1393 while (icl--) {
1394 AliTRDcluster *c = (AliTRDcluster *) fClusters->UncheckedAt(icl);
1395 if(c->IsInChamber()) nin++;
1396 Int_t detector = c->GetDetector();
1397 Int_t sector = fGeom->GetSector(detector);
1398 Int_t stack = fGeom->GetChamber(detector);
1399 Int_t plane = fGeom->GetPlane(detector);
eb38ed55 1400
972ef65e 1401 fTrSec[sector].GetChamber(stack, plane, kTRUE)->InsertCluster(c, icl);
1402 }
1403 AliInfo(Form("Clusters %d in %6.2f %%", ncl, 100.*float(nin)/ncl));
1404
1405 for(int isector =0; isector<AliTRDgeometry::kNsect; isector++){
1406 if(!fTrSec[isector].GetNChambers()) continue;
1407 fTrSec[isector].Init();
1408 }
1409
1410 return 0;
eb38ed55 1411}
1412
1413
0906e73e 1414//____________________________________________________________________
1415void AliTRDtrackerV1::UnloadClusters()
1416{
972ef65e 1417 //
1418 // Clears the arrays of clusters and tracks. Resets sectors and timebins
1419 //
0906e73e 1420
972ef65e 1421 if(fTracks) fTracks->Delete();
1422 if(fTracklets) fTracklets->Delete();
1423 if(fClusters) fClusters->Delete();
0906e73e 1424
972ef65e 1425 for (int i = 0; i < AliTRDgeometry::kNsect; i++) fTrSec[i].Clear();
0906e73e 1426
972ef65e 1427 // Increment the Event Number
1428 AliTRDtrackerDebug::SetEventNumber(AliTRDtrackerDebug::GetEventNumber() + 1);
eb38ed55 1429}
0906e73e 1430
eb38ed55 1431//_____________________________________________________________________________
1432Bool_t AliTRDtrackerV1::AdjustSector(AliTRDtrackV1 *track)
1433{
972ef65e 1434 //
1435 // Rotates the track when necessary
1436 //
1437
1438 Double_t alpha = AliTRDgeometry::GetAlpha();
1439 Double_t y = track->GetY();
1440 Double_t ymax = track->GetX()*TMath::Tan(0.5*alpha);
1441
1442 if (y > ymax) {
1443 if (!track->Rotate( alpha)) {
1444 return kFALSE;
1445 }
1446 }
1447 else if (y < -ymax) {
1448 if (!track->Rotate(-alpha)) {
1449 return kFALSE;
1450 }
1451 }
1452
1453 return kTRUE;
0906e73e 1454
1455}
1456
eb38ed55 1457
0906e73e 1458//____________________________________________________________________
1459AliTRDseedV1* AliTRDtrackerV1::GetTracklet(AliTRDtrackV1 *track, Int_t p, Int_t &idx)
1460{
972ef65e 1461 // Find tracklet for TRD track <track>
1462 // Parameters
1463 // - track
1464 // - sector
1465 // - plane
1466 // - index
1467 // Output
1468 // tracklet
1469 // index
1470 // Detailed description
1471 //
1472 idx = track->GetTrackletIndex(p);
3b57a3f7 1473 AliTRDseedV1 *tracklet = (idx==0xffff) ? 0x0 : (AliTRDseedV1*)fTracklets->UncheckedAt(idx);
972ef65e 1474
1475 return tracklet;
0906e73e 1476}
1477
1478//____________________________________________________________________
3b57a3f7 1479AliTRDseedV1* AliTRDtrackerV1::SetTracklet(AliTRDseedV1 *tracklet)
0906e73e 1480{
972ef65e 1481 // Add this tracklet to the list of tracklets stored in the tracker
1482 //
1483 // Parameters
1484 // - tracklet : pointer to the tracklet to be added to the list
1485 //
1486 // Output
1487 // - the index of the new tracklet in the tracker tracklets list
1488 //
1489 // Detailed description
1490 // Build the tracklets list if it is not yet created (late initialization)
1491 // and adds the new tracklet to the list.
1492 //
1493 if(!fTracklets){
1494 fTracklets = new TClonesArray("AliTRDseedV1", AliTRDgeometry::Nsect()*kMaxTracksStack);
1495 fTracklets->SetOwner(kTRUE);
1496 }
1497 Int_t nentries = fTracklets->GetEntriesFast();
3b57a3f7 1498 return new ((*fTracklets)[nentries]) AliTRDseedV1(*tracklet);
972ef65e 1499}
1500
0906e73e 1501
e4f2f73d 1502//____________________________________________________________________
eb38ed55 1503Int_t AliTRDtrackerV1::Clusters2TracksSM(Int_t sector, AliESDEvent *esd)
e4f2f73d 1504{
972ef65e 1505 //
1506 // Steer tracking for one SM.
1507 //
1508 // Parameters :
1509 // sector : Array of (SM) propagation layers containing clusters
1510 // esd : The current ESD event. On output it contains the also
1511 // the ESD (TRD) tracks found in this SM.
1512 //
1513 // Output :
1514 // Number of tracks found in this TRD supermodule.
1515 //
1516 // Detailed description
1517 //
1518 // 1. Unpack AliTRDpropagationLayers objects for each stack.
1519 // 2. Launch stack tracking.
1520 // See AliTRDtrackerV1::Clusters2TracksStack() for details.
1521 // 3. Pack results in the ESD event.
1522 //
1523
1524 // allocate space for esd tracks in this SM
1525 TClonesArray esdTrackList("AliESDtrack", 2*kMaxTracksStack);
1526 esdTrackList.SetOwner();
1527
1528 Int_t nTracks = 0;
1529 Int_t nChambers = 0;
1530 AliTRDtrackingChamber **stack = 0x0, *chamber = 0x0;
1531 for(int istack = 0; istack<AliTRDgeometry::kNcham; istack++){
1532 if(!(stack = fTrSec[sector].GetStack(istack))) continue;
1533 nChambers = 0;
1534 for(int iplane=0; iplane<AliTRDgeometry::kNplan; iplane++){
1535 if(!(chamber = stack[iplane])) continue;
1536 if(chamber->GetNClusters() < fgNTimeBins * AliTRDReconstructor::RecoParam()->GetFindableClusters()) continue;
1537 nChambers++;
1538 //AliInfo(Form("sector %d stack %d plane %d clusters %d", sector, istack, iplane, chamber->GetNClusters()));
1539 }
1540 if(nChambers < 4) continue;
1541 //AliInfo(Form("Doing stack %d", istack));
1542 nTracks += Clusters2TracksStack(stack, &esdTrackList);
1543 }
1544 //AliInfo(Form("Found %d tracks in SM %d [%d]\n", nTracks, sector, esd->GetNumberOfTracks()));
1545
1546 for(int itrack=0; itrack<nTracks; itrack++)
1547 esd->AddTrack((AliESDtrack*)esdTrackList[itrack]);
1548
1549 // Reset Track and Candidate Number
1550 AliTRDtrackerDebug::SetCandidateNumber(0);
1551 AliTRDtrackerDebug::SetTrackNumber(0);
1552 return nTracks;
e4f2f73d 1553}
1554
1555//____________________________________________________________________
eb38ed55 1556Int_t AliTRDtrackerV1::Clusters2TracksStack(AliTRDtrackingChamber **stack, TClonesArray *esdTrackList)
e4f2f73d 1557{
972ef65e 1558 //
1559 // Make tracks in one TRD stack.
1560 //
1561 // Parameters :
1562 // layer : Array of stack propagation layers containing clusters
1563 // esdTrackList : Array of ESD tracks found by the stand alone tracker.
1564 // On exit the tracks found in this stack are appended.
1565 //
1566 // Output :
1567 // Number of tracks found in this stack.
1568 //
1569 // Detailed description
1570 //
1571 // 1. Find the 3 most useful seeding chambers. See BuildSeedingConfigs() for details.
1572 // 2. Steer AliTRDtrackerV1::MakeSeeds() for 3 seeding layer configurations.
1573 // See AliTRDtrackerV1::MakeSeeds() for more details.
