]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDv1.cxx
TFlukaCerenkov added.
[u/mrichter/AliRoot.git] / TRD / AliTRDv1.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
4c039060 17
fe4da5cc 18///////////////////////////////////////////////////////////////////////////////
19// //
769257f4 20// Transition Radiation Detector version 1 -- slow simulator //
fe4da5cc 21// //
22//Begin_Html
23/*
5c7f4665 24<img src="picts/AliTRDfullClass.gif">
fe4da5cc 25*/
26//End_Html
27// //
28// //
29///////////////////////////////////////////////////////////////////////////////
30
769257f4 31#include <stdlib.h>
32
793ff80c 33#include <TF1.h>
1819f4bb 34#include <TLorentzVector.h>
88cb7938 35#include <TMath.h>
36#include <TRandom.h>
37#include <TVector.h>
38#include <TVirtualMC.h>
fe4da5cc 39
d3f347ff 40#include "AliConst.h"
88cb7938 41#include "AliRun.h"
42#include "AliTRDgeometry.h"
793ff80c 43#include "AliTRDhit.h"
851d3db9 44#include "AliTRDmatrix.h"
793ff80c 45#include "AliTRDsim.h"
88cb7938 46#include "AliTRDv1.h"
5d12ce38 47#include "AliMC.h"
851d3db9 48
fe4da5cc 49ClassImp(AliTRDv1)
8230f242 50
51//_____________________________________________________________________________
52AliTRDv1::AliTRDv1():AliTRD()
53{
54 //
55 // Default constructor
56 //
57
8230f242 58 fSensSelect = 0;
59 fSensPlane = -1;
60 fSensChamber = -1;
61 fSensSector = -1;
62 fSensSectorRange = 0;
63
64 fDeltaE = NULL;
793ff80c 65 fTR = NULL;
8230f242 66
67}
68
fe4da5cc 69//_____________________________________________________________________________
70AliTRDv1::AliTRDv1(const char *name, const char *title)
71 :AliTRD(name, title)
72{
73 //
851d3db9 74 // Standard constructor for Transition Radiation Detector version 1
fe4da5cc 75 //
82bbf98a 76
9d0b222b 77 fSensSelect = 0;
78 fSensPlane = -1;
79 fSensChamber = -1;
80 fSensSector = -1;
8230f242 81 fSensSectorRange = 0;
5c7f4665 82
9d0b222b 83 fDeltaE = NULL;
793ff80c 84 fTR = NULL;
5c7f4665 85
86 SetBufferSize(128000);
87
88}
89
8230f242 90//_____________________________________________________________________________
73ae7b59 91AliTRDv1::AliTRDv1(const AliTRDv1 &trd):AliTRD(trd)
8230f242 92{
93 //
94 // Copy constructor
95 //
96
dd9a6ee3 97 ((AliTRDv1 &) trd).Copy(*this);
8230f242 98
99}
100
5c7f4665 101//_____________________________________________________________________________
102AliTRDv1::~AliTRDv1()
103{
dd9a6ee3 104 //
105 // AliTRDv1 destructor
106 //
82bbf98a 107
5c7f4665 108 if (fDeltaE) delete fDeltaE;
793ff80c 109 if (fTR) delete fTR;
82bbf98a 110
fe4da5cc 111}
112
dd9a6ee3 113//_____________________________________________________________________________
114AliTRDv1 &AliTRDv1::operator=(const AliTRDv1 &trd)
115{
116 //
117 // Assignment operator
118 //
119
120 if (this != &trd) ((AliTRDv1 &) trd).Copy(*this);
121 return *this;
122
123}
8230f242 124
125//_____________________________________________________________________________
43da34c0 126void AliTRDv1::Copy(TObject &trd)
8230f242 127{
128 //
129 // Copy function
130 //
131
43da34c0 132 ((AliTRDv1 &) trd).fSensSelect = fSensSelect;
133 ((AliTRDv1 &) trd).fSensPlane = fSensPlane;
134 ((AliTRDv1 &) trd).fSensChamber = fSensChamber;
135 ((AliTRDv1 &) trd).fSensSector = fSensSector;
136 ((AliTRDv1 &) trd).fSensSectorRange = fSensSectorRange;
8230f242 137
793ff80c 138 fDeltaE->Copy(*((AliTRDv1 &) trd).fDeltaE);
139 fTR->Copy(*((AliTRDv1 &) trd).fTR);
8230f242 140
141}
142
fe4da5cc 143//_____________________________________________________________________________
144void AliTRDv1::CreateGeometry()
145{
146 //
851d3db9 147 // Create the GEANT geometry for the Transition Radiation Detector - Version 1
5c7f4665 148 // This version covers the full azimuth.
