]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDv1.cxx
Merge with TRD-develop
[u/mrichter/AliRoot.git] / TRD / AliTRDv1.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
793ff80c 18Revision 1.17.2.5 2000/10/15 23:40:01 cblume
19Remove AliTRDconst
20
21Revision 1.17.2.4 2000/10/06 16:49:46 cblume
22Made Getters const
23
24Revision 1.17.2.3 2000/10/04 16:34:58 cblume
25Replace include files by forward declarations
26
27Revision 1.17.2.2 2000/09/18 13:50:17 cblume
28Include TR photon generation and adapt to new AliTRDhit
29
30Revision 1.22 2000/06/27 13:08:50 cblume
31Changed to Copy(TObject &A) to appease the HP-compiler
32
43da34c0 33Revision 1.21 2000/06/09 11:10:07 cblume
34Compiler warnings and coding conventions, next round
35
dd9a6ee3 36Revision 1.20 2000/06/08 18:32:58 cblume
37Make code compliant to coding conventions
38
8230f242 39Revision 1.19 2000/06/07 16:27:32 cblume
40Try to remove compiler warnings on Sun and HP
41
9d0b222b 42Revision 1.18 2000/05/08 16:17:27 cblume
43Merge TRD-develop
44
6f1e466d 45Revision 1.17.2.1 2000/05/08 14:59:16 cblume
46Made inline function non-virtual. Bug fix in setting sensitive chamber
47
48Revision 1.17 2000/02/28 19:10:26 cblume
49Include the new TRD classes
50
851d3db9 51Revision 1.16.4.1 2000/02/28 18:04:35 cblume
52Change to new hit version, introduce geometry class, and move digitization and clustering to AliTRDdigitizer/AliTRDclusterizerV1
53
54Revision 1.16 1999/11/05 22:50:28 fca
55Do not use Atan, removed from ROOT too
56
90f8d287 57Revision 1.15 1999/11/02 17:20:19 fca
58initialise nbytes before using it
59
036da493 60Revision 1.14 1999/11/02 17:15:54 fca
61Correct ansi scoping not accepted by HP compilers
62
0549c011 63Revision 1.13 1999/11/02 17:14:51 fca
64Correct ansi scoping not accepted by HP compilers
65
9c767df4 66Revision 1.12 1999/11/02 16:35:56 fca
67New version of TRD introduced
68
5c7f4665 69Revision 1.11 1999/11/01 20:41:51 fca
70Added protections against using the wrong version of FRAME
71
ab76897d 72Revision 1.10 1999/09/29 09:24:35 fca
73Introduction of the Copyright and cvs Log
74
4c039060 75*/
76
fe4da5cc 77///////////////////////////////////////////////////////////////////////////////
78// //
5c7f4665 79// Transition Radiation Detector version 2 -- slow simulator //
fe4da5cc 80// //
81//Begin_Html
82/*
5c7f4665 83<img src="picts/AliTRDfullClass.gif">
fe4da5cc 84*/
85//End_Html
86// //
87// //
88///////////////////////////////////////////////////////////////////////////////
89
90#include <TMath.h>
fe4da5cc 91#include <TVector.h>
5c7f4665 92#include <TRandom.h>
793ff80c 93#include <TF1.h>
fe4da5cc 94
fe4da5cc 95#include "AliRun.h"
fe4da5cc 96#include "AliMC.h"
d3f347ff 97#include "AliConst.h"
5c7f4665 98
851d3db9 99#include "AliTRDv1.h"
793ff80c 100#include "AliTRDhit.h"
851d3db9 101#include "AliTRDmatrix.h"
102#include "AliTRDgeometry.h"
793ff80c 103#include "AliTRDsim.h"
851d3db9 104
fe4da5cc 105ClassImp(AliTRDv1)
8230f242 106
107//_____________________________________________________________________________
