]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDtrackingChamber.cxx
Enlarging the recoParam functionality and populating the track list (needed by HLT)
[u/mrichter/AliRoot.git] / TRD / AliTRDtrackingChamber.cxx
CommitLineData
d20df6fc 1/**************************************************************************\r
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *\r
3 * *\r
4 * Author: The ALICE Off-line Project. *\r
5 * Contributors are mentioned in the code where appropriate. *\r
6 * *\r
7 * Permission to use, copy, modify and distribute this software and its *\r
8 * documentation strictly for non-commercial purposes is hereby granted *\r
9 * without fee, provided that the above copyright notice appears in all *\r
10 * copies and that both the copyright notice and this permission notice *\r
11 * appear in the supporting documentation. The authors make no claims *\r
12 * about the suitability of this software for any purpose. It is *\r
13 * provided "as is" without express or implied warranty. *\r
14 **************************************************************************/\r
15\r
16/* $Id: AliTRDtrackingDebug.cxx 23810 2008-02-08 09:00:27Z hristov $ */\r
17\r
18////////////////////////////////////////////////////////////////////////////\r
19// //\r
20// Tracking in one chamber //\r
21// //\r
22// Authors: //\r
23// Alex Bercuci <A.Bercuci@gsi.de> //\r
24// Markus Fasel <M.Fasel@gsi.de> //\r
25// //\r
26////////////////////////////////////////////////////////////////////////////\r
27\r
28#include "AliTRDtrackingChamber.h"\r
29\r
30#include "TMath.h"\r
31#include "TMatrixTBase.h"\r
32#include <TTreeStream.h>\r
33\r
34#include "AliTRDReconstructor.h"\r
35#include "AliTRDrecoParam.h"\r
36#include "AliTRDtrackerV1.h"\r
37#include "AliTRDgeometry.h"\r
38#include "AliTRDpadPlane.h"\r
39#include "AliTRDcalibDB.h"\r
40\r
41ClassImp(AliTRDtrackingChamber)\r
42\r
43//_______________________________________________________\r
44AliTRDtrackingChamber::AliTRDtrackingChamber(Int_t det) :\r
45 fDetector(det)\r
46 ,fX0(0.)\r
47{} \r
48\r
49//_______________________________________________________\r
50void AliTRDtrackingChamber::Clear(const Option_t *opt)\r
51{\r
52 for(Int_t itb=0; itb<kNTimeBins; itb++) fTB[itb].Clear(opt);\r
53}\r
54\r
55//_______________________________________________________\r
56void AliTRDtrackingChamber::InsertCluster(AliTRDcluster *c, Int_t index)\r
57{\r
58 fTB[c->GetLocalTimeBin()].InsertCluster(c, index);\r
59}\r
60\r
61//_______________________________________________________\r
62Bool_t AliTRDtrackingChamber::Build(AliTRDgeometry *geo)\r
63{\r
64// Init chamber and all time bins (AliTRDchamberTimeBin)\r
65// Calculates radial position of the chamber based on \r
66// radial positions of the time bins (calibration/alignment aware)\r
67//\r
68 Int_t stack = geo->GetChamber(fDetector);\r
69 Int_t plane = geo->GetPlane(fDetector);\r
70 AliTRDpadPlane *pp = geo->GetPadPlane(plane, stack);\r
71 Double_t zl = pp->GetRow0ROC() - pp->GetRowEndROC();\r
72 Double_t z0 = geo->GetRow0(plane, stack, 0) - zl;\r
73 Int_t nrows = pp->GetNrows();\r
74 \r
75 Int_t index[50], jtb = 0;\r
76 for(Int_t itb=0; itb<kNTimeBins; itb++){ \r
77 if(!fTB[itb]) continue;\r
78 fTB[itb].SetRange(z0, zl);\r
79 fTB[itb].SetNRows(nrows);\r
80 fTB[itb].BuildIndices();\r
81 index[jtb++] = itb;\r
82 } \r
83 if(jtb<2) return kFALSE;\r