d3f347ff 149 //
150
82bbf98a 151 // Check that FRAME is there otherwise we have no place where to put the TRD
8230f242 152 AliModule* frame = gAlice->GetModule("FRAME");
153 if (!frame) return;
d3f347ff 154
82bbf98a 155 // Define the chambers
156 AliTRD::CreateGeometry();
d3f347ff 157
fe4da5cc 158}
159
160//_____________________________________________________________________________
161void AliTRDv1::CreateMaterials()
162{
163 //
851d3db9 164 // Create materials for the Transition Radiation Detector version 1
fe4da5cc 165 //
82bbf98a 166
d3f347ff 167 AliTRD::CreateMaterials();
82bbf98a 168
fe4da5cc 169}
170
793ff80c 171//_____________________________________________________________________________
172void AliTRDv1::CreateTRhit(Int_t det)
173{
174 //
175 // Creates an electron cluster from a TR photon.
176 // The photon is assumed to be created a the end of the radiator. The
177 // distance after which it deposits its energy takes into account the
178 // absorbtion of the entrance window and of the gas mixture in drift
179 // volume.
180 //
181
182 // PDG code electron
183 const Int_t kPdgElectron = 11;
184
185 // Ionization energy
186 const Float_t kWion = 22.04;
187
188 // Maximum number of TR photons per track
189 const Int_t kNTR = 50;
190
191 TLorentzVector mom, pos;
793ff80c 192
793ff80c 193 // Create TR at the entrance of the chamber
194 if (gMC->IsTrackEntering()) {
195
f73816f5 196 // Create TR only for electrons
197 Int_t iPdg = gMC->TrackPid();
198 if (TMath::Abs(iPdg) != kPdgElectron) return;
199
793ff80c 200 Float_t eTR[kNTR];
201 Int_t nTR;
202
203 // Create TR photons
204 gMC->TrackMomentum(mom);
205 Float_t pTot = mom.Rho();
206 fTR->CreatePhotons(iPdg,pTot,nTR,eTR);
207 if (nTR > kNTR) {
208 printf("AliTRDv1::CreateTRhit -- ");
209 printf("Boundary error: nTR = %d, kNTR = %d\n",nTR,kNTR);
210 exit(1);
211 }
212
213 // Loop through the TR photons
214 for (Int_t iTR = 0; iTR < nTR; iTR++) {
215
216 Float_t energyMeV = eTR[iTR] * 0.001;
217 Float_t energyeV = eTR[iTR] * 1000.0;
218 Float_t absLength = 0;
219 Float_t sigma = 0;
220
221 // Take the absorbtion in the entrance window into account
222 Double_t muMy = fTR->GetMuMy(energyMeV);
223 sigma = muMy * fFoilDensity;
842287f2 224 if (sigma > 0.0) {
225 absLength = gRandom->Exp(1.0/sigma);
226 if (absLength < AliTRDgeometry::MyThick()) continue;
227 }
228 else {
229 continue;
230 }
793ff80c 231
232 // The absorbtion cross sections in the drift gas
233 if (fGasMix == 1) {
234 // Gas-mixture (Xe/CO2)
235 Double_t muXe = fTR->GetMuXe(energyMeV);
236 Double_t muCO = fTR->GetMuCO(energyMeV);
842287f2 237 sigma = (0.85 * muXe + 0.15 * muCO) * fGasDensity * fTR->GetTemp();
793ff80c 238 }
239 else {
240 // Gas-mixture (Xe/Isobutane)
241 Double_t muXe = fTR->GetMuXe(energyMeV);
242 Double_t muBu = fTR->GetMuBu(energyMeV);
842287f2 243 sigma = (0.97 * muXe + 0.03 * muBu) * fGasDensity * fTR->GetTemp();
793ff80c 244 }
245
246 // The distance after which the energy of the TR photon
247 // is deposited.