108AliTRDv1::AliTRDv1():AliTRD()
109{
110 //
111 // Default constructor
112 //
113
114 fIdSens = 0;
115
116 fIdChamber1 = 0;
117 fIdChamber2 = 0;
118 fIdChamber3 = 0;
119
120 fSensSelect = 0;
121 fSensPlane = -1;
122 fSensChamber = -1;
123 fSensSector = -1;
124 fSensSectorRange = 0;
125
126 fDeltaE = NULL;
793ff80c 127 fTR = NULL;
8230f242 128
129}
130
fe4da5cc 131//_____________________________________________________________________________
132AliTRDv1::AliTRDv1(const char *name, const char *title)
133 :AliTRD(name, title)
134{
135 //
851d3db9 136 // Standard constructor for Transition Radiation Detector version 1
fe4da5cc 137 //
82bbf98a 138
9d0b222b 139 fIdSens = 0;
82bbf98a 140
9d0b222b 141 fIdChamber1 = 0;
142 fIdChamber2 = 0;
143 fIdChamber3 = 0;
5c7f4665 144
9d0b222b 145 fSensSelect = 0;
146 fSensPlane = -1;
147 fSensChamber = -1;
148 fSensSector = -1;
8230f242 149 fSensSectorRange = 0;
5c7f4665 150
9d0b222b 151 fDeltaE = NULL;
793ff80c 152 fTR = NULL;
5c7f4665 153
154 SetBufferSize(128000);
155
156}
157
8230f242 158//_____________________________________________________________________________
dd9a6ee3 159AliTRDv1::AliTRDv1(const AliTRDv1 &trd)
8230f242 160{
161 //
162 // Copy constructor
163 //
164
dd9a6ee3 165 ((AliTRDv1 &) trd).Copy(*this);
8230f242 166
167}
168
5c7f4665 169//_____________________________________________________________________________
170AliTRDv1::~AliTRDv1()
171{
dd9a6ee3 172 //
173 // AliTRDv1 destructor
174 //
82bbf98a 175
5c7f4665 176 if (fDeltaE) delete fDeltaE;
793ff80c 177 if (fTR) delete fTR;
82bbf98a 178
fe4da5cc 179}
180
dd9a6ee3 181//_____________________________________________________________________________
182AliTRDv1 &AliTRDv1::operator=(const AliTRDv1 &trd)
183{
184 //
185 // Assignment operator
186 //
187
188 if (this != &trd) ((AliTRDv1 &) trd).Copy(*this);
189 return *this;
190
191}
8230f242 192
193//_____________________________________________________________________________
43da34c0 194void AliTRDv1::Copy(TObject &trd)
8230f242 195{
196 //
197 // Copy function
198 //
199
43da34c0 200 ((AliTRDv1 &) trd).fIdSens = fIdSens;
8230f242 201
43da34c0 202 ((AliTRDv1 &) trd).fIdChamber1 = fIdChamber1;
203 ((AliTRDv1 &) trd).fIdChamber2 = fIdChamber2;
204 ((AliTRDv1 &) trd).fIdChamber3 = fIdChamber3;
8230f242 205
43da34c0 206 ((AliTRDv1 &) trd).fSensSelect = fSensSelect;
207 ((AliTRDv1 &) trd).fSensPlane = fSensPlane;
208 ((AliTRDv1 &) trd).fSensChamber = fSensChamber;
209 ((AliTRDv1 &) trd).fSensSector = fSensSector;
210 ((AliTRDv1 &) trd).fSensSectorRange = fSensSectorRange;
8230f242 211
793ff80c 212 fDeltaE->Copy(*((AliTRDv1 &) trd).fDeltaE);
213 fTR->Copy(*((AliTRDv1 &) trd).fTR);
8230f242 214
215}
216
fe4da5cc 217//_____________________________________________________________________________
218void AliTRDv1::CreateGeometry()
219{
220 //
851d3db9 221 // Create the GEANT geometry for the Transition Radiation Detector - Version 1
5c7f4665 222 // This version covers the full azimuth.