1574 // 3. Arrange track candidates in decreasing order of their quality
1575 // 4. Classify tracks in 5 categories according to:
1576 // a) number of layers crossed
1577 // b) track quality
1578 // 5. Sign clusters by tracks in decreasing order of track quality
1579 // 6. Build AliTRDtrack out of seeding tracklets
1580 // 7. Cook MC label
1581 // 8. Build ESD track and register it to the output list
1582 //
1583
972ef65e 1584 AliTRDtrackingChamber *chamber = 0x0;
1585 AliTRDseedV1 sseed[kMaxTracksStack*6]; // to be initialized
1586 Int_t pars[4]; // MakeSeeds parameters
1587
1588 //Double_t alpha = AliTRDgeometry::GetAlpha();
1589 //Double_t shift = .5 * alpha;
1590 Int_t configs[kNConfigs];
1591
1592 // Build initial seeding configurations
1593 Double_t quality = BuildSeedingConfigs(stack, configs);
1594 if(AliTRDReconstructor::StreamLevel() > 1){
1595 AliInfo(Form("Plane config %d %d %d Quality %f"
1596 , configs[0], configs[1], configs[2], quality));
1597 }
1598
1599 // Initialize contors
1600 Int_t ntracks, // number of TRD track candidates
1601 ntracks1, // number of registered TRD tracks/iter
1602 ntracks2 = 0; // number of all registered TRD tracks in stack
1603 fSieveSeeding = 0;
1604 do{
1605 // Loop over seeding configurations
1606 ntracks = 0; ntracks1 = 0;
1607 for (Int_t iconf = 0; iconf<3; iconf++) {
1608 pars[0] = configs[iconf];
1609 pars[1] = ntracks;
1610 ntracks = MakeSeeds(stack, &sseed[6*ntracks], pars);
1611 if(ntracks == kMaxTracksStack) break;
1612 }
1613 if(AliTRDReconstructor::StreamLevel() > 1) AliInfo(Form("Candidate TRD tracks %d in iteration %d.", ntracks, fSieveSeeding));
eb38ed55 1614
972ef65e 1615 if(!ntracks) break;
e4f2f73d 1616
972ef65e 1617 // Sort the seeds according to their quality
1618 Int_t sort[kMaxTracksStack];
1619 TMath::Sort(ntracks, fTrackQuality, sort, kTRUE);
1620
1621 // Initialize number of tracks so far and logic switches
1622 Int_t ntracks0 = esdTrackList->GetEntriesFast();
1623 Bool_t signedTrack[kMaxTracksStack];
1624 Bool_t fakeTrack[kMaxTracksStack];
1625 for (Int_t i=0; i<ntracks; i++){
1626 signedTrack[i] = kFALSE;
1627 fakeTrack[i] = kFALSE;
1628 }
1629 //AliInfo("Selecting track candidates ...");
e4f2f73d 1630
972ef65e 1631 // Sieve clusters in decreasing order of track quality
1632 Double_t trackParams[7];
1633 // AliTRDseedV1 *lseed = 0x0;
1634 Int_t jSieve = 0, candidates;
1635 do{
1636 //AliInfo(Form("\t\tITER = %i ", jSieve));
1637
1638 // Check track candidates
1639 candidates = 0;
1640 for (Int_t itrack = 0; itrack < ntracks; itrack++) {
d739fd4e 1641 Int_t trackIndex = sort[itrack];
1642 if (signedTrack[trackIndex] || fakeTrack[trackIndex]) continue;
e4f2f73d 1643
1644
d739fd4e 1645 // Calculate track parameters from tracklets seeds
1646 Int_t labelsall[1000];
1647 Int_t nlabelsall = 0;
1648 Int_t naccepted = 0;
1649 Int_t ncl = 0;
1650 Int_t nused = 0;
1651 Int_t nlayers = 0;
1652 Int_t findable = 0;
1653 for (Int_t jLayer = 0; jLayer < kNPlanes; jLayer++) {
972ef65e 1654 Int_t jseed = kNPlanes*trackIndex+jLayer;
1655 if(!sseed[jseed].IsOK()) continue;
1656 if (TMath::Abs(sseed[jseed].GetYref(0) / sseed[jseed].GetX0()) < 0.15) findable++;
1657
1658 sseed[jseed].UpdateUsed();
1659 ncl += sseed[jseed].GetN2();
1660 nused += sseed[jseed].GetNUsed();
1661 nlayers++;
1662
1663 // Cooking label
1664 for (Int_t itime = 0; itime < fgNTimeBins; itime++) {
1665 if(!sseed[jseed].IsUsable(itime)) continue;
1666 naccepted++;
1667 Int_t tindex = 0, ilab = 0;
1668 while(ilab<3 && (tindex = sseed[jseed].GetClusters(itime)->GetLabel(ilab)) >= 0){
1669 labelsall[nlabelsall++] = tindex;
1670 ilab++;
1671 }
1672 }
d739fd4e 1673 }
1674 // Filter duplicated tracks
1675 if (nused > 30){
972ef65e 1676 //printf("Skip %d nused %d\n", trackIndex, nused);
1677 fakeTrack[trackIndex] = kTRUE;
1678 continue;
d739fd4e 1679 }
1680 if (Float_t(nused)/ncl >= .25){
972ef65e 1681 //printf("Skip %d nused/ncl >= .25\n", trackIndex);
1682 fakeTrack[trackIndex] = kTRUE;
1683 continue;
d739fd4e 1684 }
e4f2f73d 1685
d739fd4e 1686 // Classify tracks
1687 Bool_t skip = kFALSE;
1688 switch(jSieve){
1689 case 0:
972ef65e 1690 if(nlayers < 6) {skip = kTRUE; break;}
1691 if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
1692 break;
e4f2f73d 1693
d739fd4e 1694 case 1:
972ef65e 1695 if(nlayers < findable){skip = kTRUE; break;}
1696 if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -4.){skip = kTRUE; break;}
1697 break;
e4f2f73d 1698
d739fd4e 1699 case 2:
972ef65e 1700 if ((nlayers == findable) || (nlayers == 6)) { skip = kTRUE; break;}
1701 if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -6.0){skip = kTRUE; break;}
1702 break;
e4f2f73d 1703
d739fd4e 1704 case 3:
972ef65e 1705 if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
1706 break;
e4f2f73d 1707
d739fd4e 1708 case 4:
972ef65e 1709 if (nlayers == 3){skip = kTRUE; break;}
1710 //if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) - nused/(nlayers-3.0) < -15.0){skip = kTRUE; break;}
1711 break;
d739fd4e 1712 }
1713 if(skip){
972ef65e 1714 candidates++;
1715 //printf("REJECTED : %d [%d] nlayers %d trackQuality = %e nused %d\n", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused);
1716 continue;
d739fd4e 1717 }
1718 signedTrack[trackIndex] = kTRUE;
e4f2f73d 1719
1720
d739fd4e 1721 // Build track label - what happens if measured data ???
1722 Int_t labels[1000];
1723 Int_t outlab[1000];
1724 Int_t nlab = 0;
1725 for (Int_t iLayer = 0; iLayer < 6; iLayer++) {
972ef65e 1726 Int_t jseed = kNPlanes*trackIndex+iLayer;
1727 if(!sseed[jseed].IsOK()) continue;
1728 for(int ilab=0; ilab<2; ilab++){
1729 if(sseed[jseed].GetLabels(ilab) < 0) continue;
1730 labels[nlab] = sseed[jseed].GetLabels(ilab);
1731 nlab++;
1732 }
d739fd4e 1733 }
1734 Freq(nlab,labels,outlab,kFALSE);
1735 Int_t label = outlab[0];
1736 Int_t frequency = outlab[1];
1737 Freq(nlabelsall,labelsall,outlab,kFALSE);
1738 Int_t label1 = outlab[0];
1739 Int_t label2 = outlab[2];
1740 Float_t fakeratio = (naccepted - outlab[1]) / Float_t(naccepted);
e4f2f73d 1741
1742
d739fd4e 1743 // Sign clusters
1744 AliTRDcluster *cl = 0x0; Int_t clusterIndex = -1;
1745 for (Int_t jLayer = 0; jLayer < 6; jLayer++) {
972ef65e 1746 Int_t jseed = kNPlanes*trackIndex+jLayer;
1747 if(!sseed[jseed].IsOK()) continue;
1748 if(TMath::Abs(sseed[jseed].GetYfit(1) - sseed[jseed].GetYfit(1)) >= .2) continue; // check this condition with Marian
1749 sseed[jseed].UseClusters();
1750 if(!cl){
1751 Int_t ic = 0;
1752 while(!(cl = sseed[jseed].GetClusters(ic))) ic++;
1753 clusterIndex = sseed[jseed].GetIndexes(ic);
1754 }
d739fd4e 1755 }
1756 if(!cl) continue;
e4f2f73d 1757
1758
d739fd4e 1759 // Build track parameters
1760 AliTRDseedV1 *lseed =&sseed[trackIndex*6];
1761 Int_t idx = 0;
1762 while(idx<3 && !lseed->IsOK()) {
972ef65e 1763 idx++;
1764 lseed++;
d739fd4e 1765 }
1766 Double_t cR = lseed->GetC();
1767 trackParams[1] = lseed->GetYref(0);
1768 trackParams[2] = lseed->GetZref(0);
1769 trackParams[3] = lseed->GetX0() * cR - TMath::Sin(TMath::ATan(lseed->GetYref(1)));
1770 trackParams[4] = lseed->GetZref(1) / TMath::Sqrt(1. + lseed->GetYref(1) * lseed->GetYref(1));
1771 trackParams[5] = cR;
1772 trackParams[0] = lseed->GetX0();
1773 Int_t ich = 0; while(!(chamber = stack[ich])) ich++;
1774 trackParams[6] = fGeom->GetSector(chamber->GetDetector());/* *alpha+shift; // Supermodule*/
1775
1776 if(AliTRDReconstructor::StreamLevel() > 1){
972ef65e 1777 AliInfo(Form("Track %d [%d] nlayers %d trackQuality = %e nused %d, yref = %3.3f", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused, trackParams[1]));
eb38ed55 1778
972ef65e 1779 Int_t nclusters = 0;
1780 AliTRDseedV1 *dseed[6];
1781 for(int is=0; is<6; is++){
1782 dseed[is] = new AliTRDseedV1(sseed[trackIndex*6+is]);
1783 dseed[is]->SetOwner();
1784 nclusters += sseed[is].GetN2();
1785 }
1786 //Int_t eventNrInFile = esd->GetEventNumberInFile();