842287f2 248 if (sigma > 0.0) {
249 absLength = gRandom->Exp(1.0/sigma);
250 if (absLength > AliTRDgeometry::DrThick()) continue;
251 }
252 else {
253 continue;
254 }
793ff80c 255
256 // The position of the absorbtion
257 Float_t posHit[3];
258 gMC->TrackPosition(pos);
259 posHit[0] = pos[0] + mom[0] / pTot * absLength;
260 posHit[1] = pos[1] + mom[1] / pTot * absLength;
261 posHit[2] = pos[2] + mom[2] / pTot * absLength;
262
263 // Create the charge
264 Int_t q = ((Int_t) (energyeV / kWion));
265
266 // Add the hit to the array. TR photon hits are marked
267 // by negative charge
5d12ce38 268 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(),det,posHit,-q,kTRUE);
793ff80c 269
270 }
271
272 }
273
274}
275
5c7f4665 276//_____________________________________________________________________________
277void AliTRDv1::Init()
278{
279 //
280 // Initialise Transition Radiation Detector after geometry has been built.
5c7f4665 281 //
282
283 AliTRD::Init();
284
9e1a0ddb 285 if(fDebug) printf("%s: Slow simulator\n",ClassName());
851d3db9 286 if (fSensSelect) {
287 if (fSensPlane >= 0)
288 printf(" Only plane %d is sensitive\n",fSensPlane);
289 if (fSensChamber >= 0)
290 printf(" Only chamber %d is sensitive\n",fSensChamber);
9d0b222b 291 if (fSensSector >= 0) {
292 Int_t sens1 = fSensSector;
293 Int_t sens2 = fSensSector + fSensSectorRange;
793ff80c 294 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
295 * AliTRDgeometry::Nsect();
9d0b222b 296 printf(" Only sectors %d - %d are sensitive\n",sens1,sens2-1);
297 }
851d3db9 298 }
793ff80c 299 if (fTR)
9e1a0ddb 300 printf("%s: TR simulation on\n",ClassName());
793ff80c 301 else
9e1a0ddb 302 printf("%s: TR simulation off\n",ClassName());
851d3db9 303 printf("\n");
5c7f4665 304
305 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
306 const Float_t kPoti = 12.1;
307 // Maximum energy (50 keV);
308 const Float_t kEend = 50000.0;
309 // Ermilova distribution for the delta-ray spectrum
8230f242 310 Float_t poti = TMath::Log(kPoti);
311 Float_t eEnd = TMath::Log(kEend);
793ff80c 312 fDeltaE = new TF1("deltae",Ermilova,poti,eEnd,0);
5c7f4665 313
9e1a0ddb 314 if(fDebug) {
315 printf("%s: ",ClassName());
316 for (Int_t i = 0; i < 80; i++) printf("*");
317 printf("\n");
318 }
5c7f4665 319
fe4da5cc 320}
321
793ff80c 322//_____________________________________________________________________________
323AliTRDsim *AliTRDv1::CreateTR()
324{
325 //
326 // Enables the simulation of TR
327 //
328
329 fTR = new AliTRDsim();
330 return fTR;
331
332}
333
5c7f4665 334//_____________________________________________________________________________
335void AliTRDv1::SetSensPlane(Int_t iplane)
336{
337 //
851d3db9 338 // Defines the hit-sensitive plane (0-5)
5c7f4665 339 //
82bbf98a 340
851d3db9 341 if ((iplane < 0) || (iplane > 5)) {
5c7f4665 342 printf("Wrong input value: %d\n",iplane);
343 printf("Use standard setting\n");
851d3db9 344 fSensPlane = -1;
345 fSensSelect = 0;
5c7f4665 346 return;
347 }
82bbf98a 348
5c7f4665 349 fSensSelect = 1;
350 fSensPlane = iplane;
82bbf98a 351
5c7f4665 352}
353
354//_____________________________________________________________________________
355void AliTRDv1::SetSensChamber(Int_t ichamber)
356{
357 //
851d3db9 358 // Defines the hit-sensitive chamber (0-4)
5c7f4665 359 //
360
851d3db9 361 if ((ichamber < 0) || (ichamber > 4)) {
5c7f4665 362 printf("Wrong input value: %d\n",ichamber);
363 printf("Use standard setting\n");
851d3db9 364 fSensChamber = -1;
365 fSensSelect = 0;
5c7f4665 366 return;
367 }
368
369 fSensSelect = 1;
370 fSensChamber = ichamber;
371
372}
373
374//_____________________________________________________________________________
375void AliTRDv1::SetSensSector(Int_t isector)
376{
377 //
851d3db9 378 // Defines the hit-sensitive sector (0-17)
5c7f4665 379 //
380
9d0b222b 381 SetSensSector(isector,1);
382
383}
384
385//_____________________________________________________________________________
386void AliTRDv1::SetSensSector(Int_t isector, Int_t nsector)
387{
388 //
389 // Defines a range of hit-sensitive sectors. The range is defined by
390 // <isector> (0-17) as the starting point and <nsector> as the number
391 // of sectors to be included.