84 \r
85 \r
86 // ESTIMATE POSITION OF PAD PLANE FOR THIS CHAMBER\r
87 Double_t x0 = fTB[index[0]].GetX();\r
88 Double_t x1 = fTB[index[1]].GetX();\r
89 Double_t dx = (x0 - x1)/(index[1] - index[0]); \r
90 fX0 = x0 + dx*(index[0] - (Int_t)AliTRDcalibDB::Instance()->GetT0Average(fDetector)); \r
91 return kTRUE;\r
92}\r
93 \r
94//_______________________________________________________ \r
95Int_t AliTRDtrackingChamber::GetNClusters() const\r
96{\r
97// Returns number of clusters in chamber\r
98//\r
99 Int_t n = 0;\r
100 for(Int_t itb=0; itb<kNTimeBins; itb++){ \r
101 n += Int_t(fTB[itb]);\r
102 }\r
103 return n; \r
104} \r
105\r
106//_______________________________________________________\r
107Double_t AliTRDtrackingChamber::GetQuality()\r
108{\r
109 //\r
110 // Calculate chamber quality for seeding.\r
111 // \r
112 //\r
113 // Parameters :\r
114 // layers : Array of propagation layers for this plane.\r
115 //\r
116 // Output :\r
117 // plane quality factor for seeding\r
118 // \r
119 // Detailed description\r
120 //\r
121 // The quality of the plane for seeding is higher if:\r
122 // 1. the average timebin population is closer to an integer number\r
123 // 2. the distribution of clusters/timebin is closer to a uniform distribution.\r
124 // - the slope of the first derivative of a parabolic fit is small or\r
125 // - the slope of a linear fit is small\r
126 //\r
127\r
128 Int_t ncl = 0;\r
129 Int_t nused = 0;\r
130 Int_t nClLayer;\r
131 for(int itb=0; itb<kNTimeBins; itb++){\r
132 if(!(nClLayer = fTB[itb].GetNClusters())) continue;\r
133 ncl += nClLayer;\r
134 for(Int_t incl = 0; incl < nClLayer; incl++){\r
135 if((fTB[itb].GetCluster(incl))->IsUsed()) nused++;\r
136 }\r
137 }\r
138 \r
139 // calculate the deviation of the mean number of clusters from the\r
140 // closest integer values\r
141 Float_t nclMed = float(ncl-nused)/AliTRDtrackerV1::GetNTimeBins();\r
142 Int_t ncli = Int_t(nclMed);\r
143 Float_t nclDev = TMath::Abs(nclMed - TMath::Max(ncli, 1));\r
144 nclDev -= (nclDev>.5) && ncli ? 1. : 0.;\r
145 return TMath::Exp(-5.*TMath::Abs(nclDev));\r
146\r
147// // get slope of the derivative\r
148// if(!fitter.Eval()) return quality;\r
149// fitter.PrintResults(3);\r
150// Double_t a = fitter.GetParameter(1);\r
151// \r
152// printf("ncl_dev(%f) a(%f)\n", ncl_dev, a);\r
153// return quality*TMath::Exp(-a);\r
154\r
155}\r
156\r
157\r
158//_______________________________________________________\r
159AliTRDchamberTimeBin *AliTRDtrackingChamber::GetSeedingLayer(AliTRDgeometry *geo)\r
160{\r
161 //\r
162 // Creates a seeding layer\r
163 //\r
164 \r
165 // constants\r
166 const Int_t kMaxRows = 16;\r
167 const Int_t kMaxCols = 144;\r
168 const Int_t kMaxPads = 2304;\r
169 \r
170 // Get the geometrical data of the chamber\r
171 Int_t plane = geo->GetPlane(fDetector);\r
172 Int_t stack = geo->GetChamber(fDetector);\r
173 Int_t sector= geo->GetSector(fDetector);\r
174 AliTRDpadPlane *pp = geo->GetPadPlane(plane, stack);\r
175 Int_t nCols = pp->GetNcols();\r
176 Float_t ymin = TMath::Min(pp->GetCol0(), pp->GetColEnd());\r
177 Float_t ymax = TMath::Max(pp->GetCol0(), pp->GetColEnd());\r
178 Float_t zmin = TMath::Min(pp->GetRow0(), pp->GetRowEnd());\r
179 Float_t zmax = TMath::Max(pp->GetRow0(), pp->GetRowEnd());\r
180 Float_t z0 = -1., zl = -1.;\r
181 Int_t nRows = pp->GetNrows();\r
182 Float_t binlength = (ymax - ymin)/nCols; \r