d3f347ff 223 //
224
82bbf98a 225 // Check that FRAME is there otherwise we have no place where to put the TRD
8230f242 226 AliModule* frame = gAlice->GetModule("FRAME");
227 if (!frame) return;
d3f347ff 228
82bbf98a 229 // Define the chambers
230 AliTRD::CreateGeometry();
d3f347ff 231
fe4da5cc 232}
233
234//_____________________________________________________________________________
235void AliTRDv1::CreateMaterials()
236{
237 //
851d3db9 238 // Create materials for the Transition Radiation Detector version 1
fe4da5cc 239 //
82bbf98a 240
d3f347ff 241 AliTRD::CreateMaterials();
82bbf98a 242
fe4da5cc 243}
244
793ff80c 245//_____________________________________________________________________________
246void AliTRDv1::CreateTRhit(Int_t det)
247{
248 //
249 // Creates an electron cluster from a TR photon.
250 // The photon is assumed to be created a the end of the radiator. The
251 // distance after which it deposits its energy takes into account the
252 // absorbtion of the entrance window and of the gas mixture in drift
253 // volume.
254 //
255
256 // PDG code electron
257 const Int_t kPdgElectron = 11;
258
259 // Ionization energy
260 const Float_t kWion = 22.04;
261
262 // Maximum number of TR photons per track
263 const Int_t kNTR = 50;
264
265 TLorentzVector mom, pos;
266 TClonesArray &lhits = *fHits;
267
268 // Create TR only for electrons
269 Int_t iPdg = gMC->TrackPid();
270 if (TMath::Abs(iPdg) != kPdgElectron) return;
271
272 // Create TR at the entrance of the chamber
273 if (gMC->IsTrackEntering()) {
274
275 Float_t eTR[kNTR];
276 Int_t nTR;
277
278 // Create TR photons
279 gMC->TrackMomentum(mom);
280 Float_t pTot = mom.Rho();
281 fTR->CreatePhotons(iPdg,pTot,nTR,eTR);
282 if (nTR > kNTR) {
283 printf("AliTRDv1::CreateTRhit -- ");
284 printf("Boundary error: nTR = %d, kNTR = %d\n",nTR,kNTR);
285 exit(1);
286 }
287
288 // Loop through the TR photons
289 for (Int_t iTR = 0; iTR < nTR; iTR++) {
290
291 Float_t energyMeV = eTR[iTR] * 0.001;
292 Float_t energyeV = eTR[iTR] * 1000.0;
293 Float_t absLength = 0;
294 Float_t sigma = 0;
295
296 // Take the absorbtion in the entrance window into account
297 Double_t muMy = fTR->GetMuMy(energyMeV);
298 sigma = muMy * fFoilDensity;
299 absLength = gRandom->Exp(sigma);
300 if (absLength < AliTRDgeometry::MyThick()) continue;
301
302 // The absorbtion cross sections in the drift gas
303 if (fGasMix == 1) {
304 // Gas-mixture (Xe/CO2)
305 Double_t muXe = fTR->GetMuXe(energyMeV);
306 Double_t muCO = fTR->GetMuCO(energyMeV);
307 sigma = (0.90 * muXe + 0.10 * muCO) * fGasDensity;
308 }
309 else {
310 // Gas-mixture (Xe/Isobutane)
311 Double_t muXe = fTR->GetMuXe(energyMeV);
312 Double_t muBu = fTR->GetMuBu(energyMeV);
313 sigma = (0.97 * muXe + 0.03 * muBu) * fGasDensity;
314 }
315
316 // The distance after which the energy of the TR photon
317 // is deposited.
318 absLength = gRandom->Exp(sigma);
319 if (absLength > AliTRDgeometry::DrThick()) continue;
320
321 // The position of the absorbtion
322 Float_t posHit[3];
323 gMC->TrackPosition(pos);
324 posHit[0] = pos[0] + mom[0] / pTot * absLength;
325 posHit[1] = pos[1] + mom[1] / pTot * absLength;
326 posHit[2] = pos[2] + mom[2] / pTot * absLength;
327
328 // Create the charge
329 Int_t q = ((Int_t) (energyeV / kWion));
330
331 // Add the hit to the array. TR photon hits are marked
332 // by negative charge
333 new(lhits[fNhits++]) AliTRDhit(fIshunt,gAlice->CurrentTrack()
334 ,det,posHit,-q);
335
336 }
337
338 }
339
340}
341
5c7f4665 342//_____________________________________________________________________________
343void AliTRDv1::Init()
344{
345 //
346 // Initialise Transition Radiation Detector after geometry has been built.