1787 //AliInfo(Form("Number of clusters %d.", nclusters));
1788 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1789 Int_t trackNumber = AliTRDtrackerDebug::GetTrackNumber();
1790 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1791 TTreeSRedirector &cstreamer = *fgDebugStreamer;
1792 cstreamer << "Clusters2TracksStack"
1793 << "EventNumber=" << eventNumber
1794 << "TrackNumber=" << trackNumber
1795 << "CandidateNumber=" << candidateNumber
1796 << "Iter=" << fSieveSeeding
1797 << "Like=" << fTrackQuality[trackIndex]
1798 << "S0.=" << dseed[0]
1799 << "S1.=" << dseed[1]
1800 << "S2.=" << dseed[2]
1801 << "S3.=" << dseed[3]
1802 << "S4.=" << dseed[4]
1803 << "S5.=" << dseed[5]
1804 << "p0=" << trackParams[0]
1805 << "p1=" << trackParams[1]
1806 << "p2=" << trackParams[2]
1807 << "p3=" << trackParams[3]
1808 << "p4=" << trackParams[4]
1809 << "p5=" << trackParams[5]
1810 << "p6=" << trackParams[6]
1811 << "Label=" << label
1812 << "Label1=" << label1
1813 << "Label2=" << label2
1814 << "FakeRatio=" << fakeratio
1815 << "Freq=" << frequency
1816 << "Ncl=" << ncl
1817 << "NLayers=" << nlayers
1818 << "Findable=" << findable
1819
1820 << "NUsed=" << nused
1821 << "\n";
d739fd4e 1822 }
e4f2f73d 1823
d739fd4e 1824 AliTRDtrackV1 *track = MakeTrack(&sseed[trackIndex*kNPlanes], trackParams);
d739fd4e 1825 if(!track){
972ef65e 1826 //AliWarning("Fail to build a TRD Track.");
1827 continue;
d739fd4e 1828 }
1829 //AliInfo("End of MakeTrack()");
1830 AliESDtrack esdTrack;
1831 esdTrack.UpdateTrackParams(track, AliESDtrack::kTRDout);
1832 esdTrack.SetLabel(track->GetLabel());
749f58fa 1833 track->UpdateESDtrack(&esdTrack);
d739fd4e 1834 // write ESD-friends if neccessary
1835 if (AliTRDReconstructor::StreamLevel() > 0){
972ef65e 1836 //printf("Creating Calibrations Object\n");
1837 AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(*track);
1838 calibTrack->SetOwner();
1839 esdTrack.AddCalibObject(calibTrack);
d739fd4e 1840 }
1841 new ((*esdTrackList)[ntracks0++]) AliESDtrack(esdTrack);
1842 ntracks1++;
1843 AliTRDtrackerDebug::SetTrackNumber(AliTRDtrackerDebug::GetTrackNumber() + 1);
972ef65e 1844 }
d739fd4e 1845
972ef65e 1846 jSieve++;
1847 } while(jSieve<5 && candidates); // end track candidates sieve
1848 if(!ntracks1) break;
d739fd4e 1849
972ef65e 1850 // increment counters
1851 ntracks2 += ntracks1;
1852 fSieveSeeding++;
d739fd4e 1853
972ef65e 1854 // Rebuild plane configurations and indices taking only unused clusters into account
1855 quality = BuildSeedingConfigs(stack, configs);
1856 if(quality < 1.E-7) break; //AliTRDReconstructor::RecoParam()->GetPlaneQualityThreshold()) break;
e4f2f73d 1857
972ef65e 1858 for(Int_t ip = 0; ip < kNPlanes; ip++){
1859 if(!(chamber = stack[ip])) continue;
1860 chamber->Build(fGeom);//Indices(fSieveSeeding);
1861 }
1862
1863 if(AliTRDReconstructor::StreamLevel() > 1){
1864 AliInfo(Form("Sieve level %d Plane config %d %d %d Quality %f", fSieveSeeding, configs[0], configs[1], configs[2], quality));
1865 }
1866 } while(fSieveSeeding<10); // end stack clusters sieve
e4f2f73d 1867
1868
1869
972ef65e 1870 //AliInfo(Form("Registered TRD tracks %d in stack %d.", ntracks2, pars[1]));
e4f2f73d 1871
972ef65e 1872 return ntracks2;
e4f2f73d 1873}
1874
1875//___________________________________________________________________
eb38ed55 1876Double_t AliTRDtrackerV1::BuildSeedingConfigs(AliTRDtrackingChamber **stack, Int_t *configs)
e4f2f73d 1877{
972ef65e 1878 //
1879 // Assign probabilities to chambers according to their
1880 // capability of producing seeds.
1881 //
1882 // Parameters :
1883 //
1884 // layers : Array of stack propagation layers for all 6 chambers in one stack
1885 // configs : On exit array of configuration indexes (see GetSeedingConfig()
1886 // for details) in the decreasing order of their seeding probabilities.
1887 //
1888 // Output :
1889 //
1890 // Return top configuration quality
1891 //
1892 // Detailed description:
1893 //
1894 // To each chamber seeding configuration (see GetSeedingConfig() for
1895 // the list of all configurations) one defines 2 quality factors:
1896 // - an apriori topological quality (see GetSeedingConfig() for details) and
1897 // - a data quality based on the uniformity of the distribution of
1898 // clusters over the x range (time bins population). See CookChamberQA() for details.
1899 // The overall chamber quality is given by the product of this 2 contributions.
1900 //
1901
1902 Double_t chamberQ[kNPlanes];
1903 AliTRDtrackingChamber *chamber = 0x0;
1904 for(int iplane=0; iplane<kNPlanes; iplane++){
1905 if(!(chamber = stack[iplane])) continue;
1906 chamberQ[iplane] = (chamber = stack[iplane]) ? chamber->GetQuality() : 0.;
1907 }
1908
1909 Double_t tconfig[kNConfigs];
1910 Int_t planes[4];
1911 for(int iconf=0; iconf<kNConfigs; iconf++){
1912 GetSeedingConfig(iconf, planes);
1913 tconfig[iconf] = fgTopologicQA[iconf];
1914 for(int iplane=0; iplane<4; iplane++) tconfig[iconf] *= chamberQ[planes[iplane]];
1915 }
1916
1917 TMath::Sort((Int_t)kNConfigs, tconfig, configs, kTRUE);
1918 // AliInfo(Form("q[%d] = %f", configs[0], tconfig[configs[0]]));
1919 // AliInfo(Form("q[%d] = %f", configs[1], tconfig[configs[1]]));
1920 // AliInfo(Form("q[%d] = %f", configs[2], tconfig[configs[2]]));
1921
1922 return tconfig[configs[0]];
e4f2f73d 1923}
1924
1925//____________________________________________________________________
eb38ed55 1926Int_t AliTRDtrackerV1::MakeSeeds(AliTRDtrackingChamber **stack, AliTRDseedV1 *sseed, Int_t *ipar)
e4f2f73d 1927{
972ef65e 1928 //
1929 // Make tracklet seeds in the TRD stack.
1930 //
1931 // Parameters :
1932 // layers : Array of stack propagation layers containing clusters
1933 // sseed : Array of empty tracklet seeds. On exit they are filled.
1934 // ipar : Control parameters:
1935 // ipar[0] -> seeding chambers configuration
1936 // ipar[1] -> stack index
1937 // ipar[2] -> number of track candidates found so far
1938 //
1939 // Output :
1940 // Number of tracks candidates found.
1941 //
1942 // Detailed description
1943 //
1944 // The following steps are performed:
1945 // 1. Select seeding layers from seeding chambers
1946 // 2. Select seeding clusters from the seeding AliTRDpropagationLayerStack.
1947 // The clusters are taken from layer 3, layer 0, layer 1 and layer 2, in
1948 // this order. The parameters controling the range of accepted clusters in
1949 // layer 0, 1, and 2 are defined in AliTRDchamberTimeBin::BuildCond().
1950 // 3. Helix fit of the cluster set. (see AliTRDtrackerFitter::FitRieman(AliTRDcluster**))
1951 // 4. Initialize seeding tracklets in the seeding chambers.
1952 // 5. Filter 0.
1953 // Chi2 in the Y direction less than threshold ... (1./(3. - sLayer))
1954 // Chi2 in the Z direction less than threshold ... (1./(3. - sLayer))
1955 // 6. Attach clusters to seeding tracklets and find linear approximation of
1956 // the tracklet (see AliTRDseedV1::AttachClustersIter()). The number of used
1957 // clusters used by current seeds should not exceed ... (25).
1958 // 7. Filter 1.
1959 // All 4 seeding tracklets should be correctly constructed (see
1960 // AliTRDseedV1::AttachClustersIter())
1961 // 8. Helix fit of the seeding tracklets
1962 // 9. Filter 2.
1963 // Likelihood calculation of the fit. (See AliTRDtrackerV1::CookLikelihood() for details)
1964 // 10. Extrapolation of the helix fit to the other 2 chambers:
1965 // a) Initialization of extrapolation tracklet with fit parameters
1966 // b) Helix fit of tracklets
1967 // c) Attach clusters and linear interpolation to extrapolated tracklets
1968 // d) Helix fit of tracklets
1969 // 11. Improve seeding tracklets quality by reassigning clusters.
1970 // See AliTRDtrackerV1::ImproveSeedQuality() for details.
1971 // 12. Helix fit of all 6 seeding tracklets and chi2 calculation
1972 // 13. Hyperplane fit and track quality calculation. See AliTRDtrackerFitter::FitHyperplane() for details.