392 //
393
851d3db9 394 if ((isector < 0) || (isector > 17)) {
9d0b222b 395 printf("Wrong input value <isector>: %d\n",isector);
5c7f4665 396 printf("Use standard setting\n");
9d0b222b 397 fSensSector = -1;
398 fSensSectorRange = 0;
399 fSensSelect = 0;
5c7f4665 400 return;
401 }
402
9d0b222b 403 if ((nsector < 1) || (nsector > 18)) {
404 printf("Wrong input value <nsector>: %d\n",nsector);
405 printf("Use standard setting\n");
406 fSensSector = -1;
407 fSensSectorRange = 0;
408 fSensSelect = 0;
409 return;
410 }
411
412 fSensSelect = 1;
413 fSensSector = isector;
414 fSensSectorRange = nsector;
5c7f4665 415
416}
417
418//_____________________________________________________________________________
419void AliTRDv1::StepManager()
420{
421 //
5c7f4665 422 // Slow simulator. Every charged track produces electron cluster as hits
423 // along its path across the drift volume. The step size is set acording
424 // to Bethe-Bloch. The energy distribution of the delta electrons follows
425 // a spectrum taken from Ermilova et al.
426 //
427
851d3db9 428 Int_t pla = 0;
429 Int_t cha = 0;
430 Int_t sec = 0;
793ff80c 431 Int_t det = 0;
851d3db9 432 Int_t iPdg;
793ff80c 433 Int_t qTot;
5c7f4665 434
793ff80c 435 Float_t hits[3];
b9d0a01d 436 Double_t random[1];
5c7f4665 437 Float_t charge;
438 Float_t aMass;
439
f73816f5 440 Double_t pTot = 0;
5c7f4665 441 Double_t eDelta;
442 Double_t betaGamma, pp;
f73816f5 443 Double_t stepSize;
5c7f4665 444
332e9569 445 Bool_t drRegion = kFALSE;
446 Bool_t amRegion = kFALSE;
447
448 TString cIdCurrent;
449 TString cIdSensDr = "J";
450 TString cIdSensAm = "K";
593a9fc3 451 Char_t cIdChamber[3];
452 cIdChamber[2] = 0;
332e9569 453
5c7f4665 454 TLorentzVector pos, mom;
82bbf98a 455
332e9569 456 const Int_t kNplan = AliTRDgeometry::Nplan();
e644678a 457 const Int_t kNcham = AliTRDgeometry::Ncham();
458 const Int_t kNdetsec = kNplan * kNcham;
459
332e9569 460 const Double_t kBig = 1.0E+12;
5c7f4665 461
462 // Ionization energy
a3c76cdc 463 const Float_t kWion = 22.04;
464 // Maximum momentum for e+ e- g
465 const Float_t kPTotMaxEl = 0.002;
f73816f5 466 // Minimum energy for the step size adjustment
467 const Float_t kEkinMinStep = 1.0e-5;
5c7f4665 468 // Plateau value of the energy-loss for electron in xenon
469 // taken from: Allison + Comb, Ann. Rev. Nucl. Sci. (1980), 30, 253
470 //const Double_t kPlateau = 1.70;
471 // the averaged value (26/3/99)
a3c76cdc 472 const Float_t kPlateau = 1.55;
5c7f4665 473 // dN1/dx|min for the gas mixture (90% Xe + 10% CO2)
a3c76cdc 474 const Float_t kPrim = 48.0;
5c7f4665 475 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
a3c76cdc 476 const Float_t kPoti = 12.1;
851d3db9 477
478 // PDG code electron
8230f242 479 const Int_t kPdgElectron = 11;
5c7f4665 480
481 // Set the maximum step size to a very large number for all
482 // neutral particles and those outside the driftvolume
483 gMC->SetMaxStep(kBig);
484
485 // Use only charged tracks
486 if (( gMC->TrackCharge() ) &&
487 (!gMC->IsTrackStop() ) &&
488 (!gMC->IsTrackDisappeared())) {
fe4da5cc 489
5c7f4665 490 // Inside a sensitive volume?