5c7f4665 347 //
348
349 AliTRD::Init();
350
851d3db9 351 printf(" Slow simulator\n\n");
352 if (fSensSelect) {
353 if (fSensPlane >= 0)
354 printf(" Only plane %d is sensitive\n",fSensPlane);
355 if (fSensChamber >= 0)
356 printf(" Only chamber %d is sensitive\n",fSensChamber);
9d0b222b 357 if (fSensSector >= 0) {
358 Int_t sens1 = fSensSector;
359 Int_t sens2 = fSensSector + fSensSectorRange;
793ff80c 360 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
361 * AliTRDgeometry::Nsect();
9d0b222b 362 printf(" Only sectors %d - %d are sensitive\n",sens1,sens2-1);
363 }
851d3db9 364 }
793ff80c 365 if (fTR)
366 printf(" TR simulation on\n");
367 else
368 printf(" TR simulation off\n");
851d3db9 369 printf("\n");
5c7f4665 370
371 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
372 const Float_t kPoti = 12.1;
373 // Maximum energy (50 keV);
374 const Float_t kEend = 50000.0;
375 // Ermilova distribution for the delta-ray spectrum
8230f242 376 Float_t poti = TMath::Log(kPoti);
377 Float_t eEnd = TMath::Log(kEend);
793ff80c 378 fDeltaE = new TF1("deltae",Ermilova,poti,eEnd,0);
5c7f4665 379
380 // Identifier of the sensitive volume (drift region)
381 fIdSens = gMC->VolId("UL05");
82bbf98a 382
383 // Identifier of the TRD-driftchambers
384 fIdChamber1 = gMC->VolId("UCIO");
385 fIdChamber2 = gMC->VolId("UCIM");
386 fIdChamber3 = gMC->VolId("UCII");
387
5c7f4665 388 for (Int_t i = 0; i < 80; i++) printf("*");
389 printf("\n");
390
fe4da5cc 391}
392
793ff80c 393//_____________________________________________________________________________
394AliTRDsim *AliTRDv1::CreateTR()
395{
396 //
397 // Enables the simulation of TR
398 //
399
400 fTR = new AliTRDsim();
401 return fTR;
402
403}
404
5c7f4665 405//_____________________________________________________________________________
406void AliTRDv1::SetSensPlane(Int_t iplane)
407{
408 //
851d3db9 409 // Defines the hit-sensitive plane (0-5)
5c7f4665 410 //
82bbf98a 411
851d3db9 412 if ((iplane < 0) || (iplane > 5)) {
5c7f4665 413 printf("Wrong input value: %d\n",iplane);
414 printf("Use standard setting\n");
851d3db9 415 fSensPlane = -1;
416 fSensSelect = 0;
5c7f4665 417 return;
418 }
82bbf98a 419
5c7f4665 420 fSensSelect = 1;
421 fSensPlane = iplane;
82bbf98a 422
5c7f4665 423}
424
425//_____________________________________________________________________________
426void AliTRDv1::SetSensChamber(Int_t ichamber)
427{
428 //
851d3db9 429 // Defines the hit-sensitive chamber (0-4)
5c7f4665 430 //
431
851d3db9 432 if ((ichamber < 0) || (ichamber > 4)) {
5c7f4665 433 printf("Wrong input value: %d\n",ichamber);
434 printf("Use standard setting\n");
851d3db9 435 fSensChamber = -1;
436 fSensSelect = 0;
5c7f4665 437 return;
438 }
439
440 fSensSelect = 1;
441 fSensChamber = ichamber;
442
443}
444
445//_____________________________________________________________________________
446void AliTRDv1::SetSensSector(Int_t isector)
447{
448 //
851d3db9 449 // Defines the hit-sensitive sector (0-17)
5c7f4665 450 //
451
9d0b222b 452 SetSensSector(isector,1);
453
454}
455
456//_____________________________________________________________________________
457void AliTRDv1::SetSensSector(Int_t isector, Int_t nsector)
458{
459 //
460 // Defines a range of hit-sensitive sectors. The range is defined by
461 // <isector> (0-17) as the starting point and <nsector> as the number
462 // of sectors to be included.