1973 // 14. Cooking labels for tracklets. Should be done only for MC
1974 // 15. Register seeds.
1975 //
1976
1977 AliTRDtrackingChamber *chamber = 0x0;
1978 AliTRDcluster *c[4] = {0x0, 0x0, 0x0, 0x0}; // initilize seeding clusters
1979 AliTRDseedV1 *cseed = &sseed[0]; // initialize tracklets for first track
1980 Int_t ncl, mcl; // working variable for looping over clusters
1981 Int_t index[AliTRDchamberTimeBin::kMaxClustersLayer], jndex[AliTRDchamberTimeBin::kMaxClustersLayer];
1982 // chi2 storage
1983 // chi2[0] = tracklet chi2 on the Z direction
1984 // chi2[1] = tracklet chi2 on the R direction
1985 Double_t chi2[4];
1986
1987
1988 // this should be data member of AliTRDtrack
1989 Double_t seedQuality[kMaxTracksStack];
1990
1991 // unpack control parameters
1992 Int_t config = ipar[0];
1993 Int_t ntracks = ipar[1];
1994 Int_t planes[kNSeedPlanes]; GetSeedingConfig(config, planes);
1995
1996 // Init chambers geometry
1997 Int_t ic = 0; while(!(chamber = stack[ic])) ic++;
1998 Int_t istack = fGeom->GetChamber(chamber->GetDetector());
1999 Double_t hL[kNPlanes]; // Tilting angle
2000 Float_t padlength[kNPlanes]; // pad lenghts
2001 AliTRDpadPlane *pp = 0x0;
2002 for(int iplane=0; iplane<kNPlanes; iplane++){
2003 pp = fGeom->GetPadPlane(iplane, istack);
2004 hL[iplane] = TMath::Tan(-TMath::DegToRad()*pp->GetTiltingAngle());
2005 padlength[iplane] = pp->GetLengthIPad();
2006 }
2007
2008 if(AliTRDReconstructor::StreamLevel() > 1){
2009 AliInfo(Form("Making seeds Stack[%d] Config[%d] Tracks[%d]...", istack, config, ntracks));
2010 }
2011
2012 Int_t nlayers = 0;
2013 AliTRDchamberTimeBin *layer[] = {0x0, 0x0, 0x0, 0x0};
2014 for(int isl=0; isl<kNSeedPlanes; isl++){
2015 if(!(chamber = stack[planes[isl]])) continue;
2016 if(!(layer[isl] = chamber->GetSeedingLayer(fGeom))) continue;
2017 nlayers++;
2018 //AliInfo(Form("seeding plane %d clusters %d", planes[isl], Int_t(*layer[isl])));
2019 }
2020 if(nlayers < 4) return 0;
2021
2022
2023 // Start finding seeds
2024 Double_t cond0[4], cond1[4], cond2[4];
2025 Int_t icl = 0;
2026 while((c[3] = (*layer[3])[icl++])){
2027 if(!c[3]) continue;
2028 layer[0]->BuildCond(c[3], cond0, 0);
2029 layer[0]->GetClusters(cond0, index, ncl);
2030 //printf("Found c[3] candidates 0 %d\n", ncl);
2031 Int_t jcl = 0;
2032 while(jcl<ncl) {
2033 c[0] = (*layer[0])[index[jcl++]];
2034 if(!c[0]) continue;
2035 Double_t dx = c[3]->GetX() - c[0]->GetX();
2036 Double_t theta = (c[3]->GetZ() - c[0]->GetZ())/dx;
2037 Double_t phi = (c[3]->GetY() - c[0]->GetY())/dx;
2038 layer[1]->BuildCond(c[0], cond1, 1, theta, phi);
2039 layer[1]->GetClusters(cond1, jndex, mcl);
2040 //printf("Found c[0] candidates 1 %d\n", mcl);
2041
2042 Int_t kcl = 0;
2043 while(kcl<mcl) {
d739fd4e 2044 c[1] = (*layer[1])[jndex[kcl++]];
2045 if(!c[1]) continue;
2046 layer[2]->BuildCond(c[1], cond2, 2, theta, phi);
2047 c[2] = layer[2]->GetNearestCluster(cond2);
2048 //printf("Found c[1] candidate 2 %p\n", c[2]);
2049 if(!c[2]) continue;
e4f2f73d 2050
d739fd4e 2051 // AliInfo("Seeding clusters found. Building seeds ...");
2052 // for(Int_t i = 0; i < kNSeedPlanes; i++) printf("%i. coordinates: x = %6.3f, y = %6.3f, z = %6.3f\n", i, c[i]->GetX(), c[i]->GetY(), c[i]->GetZ());
eb38ed55 2053
d739fd4e 2054 for (Int_t il = 0; il < 6; il++) cseed[il].Reset();
2055
2056 FitRieman(c, chi2);
2057
2058 AliTRDseedV1 *tseed = 0x0;
2059 for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
972ef65e 2060 Int_t jLayer = planes[iLayer];
2061 tseed = &cseed[jLayer];
2062 tseed->SetPlane(jLayer);
2063 tseed->SetTilt(hL[jLayer]);
2064 tseed->SetPadLength(padlength[jLayer]);
2065 tseed->SetX0(stack[jLayer]->GetX());
2066 tseed->Init(GetRiemanFitter());
d739fd4e 2067 }
2068
2069 Bool_t isFake = kFALSE;
2070 if(AliTRDReconstructor::StreamLevel() >= 2){
972ef65e 2071 if (c[0]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
2072 if (c[1]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
2073 if (c[2]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
2074
2075 Double_t xpos[4];
2076 for(Int_t l = 0; l < kNSeedPlanes; l++) xpos[l] = layer[l]->GetX();
2077 Float_t yref[4];
2078 for(int il=0; il<4; il++) yref[il] = cseed[planes[il]].GetYref(0);
2079 Int_t ll = c[3]->GetLabel(0);
2080 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2081 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2082 AliRieman *rim = GetRiemanFitter();
2083 TTreeSRedirector &cs0 = *fgDebugStreamer;
2084 cs0 << "MakeSeeds0"
2085 <<"EventNumber=" << eventNumber
2086 <<"CandidateNumber=" << candidateNumber
2087 <<"isFake=" << isFake
2088 <<"config=" << config
2089 <<"label=" << ll
2090 <<"chi2z=" << chi2[0]
2091 <<"chi2y=" << chi2[1]
2092 <<"Y2exp=" << cond2[0]
2093 <<"Z2exp=" << cond2[1]
2094 <<"X0=" << xpos[0] //layer[sLayer]->GetX()
2095 <<"X1=" << xpos[1] //layer[sLayer + 1]->GetX()
2096 <<"X2=" << xpos[2] //layer[sLayer + 2]->GetX()
2097 <<"X3=" << xpos[3] //layer[sLayer + 3]->GetX()
2098 <<"yref0=" << yref[0]
2099 <<"yref1=" << yref[1]
2100 <<"yref2=" << yref[2]
2101 <<"yref3=" << yref[3]
2102 <<"c0.=" << c[0]
2103 <<"c1.=" << c[1]
2104 <<"c2.=" << c[2]
2105 <<"c3.=" << c[3]
2106 <<"Seed0.=" << &cseed[planes[0]]
2107 <<"Seed1.=" << &cseed[planes[1]]
2108 <<"Seed2.=" << &cseed[planes[2]]
2109 <<"Seed3.=" << &cseed[planes[3]]
2110 <<"RiemanFitter.=" << rim
2111 <<"\n";
d739fd4e 2112 }
2113
2114 if(chi2[0] > AliTRDReconstructor::RecoParam()->GetChi2Z()/*7./(3. - sLayer)*//*iter*/){
972ef65e 2115 //AliInfo(Form("Failed chi2 filter on chi2Z [%f].", chi2[0]));
2116 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2117 continue;
d739fd4e 2118 }
2119 if(chi2[1] > AliTRDReconstructor::RecoParam()->GetChi2Y()/*1./(3. - sLayer)*//*iter*/){
972ef65e 2120 //AliInfo(Form("Failed chi2 filter on chi2Y [%f].", chi2[1]));
2121 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2122 continue;
d739fd4e 2123 }
2124 //AliInfo("Passed chi2 filter.");
2125
2126 // try attaching clusters to tracklets
2127 Int_t nUsedCl = 0;
7bce990c 2128 Int_t mlayers = 0;
d739fd4e 2129 for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
972ef65e 2130 Int_t jLayer = planes[iLayer];
2131 if(!cseed[jLayer].AttachClustersIter(stack[jLayer], 5., kFALSE, c[iLayer])) continue;
2132 nUsedCl += cseed[jLayer].GetNUsed();
2133 if(nUsedCl > 25) break;
7bce990c 2134 mlayers++;
d739fd4e 2135 }
7bce990c 2136 if(mlayers < kNSeedPlanes){
2137 //AliInfo(Form("Failed updating all seeds %d [%d].", mlayers, kNSeedPlanes));
972ef65e 2138 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2139 continue;
d739fd4e 2140 }
2141 // fit tracklets and cook likelihood
2142 FitTiltedRieman(&cseed[0], kTRUE);// Update Seeds and calculate Likelihood
2143 chi2[0] = GetChi2Y(&cseed[0]);
2144 chi2[1] = GetChi2Z(&cseed[0]);
2145 //Chi2 definitions in testing stage
2146 //chi2[0] = GetChi2YTest(&cseed[0]);
2147 //chi2[1] = GetChi2ZTest(&cseed[0]);
2148 Double_t like = CookLikelihood(&cseed[0], planes, chi2); // to be checked
2149
2150 if (TMath::Log(1.E-9 + like) < AliTRDReconstructor::RecoParam()->GetTrackLikelihood()){
972ef65e 2151 //AliInfo(Form("Failed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
2152 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2153 continue;
d739fd4e 2154 }
2155 //AliInfo(Form("Passed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
2156
2157 // book preliminary results
2158 seedQuality[ntracks] = like;
2159 fSeedLayer[ntracks] = config;/*sLayer;*/
2160
2161 // attach clusters to the extrapolation seeds
2162 Int_t lextrap[2];