332e9569 491 drRegion = kFALSE;
492 amRegion = kFALSE;
493 cIdCurrent = gMC->CurrentVolName();
e6674585 494 if (cIdSensDr == cIdCurrent[1]) {
332e9569 495 drRegion = kTRUE;
496 }
e6674585 497 if (cIdSensAm == cIdCurrent[1]) {
332e9569 498 amRegion = kTRUE;
499 }
500 if (drRegion || amRegion) {
fe4da5cc 501
5c7f4665 502 // The hit coordinates and charge
503 gMC->TrackPosition(pos);
504 hits[0] = pos[0];
505 hits[1] = pos[1];
506 hits[2] = pos[2];
5c7f4665 507
851d3db9 508 // The sector number (0 - 17)
509 // The numbering goes clockwise and starts at y = 0
e15eb584 510 // Not fully consistent to new corrdinate schema!!!
511 Float_t phi = kRaddeg*TMath::ATan2(pos[0],pos[1]);
851d3db9 512 if (phi < 90.)
513 phi = phi + 270.;
514 else
515 phi = phi - 90.;
516 sec = ((Int_t) (phi / 20));
82bbf98a 517
332e9569 518 // The plane and chamber number
519 cIdChamber[0] = cIdCurrent[2];
520 cIdChamber[1] = cIdCurrent[3];
e644678a 521 Int_t idChamber = (atoi(cIdChamber) % kNdetsec);
332e9569 522 cha = ((Int_t) idChamber / kNplan);
523 pla = ((Int_t) idChamber % kNplan);
82bbf98a 524
5c7f4665 525 // Check on selected volumes
526 Int_t addthishit = 1;
527 if (fSensSelect) {
6f1e466d 528 if ((fSensPlane >= 0) && (pla != fSensPlane )) addthishit = 0;
529 if ((fSensChamber >= 0) && (cha != fSensChamber)) addthishit = 0;
9d0b222b 530 if (fSensSector >= 0) {
531 Int_t sens1 = fSensSector;
532 Int_t sens2 = fSensSector + fSensSectorRange;
793ff80c 533 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
534 * AliTRDgeometry::Nsect();
9d0b222b 535 if (sens1 < sens2) {
536 if ((sec < sens1) || (sec >= sens2)) addthishit = 0;
537 }
538 else {
539 if ((sec < sens1) && (sec >= sens2)) addthishit = 0;
540 }
541 }
5c7f4665 542 }
543
544 // Add this hit
545 if (addthishit) {
546
f73816f5 547 // The detector number
793ff80c 548 det = fGeometry->GetDetector(pla,cha,sec);
549
f73816f5 550 // Special hits and TR photons only in the drift region
332e9569 551 if (drRegion) {
f73816f5 552
c61f1a66 553 // Create a track reference at the entrance and
554 // exit of each chamber that contain the
555 // momentum components of the particle
f73816f5 556 if (gMC->IsTrackEntering() || gMC->IsTrackExiting()) {
557 gMC->TrackMomentum(mom);
5d12ce38 558 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
f73816f5 559 }
560
561 // Create the hits from TR photons
562 if (fTR) CreateTRhit(det);
563
564 }
565
566 // Calculate the energy of the delta-electrons
567 eDelta = TMath::Exp(fDeltaE->GetRandom()) - kPoti;
568 eDelta = TMath::Max(eDelta,0.0);
569
570 // The number of secondary electrons created
571 qTot = ((Int_t) (eDelta / kWion) + 1);
572
573 // Create a new dEdx hit
332e9569 574 if (drRegion) {
5d12ce38 575 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(),det,hits,qTot,kTRUE);
f73816f5 576 }
5c7f4665 577 else {
5d12ce38 578 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(),det,hits,qTot,kFALSE);
f73816f5 579 }
580
5c7f4665 581 // Calculate the maximum step size for the next tracking step
f73816f5 582 // Produce only one hit if Ekin is below cutoff
583 aMass = gMC->TrackMass();
584 if ((gMC->Etot() - aMass) > kEkinMinStep) {
585
586 // The energy loss according to Bethe Bloch
587 iPdg = TMath::Abs(gMC->TrackPid());
588 if ( (iPdg != kPdgElectron) ||
589 ((iPdg == kPdgElectron) && (pTot < kPTotMaxEl))) {
590 gMC->TrackMomentum(mom);
591 pTot = mom.Rho();
592 betaGamma = pTot / aMass;
593 pp = kPrim * BetheBloch(betaGamma);
594 // Take charge > 1 into account
595 charge = gMC->TrackCharge();
596 if (TMath::Abs(charge) > 1) pp = pp * charge*charge;
597 }
598 // Electrons above 20 Mev/c are at the plateau
599 else {
600 pp = kPrim * kPlateau;
601 }
602
603 if (pp > 0) {
604 do
b9d0a01d 605 gMC->GetRandom()->RndmArray(1, random);
f73816f5 606 while ((random[0] == 1.) || (random[0] == 0.));
607 stepSize = - TMath::Log(random[0]) / pp;
608 gMC->SetMaxStep(stepSize);
609 }
610
5c7f4665 611 }
612
613 }
d3f347ff 614
615 }
616
5c7f4665 617 }
618
619}
620
621//_____________________________________________________________________________
622Double_t AliTRDv1::BetheBloch(Double_t bg)
623{
624 //
625 // Parametrization of the Bethe-Bloch-curve
626 // The parametrization is the same as for the TPC and is taken from Lehrhaus.