463 //
464
851d3db9 465 if ((isector < 0) || (isector > 17)) {
9d0b222b 466 printf("Wrong input value <isector>: %d\n",isector);
5c7f4665 467 printf("Use standard setting\n");
9d0b222b 468 fSensSector = -1;
469 fSensSectorRange = 0;
470 fSensSelect = 0;
5c7f4665 471 return;
472 }
473
9d0b222b 474 if ((nsector < 1) || (nsector > 18)) {
475 printf("Wrong input value <nsector>: %d\n",nsector);
476 printf("Use standard setting\n");
477 fSensSector = -1;
478 fSensSectorRange = 0;
479 fSensSelect = 0;
480 return;
481 }
482
483 fSensSelect = 1;
484 fSensSector = isector;
485 fSensSectorRange = nsector;
5c7f4665 486
487}
488
489//_____________________________________________________________________________
490void AliTRDv1::StepManager()
491{
492 //
5c7f4665 493 // Slow simulator. Every charged track produces electron cluster as hits
494 // along its path across the drift volume. The step size is set acording
495 // to Bethe-Bloch. The energy distribution of the delta electrons follows
496 // a spectrum taken from Ermilova et al.
497 //
498
499 Int_t iIdSens, icSens;
500 Int_t iIdSpace, icSpace;
501 Int_t iIdChamber, icChamber;
851d3db9 502 Int_t pla = 0;
503 Int_t cha = 0;
504 Int_t sec = 0;
793ff80c 505 Int_t det = 0;
851d3db9 506 Int_t iPdg;
793ff80c 507 Int_t qTot;
5c7f4665 508
793ff80c 509 Float_t hits[3];
5c7f4665 510 Float_t random[1];
511 Float_t charge;
512 Float_t aMass;
513
514 Double_t pTot;
5c7f4665 515 Double_t eDelta;
516 Double_t betaGamma, pp;
517
518 TLorentzVector pos, mom;
82bbf98a 519 TClonesArray &lhits = *fHits;
520
851d3db9 521 const Double_t kBig = 1.0E+12;
5c7f4665 522
523 // Ionization energy
851d3db9 524 const Float_t kWion = 22.04;
5c7f4665 525 // Maximum energy for e+ e- g for the step-size calculation
851d3db9 526 const Float_t kPTotMax = 0.002;
5c7f4665 527 // Plateau value of the energy-loss for electron in xenon
528 // taken from: Allison + Comb, Ann. Rev. Nucl. Sci. (1980), 30, 253
529 //const Double_t kPlateau = 1.70;
530 // the averaged value (26/3/99)
851d3db9 531 const Float_t kPlateau = 1.55;
5c7f4665 532 // dN1/dx|min for the gas mixture (90% Xe + 10% CO2)
851d3db9 533 const Float_t kPrim = 48.0;
5c7f4665 534 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
851d3db9 535 const Float_t kPoti = 12.1;
536
537 // PDG code electron
8230f242 538 const Int_t kPdgElectron = 11;
5c7f4665 539
540 // Set the maximum step size to a very large number for all
541 // neutral particles and those outside the driftvolume
542 gMC->SetMaxStep(kBig);
543
544 // Use only charged tracks
545 if (( gMC->TrackCharge() ) &&
546 (!gMC->IsTrackStop() ) &&
547 (!gMC->IsTrackDisappeared())) {
fe4da5cc 548
5c7f4665 549 // Inside a sensitive volume?