2163 GetExtrapolationConfig(config, lextrap);
2164 Int_t nusedf = 0; // debug value
2165 for(int iLayer=0; iLayer<2; iLayer++){
972ef65e 2166 Int_t jLayer = lextrap[iLayer];
2167 if(!(chamber = stack[jLayer])) continue;
eb38ed55 2168
972ef65e 2169 // prepare extrapolated seed
2170 cseed[jLayer].Reset();
2171 cseed[jLayer].SetPlane(jLayer);
2172 cseed[jLayer].SetTilt(hL[jLayer]);
2173 cseed[jLayer].SetX0(chamber->GetX());
2174 cseed[jLayer].SetPadLength(padlength[jLayer]);
2175
2176 // fit extrapolated seed
2177 if ((jLayer == 0) && !(cseed[1].IsOK())) continue;
2178 if ((jLayer == 5) && !(cseed[4].IsOK())) continue;
7bce990c 2179 AliTRDseedV1 pseed = cseed[jLayer];
2180 if(!pseed.AttachClustersIter(chamber, 1000.)) continue;
2181 cseed[jLayer] = pseed;
972ef65e 2182 nusedf += cseed[jLayer].GetNUsed(); // debug value
2183 FitTiltedRieman(cseed, kTRUE);
d739fd4e 2184 }
2185
2186 // AliInfo("Extrapolation done.");
2187 // Debug Stream containing all the 6 tracklets
2188 if(AliTRDReconstructor::StreamLevel() >= 2){
972ef65e 2189 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2190 TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
2191 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2192 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2193 cstreamer << "MakeSeeds1"
2194 << "EventNumber=" << eventNumber
2195 << "CandidateNumber=" << candidateNumber
2196 << "S0.=" << &cseed[0]
2197 << "S1.=" << &cseed[1]
2198 << "S2.=" << &cseed[2]
2199 << "S3.=" << &cseed[3]
2200 << "S4.=" << &cseed[4]
2201 << "S5.=" << &cseed[5]
2202 << "FitterT.=" << tiltedRieman
2203 << "\n";
d739fd4e 2204 }
bb56afff 2205
d739fd4e 2206 if(ImproveSeedQuality(stack, cseed) < 4){
972ef65e 2207 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2208 continue;
d739fd4e 2209 }
2210 //AliInfo("Improve seed quality done.");
2211
2212 // fit full track and cook likelihoods
2213 // Double_t curv = FitRieman(&cseed[0], chi2);
7bce990c 2214 // Double_t chi2ZF = chi2[0] / TMath::Max((mlayers - 3.), 1.);
2215 // Double_t chi2RF = chi2[1] / TMath::Max((mlayers - 3.), 1.);
d739fd4e 2216
2217 // do the final track fitting (Once with vertex constraint and once without vertex constraint)
2218 Double_t chi2Vals[3];
2219 chi2Vals[0] = FitTiltedRieman(&cseed[0], kFALSE);
2220 chi2Vals[1] = FitTiltedRiemanConstraint(&cseed[0], GetZ());
7bce990c 2221 chi2Vals[2] = GetChi2Z(&cseed[0]) / TMath::Max((mlayers - 3.), 1.);
d739fd4e 2222 // Chi2 definitions in testing stage
2223 //chi2Vals[2] = GetChi2ZTest(&cseed[0]);
2224 fTrackQuality[ntracks] = CalculateTrackLikelihood(&cseed[0], &chi2Vals[0]);
2225 //AliInfo("Hyperplane fit done\n");
2226
2227 // finalize tracklets
2228 Int_t labels[12];
2229 Int_t outlab[24];
2230 Int_t nlab = 0;
2231 for (Int_t iLayer = 0; iLayer < 6; iLayer++) {
972ef65e 2232 if (!cseed[iLayer].IsOK()) continue;
d739fd4e 2233
972ef65e 2234 if (cseed[iLayer].GetLabels(0) >= 0) {
2235 labels[nlab] = cseed[iLayer].GetLabels(0);
2236 nlab++;
2237 }
d739fd4e 2238
972ef65e 2239 if (cseed[iLayer].GetLabels(1) >= 0) {
2240 labels[nlab] = cseed[iLayer].GetLabels(1);
2241 nlab++;
2242 }
d739fd4e 2243 }
2244 Freq(nlab,labels,outlab,kFALSE);
2245 Int_t label = outlab[0];
2246 Int_t frequency = outlab[1];
2247 for (Int_t iLayer = 0; iLayer < 6; iLayer++) {
972ef65e 2248 cseed[iLayer].SetFreq(frequency);
2249 cseed[iLayer].SetChi2Z(chi2[1]);
d739fd4e 2250 }
972ef65e 2251
d739fd4e 2252 if(AliTRDReconstructor::StreamLevel() >= 2){
972ef65e 2253 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2254 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2255 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2256 TLinearFitter *fitterTC = GetTiltedRiemanFitterConstraint();
2257 TLinearFitter *fitterT = GetTiltedRiemanFitter();
2258 cstreamer << "MakeSeeds2"
2259 << "EventNumber=" << eventNumber
2260 << "CandidateNumber=" << candidateNumber
2261 << "Chi2TR=" << chi2Vals[0]
2262 << "Chi2TC=" << chi2Vals[1]
7bce990c 2263 << "Nlayers=" << mlayers
972ef65e 2264 << "NUsedS=" << nUsedCl
2265 << "NUsed=" << nusedf
2266 << "Like=" << like
2267 << "S0.=" << &cseed[0]
2268 << "S1.=" << &cseed[1]
2269 << "S2.=" << &cseed[2]
2270 << "S3.=" << &cseed[3]
2271 << "S4.=" << &cseed[4]
2272 << "S5.=" << &cseed[5]
2273 << "Label=" << label
2274 << "Freq=" << frequency
2275 << "FitterT.=" << fitterT
2276 << "FitterTC.=" << fitterTC
2277 << "\n";
d739fd4e 2278 }
e4f2f73d 2279
d739fd4e 2280 ntracks++;
2281 AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2282 if(ntracks == kMaxTracksStack){
972ef65e 2283 AliWarning(Form("Number of seeds reached maximum allowed (%d) in stack.", kMaxTracksStack));
2284 for(int isl=0; isl<4; isl++) delete layer[isl];
2285 return ntracks;
e4f2f73d 2286 }
d739fd4e 2287 cseed += 6;
972ef65e 2288 }
2289 }
2290 }
2291 for(int isl=0; isl<4; isl++) delete layer[isl];
e4f2f73d 2292
972ef65e 2293 return ntracks;
e4f2f73d 2294}
2295
2296//_____________________________________________________________________________
0906e73e 2297AliTRDtrackV1* AliTRDtrackerV1::MakeTrack(AliTRDseedV1 *seeds, Double_t *params)
e4f2f73d 2298{
972ef65e 2299 //
2300 // Build a TRD track out of tracklet candidates
2301 //
2302 // Parameters :
2303 // seeds : array of tracklets
2304 // params : track parameters (see MakeSeeds() function body for a detailed description)
2305 //
2306 // Output :
2307 // The TRD track.
2308 //
2309 // Detailed description
2310 //
2311 // To be discussed with Marian !!
2312 //
2313
0c23ac49 2314 AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance();
2315 if (!calibra) AliInfo("Could not get Calibra instance\n");
2316
972ef65e 2317 Double_t alpha = AliTRDgeometry::GetAlpha();
2318 Double_t shift = AliTRDgeometry::GetAlpha()/2.0;
2319 Double_t c[15];
2320
2321 c[ 0] = 0.2;
2322 c[ 1] = 0.0; c[ 2] = 2.0;
2323 c[ 3] = 0.0; c[ 4] = 0.0; c[ 5] = 0.02;
2324 c[ 6] = 0.0; c[ 7] = 0.0; c[ 8] = 0.0; c[ 9] = 0.1;
2325 c[10] = 0.0; c[11] = 0.0; c[12] = 0.0; c[13] = 0.0; c[14] = params[5]*params[5]*0.01;
2326
2327 AliTRDtrackV1 *track = new AliTRDtrackV1(seeds, &params[1], c, params[0], params[6]*alpha+shift);
2328 track->PropagateTo(params[0]-5.0);
2329 track->ResetCovariance(1);
2330 Int_t nc = FollowBackProlongation(*track);
2331 //AliInfo(Form("N clusters for track %d", nc));
2332 if (nc < 30) {
2333 delete track;
2334 track = 0x0;
2335 } else {
3b57a3f7 2336 //track->CookdEdx();
2337 //track->CookdEdxTimBin(-1);
972ef65e 2338 track->CookLabel(.9);
0c23ac49 2339 // computes PID for track
2340 track->CookPID();
2341 // update calibration references using this track
2342 if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(track);
972ef65e 2343 }
2344
2345 return track;
e4f2f73d 2346}
2347
0906e73e 2348
e4f2f73d 2349//____________________________________________________________________
eb38ed55 2350Int_t AliTRDtrackerV1::ImproveSeedQuality(AliTRDtrackingChamber **stack, AliTRDseedV1 *cseed)
e4f2f73d 2351{
972ef65e 2352 //
2353 // Sort tracklets according to "quality" and try to "improve" the first 4 worst
2354 //
2355 // Parameters :
2356 // layers : Array of propagation layers for a stack/supermodule
2357 // cseed : Array of 6 seeding tracklets which has to be improved
2358 //
2359 // Output :
2360 // cssed : Improved seeds
2361 //
2362 // Detailed description
2363 //
2364 // Iterative procedure in which new clusters are searched for each
2365 // tracklet seed such that the seed quality (see AliTRDseed::GetQuality())
2366 // can be maximized. If some optimization is found the old seeds are replaced.