627 //
628
629 // This parameters have been adjusted to averaged values from GEANT
630 const Double_t kP1 = 7.17960e-02;
631 const Double_t kP2 = 8.54196;
632 const Double_t kP3 = 1.38065e-06;
633 const Double_t kP4 = 5.30972;
634 const Double_t kP5 = 2.83798;
635
636 // This parameters have been adjusted to Xe-data found in:
637 // Allison & Cobb, Ann. Rev. Nucl. Sci. (1980), 30, 253
638 //const Double_t kP1 = 0.76176E-1;
639 //const Double_t kP2 = 10.632;
640 //const Double_t kP3 = 3.17983E-6;
641 //const Double_t kP4 = 1.8631;
642 //const Double_t kP5 = 1.9479;
643
f73816f5 644 // Lower cutoff of the Bethe-Bloch-curve to limit step sizes
645 const Double_t kBgMin = 0.8;
646 const Double_t kBBMax = 6.83298;
647 //const Double_t kBgMin = 0.6;
648 //const Double_t kBBMax = 17.2809;
649 //const Double_t kBgMin = 0.4;
650 //const Double_t kBBMax = 82.0;
651
652 if (bg > kBgMin) {
5c7f4665 653 Double_t yy = bg / TMath::Sqrt(1. + bg*bg);
654 Double_t aa = TMath::Power(yy,kP4);
655 Double_t bb = TMath::Power((1./bg),kP5);
656 bb = TMath::Log(kP3 + bb);
657 return ((kP2 - aa - bb)*kP1 / aa);
658 }
f73816f5 659 else {
660 return kBBMax;
661 }
d3f347ff 662
fe4da5cc 663}
5c7f4665 664
665//_____________________________________________________________________________
666Double_t Ermilova(Double_t *x, Double_t *)
667{
668 //
669 // Calculates the delta-ray energy distribution according to Ermilova.
670 // Logarithmic scale !
671 //
672
673 Double_t energy;
674 Double_t dpos;
675 Double_t dnde;
676
677 Int_t pos1, pos2;
678
8230f242 679 const Int_t kNv = 31;
5c7f4665 680
8230f242 681 Float_t vxe[kNv] = { 2.3026, 2.9957, 3.4012, 3.6889, 3.9120
682 , 4.0943, 4.2485, 4.3820, 4.4998, 4.6052
683 , 4.7005, 5.0752, 5.2983, 5.7038, 5.9915
684 , 6.2146, 6.5221, 6.9078, 7.3132, 7.6009
685 , 8.0064, 8.5172, 8.6995, 8.9872, 9.2103
686 , 9.4727, 9.9035,10.3735,10.5966,10.8198
687 ,11.5129 };
5c7f4665 688
8230f242 689 Float_t vye[kNv] = { 80.0 , 31.0 , 23.3 , 21.1 , 21.0
690 , 20.9 , 20.8 , 20.0 , 16.0 , 11.0
691 , 8.0 , 6.0 , 5.2 , 4.6 , 4.0
692 , 3.5 , 3.0 , 1.4 , 0.67 , 0.44
693 , 0.3 , 0.18 , 0.12 , 0.08 , 0.056
694 , 0.04 , 0.023, 0.015, 0.011, 0.01
695 , 0.004 };
5c7f4665 696
697 energy = x[0];
698
699 // Find the position
700 pos1 = pos2 = 0;
701 dpos = 0;
702 do {
703 dpos = energy - vxe[pos2++];
704 }
705 while (dpos > 0);
706 pos2--;
f73816f5 707 if (pos2 > kNv) pos2 = kNv - 1;
5c7f4665 708 pos1 = pos2 - 1;
709
710 // Differentiate between the sampling points
711 dnde = (vye[pos1] - vye[pos2]) / (vxe[pos2] - vxe[pos1]);
712
713 return dnde;
714
715}