82bbf98a 550 iIdSens = gMC->CurrentVolID(icSens);
551 if (iIdSens == fIdSens) {
552
82bbf98a 553 iIdSpace = gMC->CurrentVolOffID(4,icSpace );
554 iIdChamber = gMC->CurrentVolOffID(1,icChamber);
fe4da5cc 555
5c7f4665 556 // Calculate the energy of the delta-electrons
557 eDelta = TMath::Exp(fDeltaE->GetRandom()) - kPoti;
558 eDelta = TMath::Max(eDelta,0.0);
559
560 // The number of secondary electrons created
793ff80c 561 qTot = ((Int_t) (eDelta / kWion) + 1);
5c7f4665 562
563 // The hit coordinates and charge
564 gMC->TrackPosition(pos);
565 hits[0] = pos[0];
566 hits[1] = pos[1];
567 hits[2] = pos[2];
5c7f4665 568
851d3db9 569 // The sector number (0 - 17)
570 // The numbering goes clockwise and starts at y = 0
571 Float_t phi = kRaddeg*TMath::ATan2(pos[0],pos[1]);
572 if (phi < 90.)
573 phi = phi + 270.;
574 else
575 phi = phi - 90.;
576 sec = ((Int_t) (phi / 20));
82bbf98a 577
d3f347ff 578 // The chamber number
851d3db9 579 // 0: outer left
580 // 1: middle left
581 // 2: inner
582 // 3: middle right
583 // 4: outer right
82bbf98a 584 if (iIdChamber == fIdChamber1)
851d3db9 585 cha = (hits[2] < 0 ? 0 : 4);
82bbf98a 586 else if (iIdChamber == fIdChamber2)
851d3db9 587 cha = (hits[2] < 0 ? 1 : 3);
82bbf98a 588 else if (iIdChamber == fIdChamber3)
851d3db9 589 cha = 2;
82bbf98a 590
fe4da5cc 591 // The plane number
851d3db9 592 // The numbering starts at the innermost plane
593 pla = icChamber - TMath::Nint((Float_t) (icChamber / 7)) * 6 - 1;
82bbf98a 594
5c7f4665 595 // Check on selected volumes
596 Int_t addthishit = 1;
597 if (fSensSelect) {
6f1e466d 598 if ((fSensPlane >= 0) && (pla != fSensPlane )) addthishit = 0;
599 if ((fSensChamber >= 0) && (cha != fSensChamber)) addthishit = 0;
9d0b222b 600 if (fSensSector >= 0) {
601 Int_t sens1 = fSensSector;
602 Int_t sens2 = fSensSector + fSensSectorRange;
793ff80c 603 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
604 * AliTRDgeometry::Nsect();
9d0b222b 605 if (sens1 < sens2) {
606 if ((sec < sens1) || (sec >= sens2)) addthishit = 0;
607 }
608 else {
609 if ((sec < sens1) && (sec >= sens2)) addthishit = 0;
610 }
611 }
5c7f4665 612 }
613
614 // Add this hit
615 if (addthishit) {
616
793ff80c 617 det = fGeometry->GetDetector(pla,cha,sec);
618
619 // Create the electron cluster from TR photons
620 if (fTR) CreateTRhit(det);
621
851d3db9 622 new(lhits[fNhits++]) AliTRDhit(fIshunt
623 ,gAlice->CurrentTrack()
9d0b222b 624 ,det
793ff80c 625 ,hits
626 ,qTot);
5c7f4665 627
628 // The energy loss according to Bethe Bloch
629 gMC->TrackMomentum(mom);
630 pTot = mom.Rho();
851d3db9 631 iPdg = TMath::Abs(gMC->TrackPid());
8230f242 632 if ( (iPdg != kPdgElectron) ||
633 ((iPdg == kPdgElectron) && (pTot < kPTotMax))) {
5c7f4665 634 aMass = gMC->TrackMass();
635 betaGamma = pTot / aMass;
636 pp = kPrim * BetheBloch(betaGamma);
637 // Take charge > 1 into account
638 charge = gMC->TrackCharge();
639 if (TMath::Abs(charge) > 1) pp = pp * charge*charge;
640 }
641 // Electrons above 20 Mev/c are at the plateau
642 else {
643 pp = kPrim * kPlateau;
644 }
645
646 // Calculate the maximum step size for the next tracking step
647 if (pp > 0) {
648 do
649 gMC->Rndm(random,1);
650 while ((random[0] == 1.) || (random[0] == 0.));
651 gMC->SetMaxStep( - TMath::Log(random[0]) / pp);
652 }
653
654 }
655 else {
656 // set step size to maximal value
657 gMC->SetMaxStep(kBig);
658 }
d3f347ff 659
660 }
661
5c7f4665 662 }
663
664}
665
666//_____________________________________________________________________________
667Double_t AliTRDv1::BetheBloch(Double_t bg)
668{
669 //
670 // Parametrization of the Bethe-Bloch-curve
671 // The parametrization is the same as for the TPC and is taken from Lehrhaus.