2367 //
2368 // debug level: 7
2369 //
2370
2371 // make a local working copy
2372 AliTRDtrackingChamber *chamber = 0x0;
2373 AliTRDseedV1 bseed[6];
2374 Int_t nLayers = 0;
2375 for (Int_t jLayer = 0; jLayer < 6; jLayer++) bseed[jLayer] = cseed[jLayer];
2376
2377 Float_t lastquality = 10000.0;
2378 Float_t lastchi2 = 10000.0;
2379 Float_t chi2 = 1000.0;
2380
2381 for (Int_t iter = 0; iter < 4; iter++) {
2382 Float_t sumquality = 0.0;
2383 Float_t squality[6];
2384 Int_t sortindexes[6];
2385
2386 for (Int_t jLayer = 0; jLayer < 6; jLayer++) {
2387 squality[jLayer] = bseed[jLayer].IsOK() ? bseed[jLayer].GetQuality(kTRUE) : -1.;
2388 sumquality += squality[jLayer];
2389 }
2390 if ((sumquality >= lastquality) || (chi2 > lastchi2)) break;
2391
2392 nLayers = 0;
2393 lastquality = sumquality;
2394 lastchi2 = chi2;
2395 if (iter > 0) for (Int_t jLayer = 0; jLayer < 6; jLayer++) cseed[jLayer] = bseed[jLayer];
2396
2397 TMath::Sort(6, squality, sortindexes, kFALSE);
2398 for (Int_t jLayer = 5; jLayer > 1; jLayer--) {
2399 Int_t bLayer = sortindexes[jLayer];
2400 if(!(chamber = stack[bLayer])) continue;
2401 bseed[bLayer].AttachClustersIter(chamber, squality[bLayer], kTRUE);
2402 if(bseed[bLayer].IsOK()) nLayers++;
2403 }
2404
2405 chi2 = FitTiltedRieman(bseed, kTRUE);
2406 if(AliTRDReconstructor::StreamLevel() >= 7){
2407 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2408 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2409 TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
2410 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2411 cstreamer << "ImproveSeedQuality"
d739fd4e 2412 << "EventNumber=" << eventNumber
2413 << "CandidateNumber=" << candidateNumber
2414 << "Iteration=" << iter
2415 << "S0.=" << &bseed[0]
2416 << "S1.=" << &bseed[1]
2417 << "S2.=" << &bseed[2]
2418 << "S3.=" << &bseed[3]
2419 << "S4.=" << &bseed[4]
2420 << "S5.=" << &bseed[5]
2421 << "FitterT.=" << tiltedRieman
2422 << "\n";
972ef65e 2423 }
2424 } // Loop: iter
eb38ed55 2425
972ef65e 2426 // we are sure that at least 2 tracklets are OK !
2427 return nLayers+2;
e4f2f73d 2428}
2429
eb38ed55 2430//_________________________________________________________________________
2431Double_t AliTRDtrackerV1::CalculateTrackLikelihood(AliTRDseedV1 *tracklets, Double_t *chi2){
972ef65e 2432 //
2433 // Calculates the Track Likelihood value. This parameter serves as main quality criterion for
2434 // the track selection
2435 // The likelihood value containes:
2436 // - The chi2 values from the both fitters and the chi2 values in z-direction from a linear fit
2437 // - The Sum of the Parameter |slope_ref - slope_fit|/Sigma of the tracklets
2438 // For all Parameters an exponential dependency is used
2439 //
2440 // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
2441 // - Array of chi2 values:
2442 // * Non-Constrained Tilted Riemann fit
2443 // * Vertex-Constrained Tilted Riemann fit
2444 // * z-Direction from Linear fit
2445 // Output: - The calculated track likelihood
2446 //
2447 // debug level 2
2448 //
2449
2450 Double_t sumdaf = 0, nLayers = 0;
2451 for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
2452 if(!tracklets[iLayer].IsOK()) continue;
2453 sumdaf += TMath::Abs((tracklets[iLayer].GetYfit(1) - tracklets[iLayer].GetYref(1))/ tracklets[iLayer].GetSigmaY2());
2454 nLayers++;
2455 }
2456 sumdaf /= Float_t (nLayers - 2.0);
2457
2458 Double_t likeChi2Z = TMath::Exp(-chi2[2] * 0.14); // Chi2Z
2459 Double_t likeChi2TC = TMath::Exp(-chi2[1] * 0.677); // Constrained Tilted Riemann
2460 Double_t likeChi2TR = TMath::Exp(-chi2[0] * 0.78); // Non-constrained Tilted Riemann
2461 Double_t likeAF = TMath::Exp(-sumdaf * 3.23);
2462 Double_t trackLikelihood = likeChi2Z * likeChi2TR * likeAF;
2463
2464 if(AliTRDReconstructor::StreamLevel() >= 2){
2465 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2466 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2467 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2468 cstreamer << "CalculateTrackLikelihood0"
2469 << "EventNumber=" << eventNumber
2470 << "CandidateNumber=" << candidateNumber
2471 << "LikeChi2Z=" << likeChi2Z
2472 << "LikeChi2TR=" << likeChi2TR
2473 << "LikeChi2TC=" << likeChi2TC
2474 << "LikeAF=" << likeAF
2475 << "TrackLikelihood=" << trackLikelihood
2476 << "\n";
2477 }
2478
2479 return trackLikelihood;
e4f2f73d 2480}
2481
2482//____________________________________________________________________
eb38ed55 2483Double_t AliTRDtrackerV1::CookLikelihood(AliTRDseedV1 *cseed, Int_t planes[4]
972ef65e 2484 , Double_t *chi2)
e4f2f73d 2485{
972ef65e 2486 //
2487 // Calculate the probability of this track candidate.
2488 //
2489 // Parameters :
2490 // cseeds : array of candidate tracklets
2491 // planes : array of seeding planes (see seeding configuration)
2492 // chi2 : chi2 values (on the Z and Y direction) from the rieman fit of the track.
2493 //
2494 // Output :
2495 // likelihood value
2496 //
2497 // Detailed description
2498 //
2499 // The track quality is estimated based on the following 4 criteria:
2500 // 1. precision of the rieman fit on the Y direction (likea)
2501 // 2. chi2 on the Y direction (likechi2y)
2502 // 3. chi2 on the Z direction (likechi2z)
2503 // 4. number of attached clusters compared to a reference value
2504 // (see AliTRDrecoParam::fkFindable) (likeN)
2505 //
2506 // The distributions for each type of probabilities are given below as of
2507 // (date). They have to be checked to assure consistency of estimation.
2508 //
2509
2510 // ratio of the total number of clusters/track which are expected to be found by the tracker.
2511 Float_t fgFindable = AliTRDReconstructor::RecoParam()->GetFindableClusters();
2512
2513
2514 Int_t nclusters = 0;
2515 Double_t sumda = 0.;
2516 for(UChar_t ilayer = 0; ilayer < 4; ilayer++){
2517 Int_t jlayer = planes[ilayer];
2518 nclusters += cseed[jlayer].GetN2();
2519 sumda += TMath::Abs(cseed[jlayer].GetYfitR(1) - cseed[jlayer].GetYref(1));
2520 }
2521 Double_t likea = TMath::Exp(-sumda*10.6);
2522 Double_t likechi2y = 0.0000000001;
2523 if (chi2[0] < 0.5) likechi2y += TMath::Exp(-TMath::Sqrt(chi2[0]) * 7.73);
2524 Double_t likechi2z = TMath::Exp(-chi2[1] * 0.088) / TMath::Exp(-chi2[1] * 0.019);
2525 Int_t enc = Int_t(fgFindable*4.*fgNTimeBins); // Expected Number Of Clusters, normally 72
2526 Double_t likeN = TMath::Exp(-(enc - nclusters) * 0.19);
2527
2528 Double_t like = likea * likechi2y * likechi2z * likeN;
2529
2530 // AliInfo(Form("sumda(%f) chi2[0](%f) chi2[1](%f) likea(%f) likechi2y(%f) likechi2z(%f) nclusters(%d) likeN(%f)", sumda, chi2[0], chi2[1], likea, likechi2y, likechi2z, nclusters, likeN));
2531 if(AliTRDReconstructor::StreamLevel() >= 2){
2532 Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2533 Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2534 // The Debug Stream contains the seed
2535 TTreeSRedirector &cstreamer = *fgDebugStreamer;
2536 cstreamer << "CookLikelihood"
2537 << "EventNumber=" << eventNumber
2538 << "CandidateNumber=" << candidateNumber
2539 << "tracklet0.=" << &cseed[0]
2540 << "tracklet1.=" << &cseed[1]
2541 << "tracklet2.=" << &cseed[2]
2542 << "tracklet3.=" << &cseed[3]
2543 << "tracklet4.=" << &cseed[4]
2544 << "tracklet5.=" << &cseed[5]
2545 << "sumda=" << sumda
2546 << "chi0=" << chi2[0]
2547 << "chi1=" << chi2[1]
2548 << "likea=" << likea
2549 << "likechi2y=" << likechi2y
2550 << "likechi2z=" << likechi2z
2551 << "nclusters=" << nclusters
2552 << "likeN=" << likeN
2553 << "like=" << like
2554 << "\n";
2555 }
2556
2557 return like;
e4f2f73d 2558}
2559
eb38ed55 2560
e4f2f73d 2561
2562//____________________________________________________________________
0906e73e 2563void AliTRDtrackerV1::GetSeedingConfig(Int_t iconfig, Int_t planes[4])
e4f2f73d 2564{
972ef65e 2565 //
2566 // Map seeding configurations to detector planes.