183 //AliInfo(Form("ymin(%f) ymax(%f) zmin(%f) zmax(%f) nRows(%d) binlength(%f)", ymin, ymax, zmin, zmax, nRows, binlength));\r
184 \r
185 // Fill the histogram\r
186 Int_t nClusters; \r
187 Int_t *histogram[kMaxRows]; // 2D-Histogram\r
188 Int_t hvals[kMaxPads]; memset(hvals, 0, sizeof(Int_t)*kMaxPads); \r
189 Float_t *sigmas[kMaxRows];\r
190 Float_t svals[kMaxPads]; memset(svals, 0, sizeof(Float_t)*kMaxPads); \r
191 AliTRDcluster *c = 0x0;\r
192 for(Int_t irs = 0; irs < kMaxRows; irs++){\r
193 histogram[irs] = &hvals[irs*kMaxCols];\r
194 sigmas[irs] = &svals[irs*kMaxCols];\r
195 }\r
196 for(Int_t iTime = 0; iTime < kNTimeBins; iTime++){\r
197 if(!(nClusters = fTB[iTime].GetNClusters())) continue;\r
198 z0 = fTB[iTime].GetZ0();\r
199 zl = fTB[iTime].GetDZ0();\r
200 for(Int_t incl = 0; incl < nClusters; incl++){\r
201 c = fTB[iTime].GetCluster(incl); \r
202 histogram[c->GetPadRow()][c->GetPadCol()]++;\r
203 sigmas[c->GetPadRow()][c->GetPadCol()] += c->GetSigmaZ2();\r
204 }\r
205 }\r
206 \r
207// Now I have everything in the histogram, do the selection\r
208 //Int_t nPads = nCols * nRows;\r
209 // This is what we are interested in: The center of gravity of the best candidates\r
210 Float_t cogyvals[kMaxPads]; memset(cogyvals, 0, sizeof(Float_t)*kMaxPads);\r
211 Float_t cogzvals[kMaxPads]; memset(cogzvals, 0, sizeof(Float_t)*kMaxPads);\r
212 Float_t *cogy[kMaxRows];\r
213 Float_t *cogz[kMaxRows];\r
214 \r
215 // Lookup-Table storing coordinates according to the bins\r
216 Float_t yLengths[kMaxCols];\r
217 Float_t zLengths[kMaxRows];\r
218 for(Int_t icnt = 0; icnt < nCols; icnt++){\r
219 yLengths[icnt] = pp->GetColPos(nCols - 1 - icnt) + binlength/2;\r
220 }\r
221 for(Int_t icnt = 0; icnt < nRows; icnt++){\r
222 zLengths[icnt] = pp->GetRowPos(icnt) - pp->GetRowSize(icnt)/2;\r
223 }\r
224\r
225 // A bitfield is used to mask the pads as usable\r
226 Short_t mask[kMaxCols]; memset(mask, 0 ,sizeof(Short_t) * kMaxCols);//bool mvals[kMaxPads];\r
227 for(UChar_t icount = 0; icount < nRows; icount++){\r
228 cogy[icount] = &cogyvals[icount*kMaxCols];\r
229 cogz[icount] = &cogzvals[icount*kMaxCols];\r
230 }\r
231 // In this array the array position of the best candidates will be stored\r
232 Int_t cand[AliTRDtrackerV1::kMaxTracksStack];\r
233 Float_t sigcands[AliTRDtrackerV1::kMaxTracksStack];\r
234 \r
235 // helper variables\r
236 Int_t indices[kMaxPads]; memset(indices, -1, sizeof(Int_t)*kMaxPads);\r
237 Int_t nCandidates = 0;\r
238 Float_t norm, cogv;\r
239 // histogram filled -> Select best bins\r
240 Int_t nPads = nCols * nRows;\r
241 TMath::Sort(nPads, hvals, indices); // bins storing a 0 should not matter\r
242 // Set Threshold\r
243 Int_t maximum = hvals[indices[0]]; // best\r
244 Int_t threshold = Int_t(maximum * AliTRDReconstructor::RecoParam()->GetFindableClusters());\r
245 Int_t col, row, lower, lower1, upper, upper1;\r
246 for(Int_t ib = 0; ib < nPads; ib++){\r
247 if(nCandidates >= AliTRDtrackerV1::kMaxTracksStack){\r
248 printf("Number of seed candidates %d exceeded maximum allowed per stack %d", nCandidates, AliTRDtrackerV1::kMaxTracksStack);\r
249 break;\r
250 }\r
251 // Positions\r
252 row = indices[ib]/nCols;\r
253 col = indices[ib]%nCols;\r
254 // here will be the threshold condition:\r
255 if((mask[col] & (1 << row)) != 0) continue; // Pad is masked: continue\r