672 //
673
674 // This parameters have been adjusted to averaged values from GEANT
675 const Double_t kP1 = 7.17960e-02;
676 const Double_t kP2 = 8.54196;
677 const Double_t kP3 = 1.38065e-06;
678 const Double_t kP4 = 5.30972;
679 const Double_t kP5 = 2.83798;
680
681 // This parameters have been adjusted to Xe-data found in:
682 // Allison & Cobb, Ann. Rev. Nucl. Sci. (1980), 30, 253
683 //const Double_t kP1 = 0.76176E-1;
684 //const Double_t kP2 = 10.632;
685 //const Double_t kP3 = 3.17983E-6;
686 //const Double_t kP4 = 1.8631;
687 //const Double_t kP5 = 1.9479;
688
689 if (bg > 0) {
690 Double_t yy = bg / TMath::Sqrt(1. + bg*bg);
691 Double_t aa = TMath::Power(yy,kP4);
692 Double_t bb = TMath::Power((1./bg),kP5);
693 bb = TMath::Log(kP3 + bb);
694 return ((kP2 - aa - bb)*kP1 / aa);
695 }
696 else
697 return 0;
d3f347ff 698
fe4da5cc 699}
5c7f4665 700
701//_____________________________________________________________________________
702Double_t Ermilova(Double_t *x, Double_t *)
703{
704 //
705 // Calculates the delta-ray energy distribution according to Ermilova.
706 // Logarithmic scale !
707 //
708
709 Double_t energy;
710 Double_t dpos;
711 Double_t dnde;
712
713 Int_t pos1, pos2;
714
8230f242 715 const Int_t kNv = 31;
5c7f4665 716
8230f242 717 Float_t vxe[kNv] = { 2.3026, 2.9957, 3.4012, 3.6889, 3.9120
718 , 4.0943, 4.2485, 4.3820, 4.4998, 4.6052
719 , 4.7005, 5.0752, 5.2983, 5.7038, 5.9915
720 , 6.2146, 6.5221, 6.9078, 7.3132, 7.6009
721 , 8.0064, 8.5172, 8.6995, 8.9872, 9.2103
722 , 9.4727, 9.9035,10.3735,10.5966,10.8198
723 ,11.5129 };
5c7f4665 724
8230f242 725 Float_t vye[kNv] = { 80.0 , 31.0 , 23.3 , 21.1 , 21.0
726 , 20.9 , 20.8 , 20.0 , 16.0 , 11.0
727 , 8.0 , 6.0 , 5.2 , 4.6 , 4.0
728 , 3.5 , 3.0 , 1.4 , 0.67 , 0.44
729 , 0.3 , 0.18 , 0.12 , 0.08 , 0.056
730 , 0.04 , 0.023, 0.015, 0.011, 0.01
731 , 0.004 };
5c7f4665 732
733 energy = x[0];
734
735 // Find the position
736 pos1 = pos2 = 0;
737 dpos = 0;
738 do {
739 dpos = energy - vxe[pos2++];
740 }
741 while (dpos > 0);
742 pos2--;
8230f242 743 if (pos2 > kNv) pos2 = kNv;
5c7f4665 744 pos1 = pos2 - 1;
745
746 // Differentiate between the sampling points
747 dnde = (vye[pos1] - vye[pos2]) / (vxe[pos2] - vxe[pos1]);
748
749 return dnde;
750
751}