2567 //
2568 // Parameters :
2569 // iconfig : configuration index
2570 // planes : member planes of this configuration. On input empty.
2571 //
2572 // Output :
2573 // planes : contains the planes which are defining the configuration
2574 //
2575 // Detailed description
2576 //
2577 // Here is the list of seeding planes configurations together with
2578 // their topological classification:
2579 //
2580 // 0 - 5432 TQ 0
2581 // 1 - 4321 TQ 0
2582 // 2 - 3210 TQ 0
2583 // 3 - 5321 TQ 1
2584 // 4 - 4210 TQ 1
2585 // 5 - 5431 TQ 1
2586 // 6 - 4320 TQ 1
2587 // 7 - 5430 TQ 2
2588 // 8 - 5210 TQ 2
2589 // 9 - 5421 TQ 3
2590 // 10 - 4310 TQ 3
2591 // 11 - 5410 TQ 4
2592 // 12 - 5420 TQ 5
2593 // 13 - 5320 TQ 5
2594 // 14 - 5310 TQ 5
2595 //
2596 // The topologic quality is modeled as follows:
2597 // 1. The general model is define by the equation:
2598 // p(conf) = exp(-conf/2)
2599 // 2. According to the topologic classification, configurations from the same
2600 // class are assigned the agerage value over the model values.
2601 // 3. Quality values are normalized.
2602 //
2603 // The topologic quality distribution as function of configuration is given below:
2604 //Begin_Html
2605 // <img src="gif/topologicQA.gif">
2606 //End_Html
2607 //
2608
2609 switch(iconfig){
2610 case 0: // 5432 TQ 0
2611 planes[0] = 2;
2612 planes[1] = 3;
2613 planes[2] = 4;
2614 planes[3] = 5;
2615 break;
2616 case 1: // 4321 TQ 0
2617 planes[0] = 1;
2618 planes[1] = 2;
2619 planes[2] = 3;
2620 planes[3] = 4;
2621 break;
2622 case 2: // 3210 TQ 0
2623 planes[0] = 0;
2624 planes[1] = 1;
2625 planes[2] = 2;
2626 planes[3] = 3;
2627 break;
2628 case 3: // 5321 TQ 1
2629 planes[0] = 1;
2630 planes[1] = 2;
2631 planes[2] = 3;
2632 planes[3] = 5;
2633 break;
2634 case 4: // 4210 TQ 1
2635 planes[0] = 0;
2636 planes[1] = 1;
2637 planes[2] = 2;
2638 planes[3] = 4;
2639 break;
2640 case 5: // 5431 TQ 1
2641 planes[0] = 1;
2642 planes[1] = 3;
2643 planes[2] = 4;
2644 planes[3] = 5;
2645 break;
2646 case 6: // 4320 TQ 1
2647 planes[0] = 0;
2648 planes[1] = 2;
2649 planes[2] = 3;
2650 planes[3] = 4;
2651 break;
2652 case 7: // 5430 TQ 2
2653 planes[0] = 0;
2654 planes[1] = 3;
2655 planes[2] = 4;
2656 planes[3] = 5;
2657 break;
2658 case 8: // 5210 TQ 2
2659 planes[0] = 0;
2660 planes[1] = 1;
2661 planes[2] = 2;
2662 planes[3] = 5;
2663 break;
2664 case 9: // 5421 TQ 3
2665 planes[0] = 1;
2666 planes[1] = 2;
2667 planes[2] = 4;
2668 planes[3] = 5;
2669 break;
2670 case 10: // 4310 TQ 3
2671 planes[0] = 0;
2672 planes[1] = 1;
2673 planes[2] = 3;
2674 planes[3] = 4;
2675 break;
2676 case 11: // 5410 TQ 4
2677 planes[0] = 0;
2678 planes[1] = 1;
2679 planes[2] = 4;
2680 planes[3] = 5;
2681 break;
2682 case 12: // 5420 TQ 5
2683 planes[0] = 0;
2684 planes[1] = 2;
2685 planes[2] = 4;
2686 planes[3] = 5;
2687 break;
2688 case 13: // 5320 TQ 5
2689 planes[0] = 0;
2690 planes[1] = 2;
2691 planes[2] = 3;
2692 planes[3] = 5;
2693 break;
2694 case 14: // 5310 TQ 5
2695 planes[0] = 0;
2696 planes[1] = 1;
2697 planes[2] = 3;
2698 planes[3] = 5;
2699 break;
2700 }
e4f2f73d 2701}
2702
2703//____________________________________________________________________
0906e73e 2704void AliTRDtrackerV1::GetExtrapolationConfig(Int_t iconfig, Int_t planes[2])
e4f2f73d 2705{
972ef65e 2706 //
2707 // Returns the extrapolation planes for a seeding configuration.
2708 //
2709 // Parameters :
2710 // iconfig : configuration index
2711 // planes : planes which are not in this configuration. On input empty.
2712 //
2713 // Output :
2714 // planes : contains the planes which are not in the configuration
2715 //
2716 // Detailed description
2717 //
2718
2719 switch(iconfig){
2720 case 0: // 5432 TQ 0
2721 planes[0] = 1;
2722 planes[1] = 0;
2723 break;
2724 case 1: // 4321 TQ 0
2725 planes[0] = 5;
2726 planes[1] = 0;
2727 break;
2728 case 2: // 3210 TQ 0
2729 planes[0] = 4;
2730 planes[1] = 5;
2731 break;
2732 case 3: // 5321 TQ 1
2733 planes[0] = 4;
2734 planes[1] = 0;
2735 break;
2736 case 4: // 4210 TQ 1
2737 planes[0] = 5;
2738 planes[1] = 3;
2739 break;
2740 case 5: // 5431 TQ 1
2741 planes[0] = 2;
2742 planes[1] = 0;
2743 break;
2744 case 6: // 4320 TQ 1
2745 planes[0] = 5;
2746 planes[1] = 1;
2747 break;
2748 case 7: // 5430 TQ 2
2749 planes[0] = 2;
2750 planes[1] = 1;
2751 break;
2752 case 8: // 5210 TQ 2
2753 planes[0] = 4;
2754 planes[1] = 3;
2755 break;
2756 case 9: // 5421 TQ 3
2757 planes[0] = 3;
2758 planes[1] = 0;
2759 break;
2760 case 10: // 4310 TQ 3
2761 planes[0] = 5;
2762 planes[1] = 2;
2763 break;
2764 case 11: // 5410 TQ 4
2765 planes[0] = 3;
2766 planes[1] = 2;
2767 break;
2768 case 12: // 5420 TQ 5
2769 planes[0] = 3;
2770 planes[1] = 1;
2771 break;
2772 case 13: // 5320 TQ 5
2773 planes[0] = 4;
2774 planes[1] = 1;
2775 break;
2776 case 14: // 5310 TQ 5
2777 planes[0] = 4;
2778 planes[1] = 2;
2779 break;
2780 }
e4f2f73d 2781}
eb38ed55 2782
2783//____________________________________________________________________
2784AliCluster* AliTRDtrackerV1::GetCluster(Int_t idx) const
2785{
972ef65e 2786 Int_t ncls = fClusters->GetEntriesFast();
2787 return idx >= 0 || idx < ncls ? (AliCluster*)fClusters->UncheckedAt(idx) : 0x0;
eb38ed55 2788}
2789
3b57a3f7 2790//____________________________________________________________________
2791AliTRDseedV1* AliTRDtrackerV1::GetTracklet(Int_t idx) const
2792{
2793 Int_t ntrklt = fTracklets->GetEntriesFast();
2794 return idx >= 0 || idx < ntrklt ? (AliTRDseedV1*)fTracklets->UncheckedAt(idx) : 0x0;
2795}
2796
2797//____________________________________________________________________
2798AliKalmanTrack* AliTRDtrackerV1::GetTrack(Int_t idx) const
2799{
2800 Int_t ntrk = fTracks->GetEntriesFast();
2801 return idx >= 0 || idx < ntrk ? (AliKalmanTrack*)fTracks->UncheckedAt(idx) : 0x0;
2802}
2803
bb56afff 2804//____________________________________________________________________
2805Float_t AliTRDtrackerV1::CalculateReferenceX(AliTRDseedV1 *tracklets){
972ef65e 2806 //
2807 // Calculates the reference x-position for the tilted Rieman fit defined as middle
2808 // of the stack (middle between layers 2 and 3). For the calculation all the tracklets
2809 // are taken into account
2810 //
2811 // Parameters: - Array of tracklets(AliTRDseedV1)
2812 //
2813 // Output: - The reference x-position(Float_t)
2814 //
2815 Int_t nDistances = 0;
2816 Float_t meanDistance = 0.;
2817 Int_t startIndex = 5;
2818 for(Int_t il =5; il > 0; il--){
2819 if(tracklets[il].IsOK() && tracklets[il -1].IsOK()){
2820 Float_t xdiff = tracklets[il].GetX0() - tracklets[il -1].GetX0();
2821 meanDistance += xdiff;
2822 nDistances++;
2823 }
2824 if(tracklets[il].IsOK()) startIndex = il;
2825 }
2826 if(tracklets[0].IsOK()) startIndex = 0;
2827 if(!nDistances){
2828 // We should normally never get here