256 if(histogram[row][col] < TMath::Max(threshold, 1)){ // of course at least one cluster is needed\r
257 break; // number of clusters below threshold: break;\r
258 } \r
259 // passing: Mark the neighbors\r
260 lower = TMath::Max(col - 1, 0); upper = TMath::Min(col + 2, nCols);\r
261 lower1 = TMath::Max(row - 1, 0); upper1 = TMath::Min(row + 2, nCols);\r
262 for(Int_t ic = lower; ic < upper; ++ic)\r
263 for(Int_t ir = lower1; ir < upper1; ++ir){\r
264 if(ic == col && ir == row) continue;\r
265 mask[ic] |= (1 << ir);\r
266 }\r
267 // Storing the position in an array\r
268 // testing for neigboring\r
269 cogv = 0;\r
270 norm = 0;\r
271 lower = TMath::Max(col - 1, 0);\r
272 upper = TMath::Min(col + 2, nCols);\r
273 for(Int_t inb = lower; inb < upper; ++inb){\r
274 cogv += yLengths[inb] * histogram[row][inb];\r
275 norm += histogram[row][inb];\r
276 }\r
277 cogy[row][col] = cogv / norm;\r
278 cogv = 0; norm = 0;\r
279 lower = TMath::Max(row - 1, 0);\r
280 upper = TMath::Min(row + 2, nRows);\r
281 for(Int_t inb = lower; inb < upper; ++inb){\r
282 cogv += zLengths[inb] * histogram[inb][col];\r
283 norm += histogram[inb][col];\r
284 }\r
285 cogz[row][col] = Float_t(cogv) / norm;\r
286 // passed the filter\r
287 cand[nCandidates] = row*nCols + col; // store the position of a passig candidate into an Array\r
288 sigcands[nCandidates] = sigmas[row][col] / histogram[row][col]; // never be a floating point exeption\r
289 // Analysis output\r
290 nCandidates++;\r
291 }\r
292 if(!nCandidates) return 0x0;\r
293 \r
294 Float_t pos[3], sig[2];\r
295 Short_t signal[7]; memset(&signal[0], 0, 7*sizeof(Short_t));\r
296 AliTRDchamberTimeBin *fakeLayer = new AliTRDchamberTimeBin(plane, stack, sector, z0, zl);\r
297 AliTRDcluster *cluster = 0x0;\r
298 if(nCandidates){\r
299 UInt_t fakeIndex = 0;\r
300 for(Int_t ican = 0; ican < nCandidates; ican++){\r
301 row = cand[ican] / nCols;\r
302 col = cand[ican] % nCols;\r
303 //temporary\r
304 Int_t n = 0; Double_t x = 0., y = 0., z = 0.;\r
305 for(int itb=0; itb<kNTimeBins; itb++){\r
306 if(!(nClusters = fTB[itb].GetNClusters())) continue;\r
307 for(Int_t incl = 0; incl < nClusters; incl++){\r
308 c = fTB[itb].GetCluster(incl); \r
309 if(c->GetPadRow() != row) continue;\r
310 if(TMath::Abs(c->GetPadCol() - col) > 2) continue;\r
311 x += c->GetX();\r
312 y += c->GetY();\r
313 z += c->GetZ();\r
314 n++;\r
315 }\r
316 }\r
317 pos[0] = x/n;\r
318 pos[1] = y/n;\r
319 pos[2] = z/n;\r
320 sig[0] = .02;\r
321 sig[1] = sigcands[ican];\r
322 cluster = new AliTRDcluster(fDetector, 0., pos, sig, 0x0, 3, signal, col, row, 0, 0, 0., 0);\r
323 fakeLayer->InsertCluster(cluster, fakeIndex++);\r
324 }\r
325 }\r
326 fakeLayer->SetNRows(nRows);\r
327 fakeLayer->SetOwner();\r
328 fakeLayer->BuildIndices();\r
329 //fakeLayer->PrintClusters();\r
330 \r
331 if(AliTRDReconstructor::RecoParam()->GetStreamLevel() >= 3){\r
332 //TMatrixD hist(nRows, nCols);\r
333 //for(Int_t i = 0; i < nRows; i++)\r
334 // for(Int_t j = 0; j < nCols; j++)\r
335 // hist(i,j) = histogram[i][j];\r
336 TTreeSRedirector &cstreamer = *AliTRDtrackerV1::DebugStreamer();\r
337 cstreamer << "GetSeedingLayer"\r
338 << "plane=" << plane\r
339 << "ymin=" << ymin\r
340 << "ymax=" << ymax\r
341 << "zmin=" << zmin\r
342 << "zmax=" << zmax\r
343 << "L.=" << fakeLayer\r
344 //<< "Histogram.=" << &hist\r
345 << "\n";\r
346 }\r
347 \r
348 return fakeLayer;\r
349}\r
350\r