2829 Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2);
2830 Int_t iok = 0, idiff = 0;
2831 // This attempt is worse and should be avoided:
2832 // check for two chambers which are OK and repeat this without taking the mean value
2833 // Strategy avoids a division by 0;
2834 for(Int_t il = 5; il >= 0; il--){
2835 if(tracklets[il].IsOK()){
d739fd4e 2836 xpos[iok] = tracklets[il].GetX0();
2837 iok++;
2838 startIndex = il;
972ef65e 2839 }
2840 if(iok) idiff++; // to get the right difference;
2841 if(iok > 1) break;
2842 }
2843 if(iok > 1){
2844 meanDistance = (xpos[0] - xpos[1])/idiff;
2845 }
2846 else{
2847 // we have do not even have 2 layers which are OK? The we do not need to fit at all
2848 return 331.;
2849 }
2850 }
2851 else{
2852 meanDistance /= nDistances;
2853 }
2854 return tracklets[startIndex].GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
bb56afff 2855}
eb38ed55 2856
2857//_____________________________________________________________________________
2858Int_t AliTRDtrackerV1::Freq(Int_t n, const Int_t *inlist
972ef65e 2859 , Int_t *outlist, Bool_t down)
eb38ed55 2860{
972ef65e 2861 //
2862 // Sort eleements according occurancy
2863 // The size of output array has is 2*n
2864 //
2865
2866 if (n <= 0) {
2867 return 0;
2868 }
2869
2870 Int_t *sindexS = new Int_t[n]; // Temporary array for sorting
2871 Int_t *sindexF = new Int_t[2*n];
2872 for (Int_t i = 0; i < n; i++) {
2873 sindexF[i] = 0;
2874 }
2875
2876 TMath::Sort(n,inlist,sindexS,down);
2877
2878 Int_t last = inlist[sindexS[0]];
2879 Int_t val = last;
2880 sindexF[0] = 1;
2881 sindexF[0+n] = last;
2882 Int_t countPos = 0;
2883
2884 // Find frequency
2885 for (Int_t i = 1; i < n; i++) {
2886 val = inlist[sindexS[i]];
2887 if (last == val) {
2888 sindexF[countPos]++;
2889 }
2890 else {
2891 countPos++;
2892 sindexF[countPos+n] = val;
2893 sindexF[countPos]++;
2894 last = val;
2895 }
2896 }
2897 if (last == val) {
2898 countPos++;
2899 }
2900
2901 // Sort according frequency
2902 TMath::Sort(countPos,sindexF,sindexS,kTRUE);
2903
2904 for (Int_t i = 0; i < countPos; i++) {
2905 outlist[2*i ] = sindexF[sindexS[i]+n];
2906 outlist[2*i+1] = sindexF[sindexS[i]];
2907 }
2908
2909 delete [] sindexS;
2910 delete [] sindexF;
2911
2912 return countPos;
eb38ed55 2913
2914}
bb56afff 2915
2916//_____________________________________________________________________________
2917Float_t AliTRDtrackerV1::GetChi2Y(AliTRDseedV1 *tracklets) const
2918{
972ef65e 2919 // Chi2 definition on y-direction
2920
2921 Float_t chi2 = 0;
2922 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
2923 if(!tracklets[ipl].IsOK()) continue;
2924 Double_t distLayer = tracklets[ipl].GetYfit(0) - tracklets[ipl].GetYref(0);
2925 chi2 += distLayer * distLayer;
2926 }
2927 return chi2;
bb56afff 2928}
2929
2930//_____________________________________________________________________________
2931Float_t AliTRDtrackerV1::GetChi2Z(AliTRDseedV1 *tracklets) const
2932{
972ef65e 2933 // Chi2 definition on z-direction
2934
2935 Float_t chi2 = 0;
2936 for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
2937 if(!tracklets[ipl].IsOK()) continue;
2938 Double_t distLayer = tracklets[ipl].GetMeanz() - tracklets[ipl].GetZref(0);
2939 chi2 += distLayer * distLayer;
2940 }
2941 return chi2;
bb56afff 2942}
8acca6a3 2943
2944///////////////////////////////////////////////////////
2945// //
2946// Resources of class AliTRDLeastSquare //
2947// //
2948///////////////////////////////////////////////////////
2949
2950//_____________________________________________________________________________
2951AliTRDtrackerV1::AliTRDLeastSquare::AliTRDLeastSquare(){
972ef65e 2952 //
2953 // Constructor of the nested class AliTRDtrackFitterLeastSquare
2954 //
2955 memset(fParams, 0, sizeof(Double_t) * 2);
2956 memset(fSums, 0, sizeof(Double_t) * 5);
2957 memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3);
8acca6a3 2958
2959}
2960
2961//_____________________________________________________________________________
2962void AliTRDtrackerV1::AliTRDLeastSquare::AddPoint(Double_t *x, Double_t y, Double_t sigmaY){
972ef65e 2963 //
2964 // Adding Point to the fitter
2965 //
2966 Double_t weight = 1/(sigmaY * sigmaY);
2967 Double_t &xpt = *x;
2968 // printf("Adding point x = %f, y = %f, sigma = %f\n", xpt, y, sigmaY);
2969 fSums[0] += weight;
2970 fSums[1] += weight * xpt;
2971 fSums[2] += weight * y;
2972 fSums[3] += weight * xpt * y;
2973 fSums[4] += weight * xpt * xpt;
2974 fSums[5] += weight * y * y;
8acca6a3 2975}
2976
2977//_____________________________________________________________________________
2978void AliTRDtrackerV1::AliTRDLeastSquare::RemovePoint(Double_t *x, Double_t y, Double_t sigmaY){
972ef65e 2979 //
2980 // Remove Point from the sample
2981 //
2982 Double_t weight = 1/(sigmaY * sigmaY);
2983 Double_t &xpt = *x;
2984 fSums[0] -= weight;
2985 fSums[1] -= weight * xpt;
2986 fSums[2] -= weight * y;
2987 fSums[3] -= weight * xpt * y;
2988 fSums[4] -= weight * xpt * xpt;
2989 fSums[5] -= weight * y * y;
8acca6a3 2990}
2991
2992//_____________________________________________________________________________
2993void AliTRDtrackerV1::AliTRDLeastSquare::Eval(){
972ef65e 2994 //
2995 // Evaluation of the fit:
2996 // Calculation of the parameters
2997 // Calculation of the covariance matrix
2998 //
2999
3000 Double_t denominator = fSums[0] * fSums[4] - fSums[1] *fSums[1];
3001 // for(Int_t isum = 0; isum < 5; isum++)
3002 // printf("fSums[%d] = %f\n", isum, fSums[isum]);
3003 // printf("denominator = %f\n", denominator);
3004 fParams[0] = (fSums[2] * fSums[4] - fSums[1] * fSums[3])/ denominator;
3005 fParams[1] = (fSums[0] * fSums[3] - fSums[1] * fSums[2]) / denominator;
3006 // printf("fParams[0] = %f, fParams[1] = %f\n", fParams[0], fParams[1]);
3007
3008 // Covariance matrix
3009 fCovarianceMatrix[0] = fSums[4] - fSums[1] * fSums[1] / fSums[0];
3010 fCovarianceMatrix[1] = fSums[5] - fSums[2] * fSums[2] / fSums[0];
3011 fCovarianceMatrix[2] = fSums[3] - fSums[1] * fSums[2] / fSums[0];
8acca6a3 3012}
3013
46b6abd7 3014//_____________________________________________________________________________
3015Double_t AliTRDtrackerV1::AliTRDLeastSquare::GetFunctionValue(Double_t *xpos) const {
972ef65e 3016 //
3017 // Returns the Function value of the fitted function at a given x-position
3018 //
3019 return fParams[0] + fParams[1] * (*xpos);
46b6abd7 3020}
3021
3022//_____________________________________________________________________________
3023void AliTRDtrackerV1::AliTRDLeastSquare::GetCovarianceMatrix(Double_t *storage) const {
972ef65e 3024 //
3025 // Copies the values of the covariance matrix into the storage
3026 //
3027 memcpy(storage, fCovarianceMatrix, sizeof(Double_t) * 3);
46b6abd7 3028}
3029